COMMONWEALTH OF AUSTRALIA
Patents Act 1952

DECLARATION IN SUPPORT
OF AN APPLICATION OR
A CONVENTION APPLICATION FOR A
PATENT OR PATENT OF ADDITION

In support of the Application made by SVEN HELLESTAM and OTTO LINANDER

for a patent/patent of addition for an invention entitled: BICYCLE WITH A COLLAPSIBLE FRAME

I, WE, SVEN HELLESTAM and OTTO LINANDER

we/are the applicant(s) for the invention.

"(1) I am authorised by the applicant(s) to make this declaration on its/their behalf.

"(2) The basic application(s) as defined by section 141/142 of the Act was/were made

in SWEDEN on 16-09-1986 - No. 8603880-9

by Sven Hellestam and Otto Linander

We, are

"(3) I am the actual inventor(s) of the invention.

"(3)

is/are the actual inventor(s) of the invention and the facts upon which

is/are entitled to make the application are as follows:

"(4) The basic application(s) referred to in paragraph 2 of this Declaration is/are the first application(s) made in a Convention country in respect of the invention the subject of the application.

Declared at Göteborg this 17th day of February 1989

To: The Commissioner of Patents,
Commonwealth of Australia.

Sven Hellestam

Otto Linander

H. R. HODGKINSON & CO.
Patent Attorneys,
Sydney.

* a — Delete whichever is Inapplicable
*b — Delete if not a Convention application.
No legalisation is required.
A bicycle with collapsible frame (11), which incorporates front and rear frame posts (12, 13) and at least one cross beam (15) interconnecting said frame posts, characterized therein, that the cross beam (15) of the frame (11) is two-part, that the two parts (15a, 15b) of the cross beam are articulated connected to each other and to the frame posts (12, 13), and that the two parts (15a, 15b) of the cross beam at folding of the frame are pivotable towards the front (12) and the rear frame post (13) respectively.
A bicycle with collapsible frame (11), which incorporates front and rear frame posts (12, 13) and at least one cross beam (15) interconnecting said frame posts. The purpose is to provide a bicycle, which with one or a few simple hand grips in a few seconds can be folded into a compact unit. It furthermore shall have an absolutely rigid frame when the bicycle is in its position of use, and in collapsed position it shall be only little bulky with a substantial extension in one direction only. This has been achieved in that the cross beam (15) of the frame (11) is two-part, that the two parts (15a, 15b) of the cross beam are articulatedly connected to each other and to the frame posts (12, 13), and that the two parts (15a, 15b) of the cross beam at folding of the frame are pivotable towards the front (12) and the rear frame post (13) respectively.
BICYCLE WITH A COLLAPSIBLE FRAME

The present invention refers to a bicycle with a collapsible frame, which incorporates front and rear frame posts and at least one cross beam interconnecting said frame posts.

BACKGROUND OF THE INVENTION

Collapsible bicycles have been proposed earlier in a large number of variations and with different folding principles. German Patent Specification 1,084,159 thus describes a collapsible bicycle, at which the two wheels in collapsed condition are situated close to each other, which folding method has proven itself to be the most space-saving.

A drawback with earlier known collapsible bicycles is that the bicycle has to be dismantled, whereby is obtained several separate parts, beside the fact that the folding requires use of special tools. The above mentioned Patent Specification has tried to set aside this problem by displacing certain frame parts along frame posts and to unhook other frame posts instead of unscrewing them, but this requires efficient clamp-1 joints and causes several complex hand grips beside requiring rather big power for tightening and releasing the clamp couplings. It is also known to fold the bicycle frame about one or more mainly vertical pivot axes, but the volume reduction obtained is indifferent and the collapsed bicycle is still bulky.

The collapsible bicycle has not become a success up until now, and the reason for this is the contradictory functional requirements, at one hand for stability and on the other hand for a simple manner of collapsing the bicycle, which latter requirement necessitates a number of joints, which from stability aspects always present problems, particularly if they shall also be dismountable. Beside stability and simple collapsability the bicycle shall have low weight, but it shall also be easy to handle, i.e. it shall be possible to
handle as one unit, when collapsed. A number of loose or partially continuous, joint-less details are difficult to handle and to transport and there is a big risk that one part or some parts are lost.

