R² and R³ or both represent a hydrogen atom or an alkyl group of 1 to Y carbon atoms or an alkyl group of 1 to Y carbon atoms, at least one of which is substi-
Whereas we, HOOKER CHEMICALS & PLASTICS CORP., of 21441 Hoover Road, Warren, Michigan 48089, United States of America,

hereby apply for the grant of a Patent for an invention entitled:

METAL PLATING COMPOSITIONS AND PROCESSES

which is described in the accompanying complete specification. This application is a Convention application and is based on the application numbered (4)

8105968

for a patent or similar protection made in (4) United Kingdom on 25th February 1981.

My address for service is Messrs. Edwd. Waters & Sons, Patent Attorneys, 90 Queen Street, Melbourne, Victoria, Australia.

DATED this 19th day of February 1982.

HOOKER CHEMICALS & PLASTICS CORP.

by

L. J. Dyson

Registered Patent Attorney

To: THE COMMISSIONER OF PATENTS.
COMMONWEALTH OF AUSTRALIA
Patents Act 1952-1969
DECLARATION IN SUPPORT OF A CONVENTION APPLICATION FOR A PATENT OR PATENT OF ADDITION

In support of the Convention Application made by Hooker Chemicals & Plastics Corp., a New York corporation, having a place of business at 21441 Hoover Road, Warren, Michigan 48089 USA (hereinafter referred to as the applicant) for a Patent for an invention entitled, METAL PLATING COMPOSITIONS AND PROCESSES

I, RICHARD P. MUELLER, of 21441 Hoover Road, Warren, Michigan 48089, United States of America, do solemnly and sincerely declare as follows:

1. I am authorised by the applicant for the patent to make this declaration on its behalf.

2. The basic application as defined by Section 141 of the Act was made in United Kingdom on the 25th day of February, 1982, by

3. WIM M.J.C. VERBERNE, of Jekerstraat 40, 5215 GT'S. Hertogenbosch, Holland and ADRIANA G.M. EGGELS, of Saliehof 28, 5044 AR Tilburg, Holland are the actual inventors of the invention and the facts upon which the applicant is entitled to make the application are as follow:

The applicant is the assignee of OXY METAL INDUSTRIES (BENELUX) B.V., who in turn is the assignee of WIM M.J.C. VERBERNE, and ADRIANA G.M. EGGELS.

4. The basic application referred to in paragraph 2 of this Declaration was the first application made in a Convention country in respect of the invention the subject of the application.

DECLARED at Warren, Michigan USA this 25th day of January, 1982

(Signed) R. P. Mueller
SUMMARY OF THE INVENTION

The present invention is based on the discovery that addition of certain amino alcohol compounds enhance
Claim

1. A bath composition for electroplating a bright alloy deposit of cobalt and tin or cobalt and zinc on a substrate characterized by the presence of a brightening amount of a compound having the formula:

\[
\begin{array}{c}
\text{N} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3
\end{array}
\]

wherein:

- \(\text{R}^1 \) represents an alkyl group having 1 to \(Y \) carbon atoms or an alkyl group having from 1 to \(Y \) carbon atoms, at least one of which is substituted by a hydroxyl group; and
R² and R³ or both represent a hydrogen atom or an alkyl group of 1 to Y carbon atoms or an alkyl group of 1 to Y carbon atoms, at least one of which is substituted by a hydroxyl group or an amino group and R² and R³ may be the same or different and may be the same as or different to R¹, Y being an integer from 2 to 6.
The following statement is a full description of this invention, including the best method of performing it known to the inventor.

1. **EXAMPLES 7.A TO 7.H**
METAL PLATING COMPOSITIONS AND PROCESSES

The present invention relates to electrodeposition of bright coatings onto metallic substrates, to a bath composition in which such electrodeposition can be carried out and to substrates thus electrocoated.

BACKGROUND OF THE INVENTION

It is known in the art to which this invention pertains to provide upon a suitable substrate nickel and chromium coatings. Particularly with respect to relatively small metal parts, this involves what is termed in the art as "bulk plating", and while it is relatively simple to barrel plate quite small parts such as screws and the like with bright nickel in various types of barrel apparatus, it can be difficult then to chromium plate the nickel plated parts. It is normally necessary that the parts be transferred from the barrel in which they have been nickel plated, and be transferred to special barrels to be chromium plated, which is an expensive operation. Alternatively, if these barrels have too limited capacities, chromium plating has been accomplished in trays. This, however, requires substantial labor and results in an expensive plating cycle.

