I/We being the person(s) identified below as the Applicant(s), request the grant of a patent to the person(s) identified below as the Nominated Person(s), for an invention described in the accompanying standard complete specification.

Full application details follow:

[71/70] Applicant(s)/Nominated Person(s):

International Business Machines Corporation

of

Armonk, New York, 10504, United States of America

[54] Invention Title:

Dynamic bus arbitration with grant sharing each cycle

[72] Name(s) of actual inventor(s):

George Bohoslaw MARENIN

[74] Address for service in Australia:

DAVIES & COLLISON, Patent Attorneys, 1 Little Collins Street, Melbourne, Victoria, Australia. Attorney Code: DM

Basic Convention Application(s) Details:

586349 United States of America US 21 September 1990

DATED this TWENTY FIRST day of AUGUST 1991

..

a member of the firm of
DAVIES & COLLISON
for and on behalf of
the applicant(s)
We, International Business Machines Corporation, the applicant named in the accompanying Patent Request state the following:

The Nominated Person is entitled to the grant of the patent because the Nominated Person derives title to the invention from the inventor.

The Nominated Person is entitled to claim priority from the basic application listed on the patent request because the Nominated Person is the assignee of the applicant in respect of the basic application, and because that application was the first application made in a Convention country in respect of the invention.

DATED this TWENTY FIRST day of AUGUST 1991

a member of the firm of DAVIES & COLLISON for and on behalf of the applicant(s)

(D&C ref: 1426400)
1. Apparatus for optimizing bus arbitration during direct memory access (DMA) data transfers across a nondedicated bus between a memory and/or a plurality of external devices each having an arbitration priority, comprising:

 means for providing at least two nonoverlapping clocks per transfer cycle and at least one transfer cycle per arbitration cycle;

 means for transmitting arbitration priority requests from each external device to an arbitration bus only at the rise of the first of said clocks;

 means (45 or 84) operative at the end of the last of said clocks for determining the priority code of the external device having the highest priority to designate the external device which is to become bus master; and

 means (49,59) for transferring addresses and data between the designated bus master and the memory or another of the external devices via the nondedicated bus during the next cycle after a then active bus master relinquishes control.

2. The apparatus of claim 1, including means (including 70) for dynamically changing the priorities of at least some of the external devices.
NAME OF APPLICANT(S):

International Business Machines Corporation

ADDRESS FOR SERVICE:

DAVIES & COLLISON
Patent Attorneys
1 Little Collins Street, Melbourne, 3000.

INVENTION TITLE:

Dynamic bus arbitration with grant sharing each cycle

The following statement is a full description of this invention, including the best method of performing it known to me/us:-
This invention relates to apparatus for managing data transfers across a nondedicated bus between a memory and/or a plurality of external devices (including processors) and more particularly to means incorporated therein to arbitrate priority between such devices more efficiently by eliminating wasted arbitration cycles and large burst buffers and making the full bandwidth available for data transfer.

Background of the Invention

The IBM Microchannel Architecture Supplement for the PS/2 hardware interface technical reference, dated November 1989, describes a channel architecture in current widespread use. It discusses, at pages 30-33, burst transfer and local arbitration and preemption between bus masters. This and other currently used methods and means for channel bus arbitration for direct memory access (DMA) require a number of cycles to arbitrate priority between multiple external devices to determine the winner. This reduces the time available for data transfer.

In systems heretofore proposed, no granting of bus control is permitted during these arbitration cycles. These arbitration cycles constitute overhead which reduces bandwidth availability. To reduce this overhead, a current, but inefficient, solution is to group data transfers into bursts of back-to-back (i.e., successive, uninterrupted) cycles. But this undesirably requires additional hardware in the form of large memory buffers and their control circuitry, whose operation has to be interrupted at variable intervals so as not to overrun other DMA transferring devices of higher priority which must be allowed to preempt. To avoid hogging of the bus by an external device, elaborate fairness algorithms have been devised that add still further to
logic complexity and only slightly relieve the symptom instead of eliminating the problem.

No prior art of which applicant is aware describes apparatus which optimizes bus arbitration between multiple external devices by using a minimum of arbitration logic that (1) eliminates large burst buffers and wasted arbitration cycles, (2) permits data transfer in a multiplexed continuous sequential stream from different external devices, and yet, (3) like the prior art, permits the priorities of the respective external devices to be changed dynamically.