THE PURPOSE AND MOST ESSENTIAL FEATURES OF THE INVENTION

The purpose of the present invention is to provide a bicycle of the type mentioned in the introductory part, which shall have the following properties:

A. It shall be collapsible into a compact unit in a few seconds and with one or a few simple hand grips;
B. It shall have low weight;
C. It shall have an absolutely rigid frame in its position of use;
D. It shall in collapsed position be only little bulky and have a substantial extension in one direction, i.e. it shall have the shape of an elongated, easily handled package;
E. It shall in its optimum embodiment be collapsible with the wheels situated beside each other, without any part having to be dismounted;
F. The folding-out shall be as easy and smooth as the collapsing;
G. The frame shall be energy-absorbing, e.g. when running into a hindrance.

These tasks have been solved by the features defined in the claims.

DESCRIPTION OF THE DRAWINGS

Herebelow the invention will be further described with reference to the accompanying drawings, which show some embodiments.

Fig. 1 shows the bicycle according to the invention in a side view.
Fig. 2 shows in bigger scale the bicycle according to Fig. 1
in collapsed position, also in side view.
Fig. 3 shows the collapsed bicycle according to Fig. 2 in a front view.
Fig. 4 shows a vertical section through the upper cross beam of the frame.
Fig. 5 shows a horizontal section through the upper cross beam according to Fig. 4.
Fig. 6 shows a section through the centre pivot of the upper cross beam in folded position.
Fig. 7 is a section along line VII-VII in Fig. 4.
Fig. 8 is a section along line VIII-VIII in Fig. 6.
Fig. 9 shows the lower cross beam of the frame in side view.
Fig. 10 shows a modified embodiment of the bicycle according to the invention in collapsed position and in side view.

DESCRIPTION OF EMBODIMENTS

The bicycle according to the invention consists largely of standard parts, however with exception of the frame 11, which is designed according to a folding principle. The frame consists of four frame parts, a front frame post 12, a rear frame post 13 and an upper and a lower cross beam 14 and 15. These frame parts form an irregular polygon in the embodiment shown. The front frame post 12, constituted by a tube of circular crosssection, in its upper part is designed as an attachment for a handle bar 16 and at its lower part as a journal for the front wheel fork 17 of the front wheel 18. Also the rear frame post 13 consists of a tube with circular cross-section, which in its upper part is designed as a guide for the saddle bar 19 of the saddle 20. The upper as well as the lower cross beams 14 and 15 are two-part, i.e. they consist each of two articulately interconnected parts 14a, 14b and 15a, 15b, resp. Between the parts 14a and 14b is provided a joint 21, whereas the opposite end of the part 14a via a joint 22 is connected to the front frame post 12. The other part 14b with its opposite end is articulately connected to the rear frame post 13 via a joint 23. The joints 21, 22 and 23 are positioned thus, that - at a folding of the frame 11 - the part 14a is pivotable towards the front frame post 12 and the
part 14b towards the rear frame post 13.

The lower cross beam 15, in the same manner as the upper cross beam 14, is equipped with a centre joint 24 between the parts 15a and 15b. The opposite end of the part 15a is articulately connected to the front frame post 12 via the joint 25, whereas the rearmost end of the second part 15b is articulately connected to the rear frame post 13 via the joint 26. This is arranged on the upper side of the free end of the part 15b, whereby this part can serve as an attachment for a rear wheel fork 27. The joints 24, 25 and 26 are positioned, thus that, when the frame is folded, the part 15a is pivotable towards the front frame post, whereas the part 15b is pivotable towards the rear frame post 13. All joints 21, 22, 23, 24, 25 and 26 are so called toggle joints, i.e. they are foldable from an end position in which the two parts 14a, 14b and 15a and 15b resp. are situated in the extension of each other, in one direction only, to a position in which the frame is collapsed, such as shown in Fig. 2 and 3.