Our earlier proposal in U.K. Patent Specification No. 1,497,552 provided a plating bath utilizing a source of nickel ions, cobalt ions, iron ions or mixtures thereof and a source of tin ions and optionally a source of zinc ions together with as a complexing agent a gluconate or glucoheptonate (or mixture thereof). Such baths provide excellent deposits having chromium-like appearance at thicknesses up to 5 microns.
SUMMARY OF THE INVENTION

The present invention is based on the discovery that addition of certain amino alcohol compounds enhance the brightening of such deposits incorporating tin and cobalt or zinc and improve the process, rendering it capable of producing good deposits with less careful control on the thickness of the coating being required.

DETAILED DESCRIPTION OF THE INVENTION

According to the present invention a bath composition for electroplating a bright alloy deposit of cobalt and tin or cobalt and zinc on a substrate, is characterized by the presence of a brightening amount of a compound having the formula:

\[\text{N} \begin{array}{c} \text{R}^1 \\ \text{R}^2 \\ \text{R}^3 \end{array} \]

wherein:

- \(\text{R}^1 \) represents an alkyl group having 1 to \(Y \) carbon atoms or an alkyl group having from 1 to \(Y \) carbon atoms at least one of which is substituted by a hydroxyl group; and
- \(\text{R}^2 \) or \(\text{R}^3 \) or both represent a hydrogen atom or an alkyl group of 1 to \(Y \) carbon atoms or an alkyl group of 1 to \(Y \) carbon atoms at least one of which is substituted by a hydroxyl group or an amino group and \(\text{R}^1 \) and \(\text{R}^3 \) may be the same or different and may be the same as or different to \(\text{R}^1 \), \(Y \) being an integer from 2 to 6 and preferably 2, 3 or 4.
Preferably at least one of R^1, R^2 or R^3 is an alkyl group substituted by a hydroxyl group.

In a preferred form of the invention R^1 is the same as R^2 and represents a hydrogen atom, or R^1 is the same as R^2 and represents an alkanol group.

The bath preferably also incorporates a hydroxy carboxylic acid complexing agent for the metal ions in the bath and in particular a gluconate or glucoheptonate.

One preferred form of bath for electrodepositing bright chromium-like cobalt-tin coatings comprises 0.5 to 5 grams per litre of cobalt ions, 0.5 to 5 grams per litre of tin ions, 1 to 20 ml/l of a brightener comprising N-(2-aminoethyl)ethanolamine, monoethanolamine, N-methyl-diethanolamine, triethanolamine or triisopropanolamine and optionally in addition tris-(hydroxymethyl)aminomethane, and 1 to 50 g/l of gluconate or glucoheptonate ions.

Another preferred form of bath for electrodepositing bright chromium-like cobalt-zinc coatings comprises 0.5 to 10 grams per litre of cobalt ions, 0.5 to 20 grams per litre of zinc ions, 1 to 20 ml/l of brightener comprising triethanolamine, N-(2-aminoethyl)ethanolamine, tris-(hydroxylmethyl)aminomethane or triisopropylamine, and 1 to 100 g/l of gluconate or glucoheptonate ions.

The bath is preferably also free of ammonia or ammonium ions since these have been found to cause haziness in the deposit.

The invention thus also extends to an electrodeposition process for depositing bright chromium-like
deposits of cobalt-tin or cobalt-zinc alloys by contacting the surface to be plated as the cathode with a bath according to the invention and passing an electroplating current therethrough.

Preferred plating conditions are 25 to 35°C, medium mechanical agitation, pH 8.3 to 9.0 and a current density of 0.5 to 1.0 A/dm².

A further preferred step in the process is to submit the chromium-like coating to a passivation step and this is particularly useful with the cobalt-zinc deposits since it protects them against discoloration on exposure to elevated temperatures and to fingerprint marking.

Preferred passivation agents are a 1% phosphoric acid solution or a 7 g/l CrO₃ solution.

The invention thus also extends to a passivated cobalt-zinc electrodeposited especially when made by a process in accordance with the invention.

The substrate upon which the electroplating is to be accomplished is generally a metallic surface such as brass, steel, or a zinc casting, or may be a polymeric substance such as acrylo-nitrile-butadiene-styrene, polyethylene, polypropylene, polyvinyl chloride or phenolformaldehyde polymer which has been electroless plated prior to coating with the chromium-simulating electrodeposited layer.