Summary of the Invention

A computer bus management apparatus is provided in which wait arbitration cycles and burst mode latency are eliminated. Bus interfacing protocol is simplified by obviating the need for the data streaming buffers and arbitration logic previously required. External devices know in advance when bus access will be granted, permitting faster pipelined operation. Also, since the highest requesting devices will always be granted bus mastership in sequence until all devices are serviced, problems of hogging and fairness are automatically resolved on a priority basis because long burst transfers are no longer required.

These advantages are achieved by providing at least two nonoverlapping clocks per transfer cycle and at least one transfer cycle per arbitration cycle. Arbitration priority requests from each external device are transmitted to the arbitration bus only at the rise of the first of the clocks. The priority code of the external device with the highest priority is determined at the end of the last of the clocks. Priority codes may be fixed or changed dynamically.

The invention may be implemented (a) with an address bus and bidirectional data bus; or (b) for faster pipelining, with a
unidirectional outgoing bus for addresses and data multiplexed at half-cycle periods, with the data bus being merely incoming unidirectional; or (c) with a single nondedicated bidirectional bus with addresses being sent only once at the beginning of a long transfer, and during subsequent data transfer cycles incremented sequentially until a new nonsequential address is sent.

Brief Description of the Drawings

Fig. 1 is a block diagram of a computer bus management apparatus which incorporates the invention;

Fig. 2 is a schematic diagram of circuitry associated with each external device for generating two nonoverlapping clock cycles from a single source for implementing the invention;

Fig. 3 is a timing diagram showing the nonoverlapping clock cycles generated by the circuitry of Fig. 2;

Fig. 4 is a schematic diagram of arbitration circuitry that grants a bus master at the end of the last of said clock cycles according to a fixed priority, illustratively assumed as "5" (0101);

Fig. 5 is a schematic diagram that can be substituted in a portion of Fig. 4 to provide circuitry that grants a bus master at the end of the last of said clock cycles according to a priority that can be set dynamically; and

Fig. 6 is a timing diagram illustrating the pipelining of bus requests, bus grants, addresses, data transfers and interlocks to provide successive burst or stream read/write operations.

Description of Preferred Embodiments

As illustrated in Fig. 1, the bus management apparatus embodying the invention comprises a central processing unit (CPU)
that communicates over a system bus 12 with a main memory 11 and with a plurality of external devices, such as 13,14. The term "external devices", as herein used, is intended generically to cover other CPUs and peripheral devices such as disk files, printers, etc. A signal source, such as an oscillator 15, provides square wave signals to each external device. As illustrated, oscillator 15 is separate from the CPU; but, if preferred, its signal-providing function may be supplied by the CPU.

Note that, according to a feature of the invention, no bus controller or DMA controller is required.

As illustrated in Fig. 2, each external device 13,14 includes a pair of inverters 20,21 and a pair of buffer drivers 22,23. When the oscillator 15 goes positive, it causes a rise of the signal in line 24. This signal is applied directly to AND gate 25, and also indirectly to said AND gate by being inverted and then reinverted by inverters 20,21 to provide a time delay.

At the end of the time delay, the signal gated out from AND gate 25 is inverted by OR gate 26 and causes buffer driver 22 to drive clock C1 positive. Meanwhile, the output of OR gate 26 will be ANDed at 27 with the somewhat delayed output from inverter 20 and cause OR gate 28 to invert the signal and cause buffer driver 23 to drive clock C2 positive. Gates 25,26 are identical with gates 27,28.

The timing of the positive and negative cycles of the respective clocks C1 and C2 is depicted in Fig. 3. Clocks C1 and C2 are 180° out of phase. However, according to a feature of the invention, because of the delay through inverter 21, the cycle length of clock C1 is slightly shorter than that of clock C2 to render the clock cycles nonoverlapping. For example, assuming the cycle length of oscillator 15 is 100 nanoseconds (ns), then the phase length of positive clock C1 is 49 ns based on a
2 1/2 ns delay from the leading edge and a 1 1/2 ns delay added to the trailing edge; and this results in a phase length of 51 ns for the negative clock C1. However, positive clock C2 has a slightly longer phase length of 49.5 ns, based on a 2 1/2 ns delay from the leading edge and a delay of 2 ns added to the trailing edge, which results in a phase length of 50.5 ns for negative clock C2.