In order to make possible a positioning of the front wheel 18 beside the rear wheel 28 and with the front and rear frame posts 12, 13 situated adjacent each other, it is necessary that the joints 21 and 23 at the upper cross beam 14 and the joints 24 and 25 at the lower cross beam 15 are displaceable laterally. This can be provided for e.g. by making said joints angular, thus that the frame posts 12 and 13 at folding can be displaced laterally in relation to each other. The lateral displacement is made possible by the fact that the pivot axes 29 of the angular joints 21, 23, 24 and 25 form an acute angle to a normal to the longitudinal direction of the associated cross beam 14 or 15 resp. In order to guarantee a maximum stability in extended position of the frame, i.e. in the active bicycle position, but at the same time to make possible a smooth and simple folding, without the pivot surfaces of the joint thereby becoming jammed, the intermediate joints 21 and 24 are designed thus, that they have a very high degree of fit accuracy, when the joint is in its extended position according to Fig. 4 and 5, whereas the joints in folded
position have big play. This, in itself contradictory task, has been solved in that each one of the joints 21 and 24 consists of a U-shaped female part 30 and a male part 31, where the female part within the shanks of the U, is designed with opposed pivot portions 32, between which the corresponding joint pin 33 of the male part is insertable with high accuracy of fit. The pivot portion 32 in the female portion has a limited extension in a direction towards the pivot pin 29, which means that the pivot pin 33, when the joint is folded about the pivot axis 29, gradually will leave the pivot portion 32 and enter an area 34 having a substantially bigger play, i.e. substantially bigger width, than the thickness of the pivot pin 33.

The pivot axis 29, which is non-rotatably arranged in the female part 30, projects through an opening 35 in the pivot pin 33, which opening is provided with an enlarged portion 36, which makes it possible further to increase the angular setting of the cross beam portions 14a and 14b relative to each other, thus that the folding process will proceed without friction and the collapsed bicycle is obtained as a compact and smooth package.

As the cross beams 14, 15 are foldable in direction towards each other is it necessary that the joint 21 of the cross beam 14 is equipped with a locking device 37, which e.g. can incorporate an operating lever 38 in the form of double-armed lever, which is pivotable about a shaft 39. The operating lever 38 cooperates with a locking bolt 40, which is held in locking position by a spring 41. In this position the forward end portion of the locking bolt is situated in a bore 42 in the female part 30, whereby the joint is locked, such as can be seen from Fig. 4. By pulling the locking bolt 40 backwards by actuation of the operating lever 38 the two joint halves are releaved, whereby they can pivot relative to each other.

In the same manner as joint 21, the joint 23 is also an angular joint, the pivot pin 43 of which, in the embodiment shown, forms mainly the same angle to the horizontal
longitudinal medial plane of the cross beam 14 as the joint pin 33. The pivot pin 43 is furthermore arranged at an angle to the vertical longitudinal medial plane of the cross beam, thus that the folding and un-folding, i.e. the displacement laterally of the front frame post relative to the rear frame post 13, can take place without the frame portions jamming or blocking themselves. The joint 23 however has no possibility of bigger play in its folded position.

The joint 22 is a conventional toggle joint, which means that the cross beam portion 14a is pivotable in the axial plane of the front frame post 12, whereas the other cross beam portion 14b at folding of the frame thus is pivotable angularly towards the rear frame post 13.

The joints 24, 25 and 26 of the lower cross beam 15 are in principle of the same construction as the joints 21, 22 and 23 of the upper cross beam 14, whereby the intermediate joint 24 corresponds to joint 21, with the exception that the joint 24 has no locking device 37. The joint 25 furthermore corresponds structurally to the angular joint 23 and the joint 26 corresponds to joint 22. The joints 24, 25 and 26 are turned 180° relative to the corresponding joints of the upper cross beam 14.