To be more specific, the metal-bearing substrate may be plated with a metallic layer from an aqueous solution which comprises 0.5 to 10 grams per liter of a source of cobalt ions, and more preferably, 0.5 to 5 grams per liter of a source of cobalt ions, and most preferably 1.5 to 3 grams/liter.

Similarly tris-(hydroxymethyl)aminoethane
As to the tin ions, those are preferably in the stannous phase and may be present in an amount between 0.5 and 5 grams per liter, more preferably 1 to 5 grams per liter.

The hydroxy carboxylic acid complexing agent, e.g. the gluconate or glucoheptonate, or mixtures thereof, may be present in an amount of from 1 to 50 grams per liter and more specifically, 5 or 10 to 30 grams per liter.

However, in order to further improve the color and luster of the electrodeposited coating a source of zinc ions may be substituted in part for the source of tin ions. The source of zinc ions may be present in an amount of 1.0 to 4.0 grams per liter, and more preferably 2.0 to 3.0 grams per liter.

It is important to note at this point that the use of gluconate or glucoheptonate as the complexing agent is superior to the use, for example, of other complexing agents such as citrate in that the stability of the solution is distinctly better with gluconate or glucoheptonate. In addition, the appearance of the electrodeposit and coating which deposited from a solution containing gluconate or glucoheptonate is distinctly superior in uniformity and color as compared to the use of other complexing agents.

SPECIFIC EXAMPLES

The invention may be put into practice in various ways and a number of specific embodiments will be described to illustrate the invention with reference to the
accompanying examples in which all parts and percentages are by weight unless otherwise stated.

Examples 1 to 5 are examples of zinc cobalt plating processes.

5. **EXAMPLE 1**

A bath A was made up having the following composition:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt sulphate CoSO₄·6H₂O</td>
<td>20.0 g/l</td>
</tr>
<tr>
<td>Zinc sulphate ZnSO₄·7H₂O</td>
<td>7.5 g/l</td>
</tr>
</tbody>
</table>

Complexing agent

Citric acid 40.0 g/l

pH (adjusted with ammonia) 8.3

Plating tests with this bath A in a Hull cell using steel J panels were carried out at 1 A/dm² for 10 minutes at a temperature of 27°C, agitation being by a magnetic stirrer at constant speed. The deposit was chromium coloured and had a bright low current density area and a milky high current density area.

The procedure was repeated at 6 g/l of zinc sulphate and 0.5 A/dm² at a pH of 8.5 using 3.5 litres in a 4 litre stainless steel beaker as the anode. The deposit was uneven though chromium coloured and had brown spots and was hazy (this being revealed by microscopic examination to be due to small pits).

Analysis of the deposit revealed a zinc content of 55% and a plating efficiency of 28%.
EXAMPLE 2.A

Example 1 was repeated but sodium hydroxide was used to adjust the pH instead of ammonia. The resultant deposits, although uneven and dark, were free of any haziness or pitting.

EXAMPLE 2.B

Example 2.A was repeated but with 30 g/l of zinc sulphate. This produced a deposit of chrome-like colour although the low and high current density areas were dull.

EXAMPLE 3

Example 2.B was repeated but with the addition of 4 ml/l of triethanolamine. The deposit was completely bright though there were a few dark spots in the medium current density area.

EXAMPLE 4.A

A bath B was made up having the following composition:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt sulphate CoSO₄·6H₂O</td>
<td>20.0 g/l</td>
</tr>
<tr>
<td>Zinc sulphate ZnSO₄·7H₂O</td>
<td>40.0 g/l</td>
</tr>
</tbody>
</table>

Complexing agent

| Sodium glucoheptonate | 60.0 g/l |
| pH (adjusted with NaOH) | 8.3 |

When the procedure of Example 1 was repeated this produced a completely grey panel.
EXAMPLE 4.B

Example 4A was repeated with the addition of 4 ml/l of triethanolamine.

The deposit was a perfect chromium-like deposit.

EXAMPLES 4.C TO 4.O

These were all based on the bath of Example 4.B above, the variations being in zinc concentration, current density, agitation, pH and temperature, and details being given in Table 1.

3 litres of solution were plated in a 4 litre stainless steel beaker as the anode using straight steel panels as the cathodes and a mechanical magnetic stirrer.