The broken lines 29,30,31 (Fig. 2) are connections that are preferably provided for diagnostic test purposes, are normally inactive, and are shown here only for purposes of completeness. A negative signal in line 29 will suppress clock C1, resulting in only clock C2 being active. Similarly, a negative signal in line 30 will suppress clock C2, resulting in only clock C1 being active. A positive signal in line 31 will condition the inverting OR gates 26,28 to maintain both clocks C1 and C2 positive continuously.

According to another feature of the invention, every external device 13,14 knows at the same preselected time early in the cycle -- namely, at the rise of the first clock, C1 -- when it is to become the bus master. Arbitration requests can only be changed on an encoded arbitration bus 40 (Fig. 4) at the rise of clock C1 and thereafter will be stable for granting a bus master at the fall of the last clock, C2.

Referring now to Fig. 4, the lines AR0, AR1, AR2, AR3 and Lock are OR dot connected to arbitration bus 40. Any external device 13,14 wishing to get access to bus 12 records its Read or Write request into a latch (not shown) set by clock C2. This request is passed through an Own Bus Request polarity hold latch 41 clocked by clock C1. Latch 41 has a positive output that goes to circuit 42. If there is no higher priority on arbitration bus 40, the level of AR0 is positive, and the OR circuit 42 acts as an inverter that provides a negative output. This output is
inverted at 43 and becomes a positive Bus Request Highest 1.
This request is inverted by inverting driver 44, putting a
negative AR1 level on arbitration bus 40. This request together
with Bus Request Highest 3 will pass through, and the requesting
device 13 or 14 will become the bus master.

If another device on the arbitration bus 40 has the highest
level AR0 active, the signal in the AR0 line from the bus to
OR-invert circuit 42 will be negative resulting in a positive
output from circuit 42 that blocks any output from the bus
requests on lines AR1 and AR3. The positive output from circuit
42 will also cause AND-invert circuit 45 to block any passthrough
of requests to the AR3 branch of arbitration bus 40.

As illustrated in Fig. 4, the priority is fixed at 5.
Hence, for code 5, the Own Priority in a four-bit code are the
bits AR1 and AR3, with AR3 being the least significant bit.

If the AR2 higher priority bit from an external device is
active, it will be inverted at 46 and change the polarity at the
input to the AND-invert circuit 45 to positive. If either one of
these inputs to AND-invert circuit 45 is positive the output of
said circuit will be negative; and in such case, through inverter
driver 47, no negative output can appear at AR3.

If there are no AR0 or AR2 priority requests from any other
external devices, both inputs to the AND-invert circuit 45 will
be negative. The output of circuit 45 will then render the Bus
Request Highest 3 output positive. This output is inverted by
inverter driver 47 and appears as an AR3 negative active output.
The output of AND-invert circuit 45 (which is Bus Request Highest
3 in this case) is also the decode of its own priority and
preconditions an Own Priority polarity hold latch 48 during clock
C2. Latch 48 will latch according to the condition at the end of
clock C2.
According to a feature of the invention, once the Own Priority latch 48 is latched, it can set the Own Bus Grant polarity hold latch 49 on the following cycle for granting the next cycle. The output of Own Priority latch 48 passes through AND gate 50 and is inverted by the OR-invert gate 51 and will be latched by Own Bus Grant latch 49 at the beginning of clock C1. This signals the particular device that it is the bus master for that cycle.

The previous device that had been bus master before this priority determination may extend its cycle even though the Own Priority latch (like 48) of another external device has been latched. This delays the next cycle until the previous master releases the bus 12. The delay function is controlled by the second input to AND gate 50 which is the output from Any Lock polarity hold latch 52. Latch 52 will have been latched up by the previous clock C2 from the -Lock signal on bus 40. The delay may be for any number of cycles of clock C2.

As soon as the extended cycles are complete, the -Lock signal will be freed by the previous bus master at the clock C1 time. This will allow the Own Bus Grant latch 49 to proceed in a pipelined fashion at the next clock C1 controlled by the Any Lock latch 52 releasing at clock C2, provided no higher priority requests are received in the meantime to preempt the current arbitration priority.

Assume now a device wishes to take two or more cycles in succession because of a slow slave receiver or because it wants to do a burst mode. The device will latch up its Own Lock polarity hold latch 53 at clock C2 through the AND-invert circuit 54. The Own Extend request must be set by clock C1 into another latch (not shown) before it also appears at the AND-invert circuit 54. The same output of AND-invert circuit 54 through inverter-driver 55 sets the Own Lock latch 52 and also drives the
common -Lock signal on the arbitration bus 40. As long as the
Own Lock latch 53 remains set, its positive output will be ORed
at OR-invert circuit 51 to hold the Own Bus Grant latch 49 on for
multiple cycles. Again, once the extended cycle is completed,
the Own Lock latch 53 will be reset by clock C2 and the Own Bus
Grant latch 49 will be reset by clock C1. This allows the -Lock
signal to disappear. All the external devices will now be free
to continue successive data transfers.

Inverter-drivers 56,57 are inactive internally and their
inputs are tied to ground because they are not involved in
generation of the priority code 0101; however, they remain active
with external inputs from bus 40.

The pipelined timing for gating data on bus 12 is obtained
by setting the positive output from Own Bus Grant latch 49 into
an Own Grant Delayed latch 58 at clock C2, and setting the output
of latch 58 into an Own Data Transfer latch 59 at clock C1. The
output from latch 59 is the timing signal that gates data to or
from bus 12.

Fig. 5 depicts circuitry that can be substituted for
circuitry 65 (enclosed in broken lines in Fig. 4) to permit the
priority code to be varied dynamically. A four-bit priority code
that provides up to 16 different priorities is set into a
register 70 at the beginning of an operation, such as at the time
of Initial Program Load (IPL). This circuitry 65 includes four
inverter drivers 71,72,73,74. These drivers are open collector
or dotting drivers. They set up the arbitration bits AR0, AR1,
AR2 and AR3, driven by AND gates 75,76,77,78, respectively.
These AND gates determine the highest priority by means of two
complex logic gates 79,80, which are actually single circuits.

Gate 79 comprises two AND gates 81,82 and a three-way
OR-invert gate 83. OR-invert gate 83 inhibits all the lower
request lines AR1, AR2 and AR3. Gate 83 also inhibits Own
Priority circuit 84 if a higher priority is externally active on the arbitration bus 40. If AR0 is active and the polarity hold latch PR0 output of register 70 is not, AND gate 81 through OR-invert circuit 83 will inhibit the AR1, AR2 and AR3 and the Own Priority signals.

Similarly, with AND gate 82, if AR1 is active and the polarity hold latch PR1 is not, then AR1, AR2, AR3 and Own Priority signals will be inhibited; whereupon the arbitration will preclude the device from being the next to be serviced.

The last input to the invert gate 83 is the output of a Bus Request polarity hold latch (not shown) which is set by clock Cl and requests an arbitration cycle for data transfer. The +Bus Request polarity hold latch line will be negative if it is not active. This automatically will inhibit all the blocks 76, 77, 78 and 84. When the output of AND-invert circuit 84 is positive, it indicates that this is currently the highest priority device that has won the arbitration and can start transferring on the next sequence of cycles.

Complex logic gate 80 comprises AND gates 85 and 86, which operate similarly to gates 81 and 82 except that they deal with the two lower arbitration bus bits AR2 and AR3. Also, the OR-invert circuit 87 has the same function as circuit 83 for the lower two bits; but it does not require connection of the +Bus Request polarity hold latch (not shown) because that output is already controlled by circuit 83, the output of which already goes to all the gates 76, 77, 78, 84. The output of the OR-invert circuit 87 therefore only controls the lowest significant bit on the AR3 line of arbitration bus 40 and also its Own Priority gate 84 for latching.

The most significant bit on the AR0 line of arbitration bus 40 is the highest bit. Any device driving that bit will automatically have the highest priority. If the
microprocessor-set priority in register 70 indicates that a particular device has a priority PR0 or higher bit active, then any -Bus Request polarity hold latch (not shown) which is also set by clock Cl will automatically drive the AR0 line of arbitration bus 40. In this case, this bit will always be active and does not need to be inhibited.

Fig. 6 is a timing diagram depicting the pipelining of various operations based on the use of a free-running oscillator 15 (Fig. 1) that can be of any value depending upon the technology. Current technology uses a 100 ns cycle and future technologies already are planned for 50 ns. The Bus Request can always be changed at the beginning of clock Cl; i.e., the first half of the oscillator cycle. The Bus Request stays on until the following clock Cl. The Bus Grant is also set by clock Cl; but it follows the Bus Request cycle and therefore is pipelined always one cycle behind.