TABLE 1A

<table>
<thead>
<tr>
<th>Example</th>
<th>Zinc Conc. g/l</th>
<th>Current Density A/dm²</th>
<th>Agitation</th>
<th>pH</th>
<th>Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.C</td>
<td>35</td>
<td>0.5</td>
<td>mild</td>
<td>8.3</td>
<td>27</td>
</tr>
<tr>
<td>4.D</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.E</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.F</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.G</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.I</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>4.K</td>
<td></td>
<td></td>
<td>high</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>4.L</td>
<td></td>
<td></td>
<td>mild</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>4.M</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>4.N</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.O</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20. 25. 30.

3. A bath composition as claimed in Claim 2 in which at least one of R¹, R² or R³ is an alkyl group substituted by a hydroxyl group.
<table>
<thead>
<tr>
<th>Example</th>
<th>% Zn in Deposit</th>
<th>Efficiency</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.C</td>
<td>79</td>
<td>16</td>
<td>bright chrome-like</td>
</tr>
<tr>
<td>4.D</td>
<td>82</td>
<td>24</td>
<td>"</td>
</tr>
<tr>
<td>4.E</td>
<td>79.5</td>
<td>15</td>
<td>"</td>
</tr>
<tr>
<td>4.F</td>
<td>78.5</td>
<td>13.5</td>
<td>"</td>
</tr>
<tr>
<td>4.G</td>
<td>83</td>
<td>20</td>
<td>bright chrome-like</td>
</tr>
<tr>
<td>4.H</td>
<td>81.5</td>
<td>61</td>
<td>grey edges</td>
</tr>
<tr>
<td>4.I</td>
<td>-</td>
<td>25</td>
<td>bright chrome-like</td>
</tr>
<tr>
<td>4.J</td>
<td>82</td>
<td>50</td>
<td>bright chrome-like but a grey streak in the middle</td>
</tr>
<tr>
<td>4.K</td>
<td>-</td>
<td>-</td>
<td>bright chrome-like paler colour in the centre</td>
</tr>
<tr>
<td>4.L</td>
<td>82.5</td>
<td>-</td>
<td>good appearance</td>
</tr>
<tr>
<td>4.M</td>
<td>83.5</td>
<td>24</td>
<td>bright chrome-like</td>
</tr>
<tr>
<td>4.N</td>
<td>85</td>
<td>29</td>
<td>grey streak in centre</td>
</tr>
<tr>
<td>4.O</td>
<td>86.5</td>
<td>34</td>
<td>grey</td>
</tr>
</tbody>
</table>

A bath as claimed in Claim 8 which also contains tris-(hydroxymethyl) aminomethane.
As can be seen from these examples 1 to 4.0 gluco-
heptonic acid and its salts give better results than
citric acid and pH adjustment with sodium hydroxide
gives better results than adjustment with ammonia.

It is to be noted that the baths of Examples 2.A to
4.0 are ammonia free.

Preferred bath compositions in accordance with the
invention thus comprise 20 g/l cobalt sulphate, 35 to
50 g/l zinc sulphate, 60 g/l sodium glucoheptonate,
4 ml/l of triethanolamine, pH 8.3 to 9.5, temperature 27
to 50°C, the bath being ammonia free and pH adjustment
preferably being carried out by use of sodium hydroxide.

This produces excellent chromium-like deposits, the
colour of which is very reproducible being little
affected by zinc content, pH variation or temperature
variation within the ranges given.

The process is also cheaper than one based on tin-
cobalt deposits.

We have also found that the surface can be made
resistant to discolouration by fingerprints and deters
ioration in appearance on storing at elevated

temperatures by means of a passivation process as des-
dcribed in Example 5 below.

EXAMPLE 5

Panels from Examples 4.A to 4.0 were selected in
trios and one was left untreated as a control (Example
5A) another was passivated by immersion for 1 minute in
a 1% phosphoric acid solution (which turned the deposit
slightly darker) (Example 5B) and the third panel was
passivated by immersion for 1 minute in a 7 g/l CrO3
solution (which d

panel (Example 5C)

Each panel t

5. After 16 hours th

print and a greyi

panels did not ha

fingerprint was h

10. A bath C was

tion:

Ingredient
Cobalt sulph
15. Tin sulphate
Sodium sulph
Complexing a
Sodium gluco
15. Triethanolam:
ph (adjusted
Temperature
Straight brig
plated as the cat
25. 4 litres of bath (as the anode.