Fig. 6 shows a plurality of devices with different priorities - from A, the highest to H, the lowest. Fig. 6 also indicates how these priorities form successive cycles, either as bursts or delayed by slow nonstreaming slaves so the slaves can receive data within their respective timings. "Slave", as herein used, refers generically to any device with which the bus master device wishes to communicate.

Every time a device wins the bus 12, it will latch internally its Own Bus Grant latch (like 49, Fig. 4). This latch controls the current cycle for a device that wins the arbitration. At that time, that device is in charge of the cycle for communicating with the slave. It sends the address on the bus 12 during the Own Bus Grant cycle. It also indicates whether it wants to do a read or write function on the +Read/-Write signal. The -Lock signal will also become active if the bus master wishes to operate in a burst mode; i.e., lock out other

SA9-90-030 - 10 -
devices for a short burst of cycles before the next highest priority device can come in. If one data transfer has occurred and the slave then sees its own address repeated, it may wish to extend the time it needs to either receive or send data. It can do that in one or more increments of the basic bus cycle by setting the -Lock signal with logic similar to that shown in Fig. 4 used by bus masters. The response line from each device indicates that it has either sent or received the data on bus 12. The -Lock signal can also be a response on the following cycle from the slave indicating that it cannot take any successive cycle.

As shown in Fig. 6, a bus request is followed by a bus grant and addressing performed by the bus master; and the read or write function occurs as the third sequence of the pipelined operation. Fig. 6 depicts writing and reading by various masters A-H to or from slaves P-W, in different types of operational mode.

As illustrated, the invention has been implemented with an address bus and a bidirectional data bus. However, for faster pipelining, the invention may be implemented with a unidirectional outgoing bus for addresses and data multiplexed at half-cycle periods, and the data bus can be merely an incoming unidirectional data bus.

Or, if preferred, the invention can be implemented with a single nondedicated bidirectional bus. In such case, addresses will be sent only once at the beginning of a long transfer and during subsequent data transfer cycles, the addresses will be incremented sequentially unless a new nonsequential address is sent. More specifically, at the beginning of the long transfer, the device will take a burst of two cycles, sending the address during the first, and data during the second and subsequent cycles. Fig. 6 in this case would be modified to eliminate the
address bus, and the arbitration bus will then become an indirect address pointer for the multiplexed external devices.

While the invention has been shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that changes in form and detail may be made in these embodiments without departing from the scope and teaching of the invention. Accordingly, the apparatus and method herein disclosed are to be considered merely as illustrative, and the invention is to be limited only as specified in the claims. The reference numerals in the following claims do not in any way limit the scope of the respective claims.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. Apparatus for optimizing bus arbitration during direct memory access (DMA) data transfers across a nondedicated bus (12) between a memory (11) and/or a plurality of external devices (13,14) each having an arbitration priority, comprising:
 - means for providing at least two nonoverlapping clocks (C1,C2) per transfer cycle and at least one transfer cycle per arbitration cycle;
 - means for transmitting arbitration priority requests from each external device to an arbitration bus (40) only at the rise of the first of said clocks;
 - means (45 or 84) operative at the end of the last of said clocks for determining the priority code of the external device having the highest priority to designate the external device which is to become bus master; and
 - means (49,59) for transferring addresses and data between the designated bus master and the memory or another of the external devices via the nondedicated bus during the next cycle after a then active bus master relinquishes control.

2. The apparatus of claim 1, including means (including 70) for dynamically changing the priorities of at least some of the external devices.

3. The apparatus of claim 1, wherein the priorities of the respective external devices are preselected and fixed.

4. The apparatus of claim 1, including means (41,48) for synchronizing all requests for bus master priority.
5. The apparatus of claim 1, including means (41, 48, 50, 51, 49, 58, 59) for pipelining said arbitration cycles in such manner that there is no loss of address or data transfer cycles.

6. The apparatus of claim 1, wherein said transferring means includes means (41, 48, 50, 51, 49, 58, 59) for pipelining bus requests, then priority grants with addresses, then data transfers.

7. The apparatus of claim 1, wherein said transferring means includes means (59) for transferring data in a multiplexed continuous sequential stream from different external devices on the nondedicated bus.