The solution
plating commenced.

...
solution (which did not affect the appearance of the panel (Example 5C).

Each panel then had a fingerprint impressed on it and the panels were all stored in an oven at 220°C.

After 16 hours the 5A panels clearly showed the fingerprint and a greyish discolouration. The 5B and 5C panels did not have the greyish discolouration and the fingerprint was hardly visible.

EXAMPLE 6A

A bath C was made up having the following composition:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt sulphate CoSO₄·7H₂O (X)</td>
<td>7.28 g/l</td>
</tr>
<tr>
<td>Tin sulphate (Y)</td>
<td>2.42 g/l</td>
</tr>
<tr>
<td>Sodium sulphate (Z)</td>
<td>20.7 g/l</td>
</tr>
</tbody>
</table>

Complexing agent
- Sodium glucoheptonate 12.0 g/l
- Triethanolamine 4 ml/l
- pH (adjusted with NaOH) 8.3
- Temperature 30°C

Straight bright nickel plated steel panels were plated as the cathodes for 10 minutes at 0.5 A/dm² in 4 litres of bath C contained in a stainless steel beaker as the anode.

The solution was filtered after make up and before plating commenced. Medium agitation was provided by means of a mechanical magnetic stirrer.
The deposit had a good, though dark chromium-like appearance and on analysis was found to contain 71% tin.

The plating efficiency was 32%.

EXAMPLES 6.B TO 6.F

5. These were all based on bath C in Example 6.A above, the variations being in cobalt (X), tin (Y) and sodium sulphate (Z) contents, pH, temperature, agitation and current density. The results are given in Table 2.

10. **TABLE 2A**

<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>pH</th>
<th>°C</th>
<th>Agitation</th>
<th>Current Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.A</td>
<td>6.28</td>
<td>2.42</td>
<td>20.70</td>
<td>8.3</td>
<td>30</td>
<td>medium</td>
<td>0.5</td>
</tr>
<tr>
<td>6.B</td>
<td>7.40</td>
<td>3.94</td>
<td>20.96</td>
<td>"</td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.C</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>none</td>
<td>"</td>
</tr>
<tr>
<td>6.D</td>
<td>7.37</td>
<td>3.54</td>
<td>20.89</td>
<td>9.0</td>
<td>"</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>6.E</td>
<td>7.44</td>
<td>4.50</td>
<td>21.06</td>
<td>8.3</td>
<td>"</td>
<td>medium</td>
<td></td>
</tr>
<tr>
<td>6.F</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>9.3</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>Tin content</td>
<td>Efficiency</td>
<td>Appearance</td>
<td>Viscosity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.A</td>
<td>71</td>
<td>32</td>
<td>good</td>
<td>dark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.B</td>
<td>75</td>
<td>47</td>
<td>good</td>
<td>light</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.C</td>
<td>86</td>
<td>33</td>
<td>good</td>
<td>6.A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.D</td>
<td>80</td>
<td>54</td>
<td>good</td>
<td>6.B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.E</td>
<td>83</td>
<td>41</td>
<td>good</td>
<td>6.F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.F</td>
<td>89</td>
<td>41</td>
<td>good</td>
<td>6.E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLES 7.A TO 7.H

A bath D was made up having the following composition:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt sulphate $\text{CoSO}_4 \cdot 7\text{H}_2\text{O} \ (X)$</td>
<td>7.44 g/l</td>
</tr>
<tr>
<td>Tin sulphate (Y)</td>
<td>4.5 g/l</td>
</tr>
<tr>
<td>Sodium sulphate (Z)</td>
<td>21.06 g/l</td>
</tr>
</tbody>
</table>

Complexing agent

Sodium glucoheptonate	12.0 g/l
Monoethanolamine (B)	0 g/l
pH (adjusted with NaOH)	8.3
Temperature	25°C