8. The apparatus of claim 1, wherein said transferring means includes means (59) for transferring DMA data from different bus masters during successive cycles.

9. The apparatus of claim 1, including means (54, 53, 55, 52) for permitting the then active bus master to extend the number of cycles during which it communicates with one or more of the external devices.

10. The apparatus of claim 1, wherein said arbitration cycles are equal in length to, or to an integral multiple of, the transfer cycles.

11. The apparatus of claim 1, including means (48, 50, 51, 49) responsive to the rise of said first clock following an arbitration cycle to notify a particular one of said external devices that it is to be the bus master for the next cycle.
12. The apparatus of claim 1, including means for
preempting a device that had been designated as next in line as
bus master, said means being operative
(a) if the then active bus master retains bus
mastership for more than one transfer cycle by initiating a
locking period (by -Lock signal), and
(b) a higher priority device gains arbitration during
said locking period.

13. The apparatus of claim 1, wherein the nondedicated bus
comprises an address bus and a bidirectional data bus.

14. The apparatus of claim 1, wherein the nondedicated bus
comprises a unidirectional bus for outgoing addresses and data
multiplexed at half-cycle periods, and a data bus that is
unidirectional incoming.

15. The apparatus of claim 1, wherein the nondedicated bus
is a single bidirectional bus for addresses and data, and
addresses are sent only at the beginning of a long transfer, and
during subsequent data transfer cycles, the addresses will be
incremented sequentially until a new nonsequential address is
sent.
16. A method for optimizing bus arbitration during direct memory access (DMA) data transfers across a nondedicated bus between a memory and/or a plurality of external devices each having an arbitration priority, comprising the steps of:

- providing at least two nonoverlapping clocks per transfer cycle and at least one transfer cycle per arbitration cycle;
- transmitting arbitration priority requests from each external device to an arbitration bus only at the rise of the first of said clocks;
- at the end of the last of said clocks, determining the priority code of the external device having the highest priority and designating it as the external device which is to become bus master; and
- transferring addresses and data between the designated bus master and the memory or another of the external devices via the nondedicated bus during the next cycle after a then active bus master relinquishes control.

17. The method of claim 16, including the step of dynamically changing the priorities of at least some of the external devices.

18. The method of claim 16, including, during the transferring step, transferring data in a multiplexed continuous sequential stream from different external devices on the nondedicated bus.

19. The method of claim 16, including the step of pipelining said arbitration cycles in such manner that there is no loss of address or data transfer cycles.
20. The method of claim 16, including the step of permitting the then active bus master to extend the number of cycles during which it communicates with one or more of the external devices.

21. The method of claim 16, including the step, responsive to the rise of said first clock following an arbitration cycle, of notifying a particular one of said external devices that it is to be the bus master for the next cycle.

22. The method of claim 16, including the step of preempting a device that had been designated as next in line as bus master,

(a) if the then active bus master retains bus mastership for more than one transfer cycle by initiating a locking period, and

(b) a higher priority device gains arbitration during said locking period.
23. An apparatus for optimizing bus arbitration substantially as hereinbefore described with reference to the drawings.

25. The steps, features, compositions and compounds disclosed herein or referred to or indicated in the specification and/or claims of this application, individually or collectively, and any and all combinations of any two or more of said steps or features.

DATED this TWENTY FIRST day of AUGUST 1991

International Business Machines Corporation

by DAVIES & COLLISON
Patent Attorneys for the applicant(s)
FIG. 3

FIG. 6
Fig. 4

- **RD/WR REQUEST** (SET BY C2)
- **OWN BUS REQUEST**
- **OWN PRIORITY**
 - OWN BUS GRANT
 - OWN DELAYED
 - OWN DATA TRANSFER
 - GATES BUS 12
- **OWN LOCK**
- **ANY LOCK**
- **FIXED PRIORITY AT 5" (0101)**

- **CLOCK CI**
- **CLOCK C2**

- **ARBITRATION BUS 40**
 - 0
 - 56
 - ARO
 - 65
 - DRV
 - O1
 - 42
 - 43
 - BUS REQUEST HIGHEST 1
 - DRV
 - 44
 - ARI
 - 2
 - 57
 - AR2
 - 3
 - 47
 - AR3
 - DRV
 - DRV
 - DRV

- **SET BY C1**
- **OWN EXTEND**