Plating was carried out as in Examples 6.A to 6.F and further Examples 7.B to 7.H were carried out in like manner variations being in cobalt (X), tin (Y) and sodium sulphate (Z) and monoethanolamine (B) contents, pH, and current density. The results are given in Table 3.
<table>
<thead>
<tr>
<th>Example</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>B</th>
<th>pH</th>
<th>Current density A/dm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.A</td>
<td>7.44</td>
<td>4.5</td>
<td>21.06</td>
<td>0</td>
<td>8.3</td>
<td>0.5</td>
</tr>
<tr>
<td>7.B</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>4</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>7.C</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>9.0</td>
<td>"</td>
</tr>
<tr>
<td>7.D</td>
<td>7.50</td>
<td>5.3</td>
<td>21.20</td>
<td>4</td>
<td>8.3</td>
<td>"</td>
</tr>
<tr>
<td>7.E</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>9.0</td>
<td>"</td>
</tr>
<tr>
<td>7.F</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>1.5</td>
</tr>
<tr>
<td>7.G</td>
<td>7.62</td>
<td>6.9</td>
<td>22.18</td>
<td>"</td>
<td>8.3</td>
<td>0.5</td>
</tr>
<tr>
<td>7.H</td>
<td>7.54</td>
<td>5.78</td>
<td>21.28</td>
<td>8</td>
<td>9.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Example</td>
<td>Tin content %</td>
<td>Efficiency %</td>
<td>Appearance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.A</td>
<td>94</td>
<td>27</td>
<td>grey and ugly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.B</td>
<td>74</td>
<td>27</td>
<td>dark chrome-like appearance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.C</td>
<td>76</td>
<td>21</td>
<td>looks good, grey edge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.D</td>
<td>75</td>
<td>26</td>
<td>looks good, dark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.E</td>
<td>81</td>
<td>24</td>
<td>looks good, lighter than Example 7.D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.F</td>
<td>-</td>
<td>-</td>
<td>almost completely dull</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.G</td>
<td>81</td>
<td>35</td>
<td>looks good</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.H</td>
<td>82</td>
<td>19</td>
<td>looks good</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consideration of these tables 2 and 3 shows that triethanolamine gives a higher plating efficiency than does monoethanolamine for tin-cobalt deposits.

The colour of the deposit is highly dependent on the tin content in the deposit. Below 80% tin the colour is too dark and above 90% tin grey deposits are formed; at about 85% tin the desired chromium-like colour is produced.

These and further experiments have indicated that for both the mono and triethanolamine systems the effect of raising the concentration of tin in the bath is to produce higher plating efficiency and a lighter colour as well as more tin in the deposit; raising the temperature and agitation also raise efficiency, but increased agitation produces less tin in the deposit and a darker colour; raising current density and pH result in lower efficiency, more tin in the deposit and lighter colour, though the effect of pH on efficiency is less clearly established with triethanolamine than it is with monoethanolamine.

Similar tests to Example 6 conducted with N-(2-aminoethyl)ethanolamine indicate that it has a brightening effect similar to triethanolamine at concentrations in the range 1 to 12 ml/l.
Similarly tris-(hydroxymethyl)aminoethane

\[
\begin{align*}
\text{CH}_2\text{OH} \\
\text{H}_2\text{N-C-CH}_2\text{OH} \\
\text{CH}_2\text{OH}
\end{align*}
\]

has also been found to have a brightening effect which though not quite as good as triethanolamine is still very useful; it is effective at concentrations in the range 1 to 20 ml/l.

\[
\begin{align*}
\text{N-methyl-diethanolamine} \\
\text{CH}_3\text{N} \\
\text{C}_2\text{H}_5\text{OH}
\end{align*}
\]

and tri-iso-propanolamine

\[
\begin{align*}
\text{HN} \\
\text{C}_3\text{H}_7\text{OH}
\end{align*}
\]

have also been found to have this brightening effect in baths of the type shown in Examples 6 and 7.

Tris(hydroxymethyl)amino-methane when used in zinc-cobalt systems in combination with, N-methyl-diethanolamine, N-(2-aminoethyl)ethanolamine, triethanolamine or tri-isopropanolamine has been found to extend the useful current density range of these materials to higher values. Tris(hydroxymethyl)aminomethane has buffering
ability in the range pH 8-9 and this may be the reason for this effect on the current density range of the other compounds. The order of effectiveness of these compounds for tin cobalt systems is as given in this paragraph N-methyl-diethanolamine being the most effective.

For zinc cobalt systems as in Examples 1 to 5 the order of decreasing effectiveness is tri-ethanolamine, N-(2-aminoethyl)ethanolamine, tris(hydroxymethyl)amino methane, and tri-isopropanolamine.

EXAMPLE 8

The following composition is an example of another bath E in accordance with the invention:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt sulphate CoSO₄·6H₂O</td>
<td>7.5 g/l</td>
</tr>
<tr>
<td>Tin sulphate SnSO₄·7H₂O</td>
<td>4.5 g/l</td>
</tr>
<tr>
<td>Sodium sulphate (anhydrous)</td>
<td>21.0 g/l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complexing agent</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium glucoheptonate</td>
<td>12.0 g/l</td>
</tr>
<tr>
<td>N-methyl-diethanolamine</td>
<td>4.0 ml/l</td>
</tr>
<tr>
<td>pH (adjusted with NaOH or H₂SO₄)</td>
<td>8.3</td>
</tr>
<tr>
<td>Temperature</td>
<td>25°C</td>
</tr>
</tbody>
</table>
CLAIMS
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A bath composition for electroplating a bright alloy deposit of cobalt and tin or cobalt and zinc on a substrate characterized by the presence of a brightening amount of a compound having the formula:

\[
\begin{array}{c}
\text{N} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
\end{array}
\]

wherein:

- \(R^1 \) represents an alkyl group having 1 to \(Y \) carbon atoms or an alkyl group having from 1 to \(Y \) carbon atoms at least one of which is substituted by a hydroxyl group;
- \(R^2 \) and \(R^3 \) or both represent a hydrogen atom or an alkyl group of 1 to \(Y \) carbon atoms or an alkyl group of 1 to \(Y \) carbon atoms at least one of which is substituted by a hydroxyl group or an amino group and \(R^2 \) and \(R^3 \) may be the same or different and may be the same as or different to \(R^1 \), \(Y \) being an integer from 2 to 6.

2. A bath composition as claimed in Claim 1 in which \(Y \) is 2, 3 or 4.
3. A bath composition as claimed in Claim 2 in which at least one of \(R^1, R^2 \) or \(R^3 \) is an alkyl group substituted by a hydroxyl group.

4. A bath composition as claimed in Claim 3 in which \(R^1 \) is the same as \(R^2 \) and represents a hydrogen atom.

5. A bath composition as claimed in Claim 3 in which \(R^1 \) is the same as \(R^2 \) and represents an alkanol group.

6. A bath as claimed in Claim 1 which also incorporates a hydroxy carboxylic acid complexing agent for the metal ions in the bath.

7. A bath as claimed in Claim 6 in which the complexing agent is a gluconate or glucoheptonate.

8. A bath composition as claimed in Claim 1 suitable for electrodepositing bright chromium-like cobalt-tin coatings comprising 0.5 to 5 grams per litre of cobalt ions, 0.5 to 5 grams per litre of tin ions, 1 to 20 ml/l of a brightener comprising N-(2-aminoethyl) thanolamine, monoethanolamine, N-methyl-diethanolamine, triethanolamine or tri-isopropanolamine and 1 to 50 g/l of gluconate or glucoheptonate ions.
9. A bath as claimed in Claim 8 which also contains tris-(hydroxymethyl) aminomethane.

10. A bath composition as claimed in Claim 1 suitable for electrodepositing bright chromium-like cobalt-zinc coatings comprising 0.5 to 10 grams per litre of cobalt ions, 0.5 to 20 grams per litre of zinc ions, 1 to 20 ml/l of a brightener comprising triethanolamine, N-2(2-aminoethyl) ethanolamine, tris-(hydroxymethyl) aminomethane or triisopropylamine and 1 to 100 g/l of gluconate or glucopropionate ions.

11. A bath as claimed in Claim 1 which is free of ammonia or ammonium ions.

12. A bath composition as claimed in Claim 1 which comprises 0.5 to 10 g/l of a source of cobalt ions.

13. A bath composition as claimed in Claim 12 containing tin ions, which are in the stannous phase and are present in an amount between 1 and 5 grams per litre.

14. A bath composition as claimed in Claim 13 in which the hydroxy carboxylic acid complexing agent is present in an amount of from 5 to 30 grams per litre.
15. A bath composition as claimed in Claim 14 in which a source of zinc ions is substituted in part for the source of tin ions, the source of zinc ions being present in an amount of 1.0 to 4.0 grams per litre.

16. An electrodeposition process for depositing bright chromium-like deposits of cobalt-tin or cobalt-zinc alloys by contacting the surface to be plated as the cathode with a bath as claimed in any one of Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 and passing an electroplating current therethrough.

DATED this 9th day of February 1982.

HOOKER CHEMICALS & PLASTICS CORP.

EDWD. WATERS & SONS
PATENT ATTORNEYS
50 QUEEN STREET
MELBOURNE. VIC. 3000.