A cranck bearing housing 44 is arranged on the cross beam portion 15b, and its position is not altered at folding, and the chain therefore need not be adjusted after each unfolding. For holding the frame posts and cross beams of the collapsed bicycle in a compact package, the bicycle also can be equipped with a retaining device 45, which e.g. can be a wire, which in one of its ends is provided with a loop 46 or the like, which can be thread over a hook 47 at the front frame post 12. The rear end of the wire is thread through a hole 48 in the rear frame post 13 and is connected to a tension spring 49, which at one hand will keep the wire stretched about the collapsed bicycle and which on the other hand can pull in the wire into the bar, except for its loop 46, when the bicycle is un-folded.
Folding of the bicycle according to the invention is effected with a single hand grip, in that the locking device 37 is disengaged by actuation of the operating lever 38, whereby the two cross beams 14 and 15 can be folded towards each other and to engagement against the front and the rear frame post resp., whereupon the collapsed bicycle package is fixed in this position by means of the retaining device 45. The unfolding is effected still more simple as it is only necessary to remove the retaining device 45 to allow the bicycle by means of its own weight, to resume its unfolded, active position.

A more simple variant of the invention, which however requires somewhat more work at folding and unfolding, is shown in Fig. 10, where the upper cross beam 14 is made in one piece, i.e. it has no intermediate pivot joint 21. The free end portion of the cross beam is designed as a hook 50, instead of having a joint 23, which hook with a simple hand grip can be connected to an attachment 51 provided at the rear frame post and which can also be locked to this. The joint 22 is arranged at a sleeve 53, which is rotatable about the front frame post 12, but axially non-displaceable thereon.

At folding of the bicycle the hook is released from the attachment 51, whereupon the upper cross beam is rotated 180° about the front frame post 12, thus that the upper cross beam 14 can be pivoted to a position parallel to front frame post 12 and its front wheel fork. Otherwise the bicycle has all the structural features described in the preceding embodiment.

The invention is not limited to the embodiments shown but a plurality of variations are possible within the scope of the claims. It is thus of course not necessary that upper cross beam is located directly below the bicycle saddle, but it can be arranged much nearer to the lower cross beam, possibly also in parallel thereto for the purpose of creating a lady’s bicycle. The angular joints may have other or mutually different angles and the frame portions may be of other lengths than those shown. The joints may also differ structurally from...
those defined in the embodiments and shown in the drawings. It is thus possible that the intermediate joint 21 and/or 24 are straight joints, if the angular displacement is taken up entirely by the or those other joints. It is further possible to use the particular angular joints one by one or in combinations for other applications and in other connections.
CLAIMS

1. A bicycle with collapsible frame (11), which incorporates front and rear frame posts (12, 13) and at least one cross beam (15) interconnecting said frame posts, characterized therein, that the cross beam (15) of the frame (11) is two-part, that the two parts (15a, 15b) of the cross beam are articulatedly connected to each other and to the frame posts (12, 13), and that the two parts (15a, 15b) of the cross beam at folding of the frame are pivotable towards the front (12) and the rear frame post (13) respectively.

2. The bicycle as claimed in claim 1, characterized therein, that at least one or some of the cross beam (15) joints (21, 23) are angular joints or movable link couplings, which are designed, when the frame is folded, to displace one or both parts (15a, 15b) of the cross beam angularly, thus that the frame posts (12, 13) and wheels (18, 28) attached thereto, may be placed beside each other.

3. The bicycle as claimed in claim 1 and 2, characterized therein, that the frame (11) is provided with an upper and a lower two-part and three-part cross beam (14, 15), and that the joints (21, 22, 23 and 24, 25, 26) of the cross beams are arranged thus that the two cross beams, at folding of the frame, are foldable in direction towards each other.

4. The bicycle as claimed in claim 3, characterized therein, that one (14a, 15b) of the two parts of each cross beam is pivotable in the axial plane of the associated frame post (12), whereas the second part (14b, 15a) is pivotable at an angle to the associated frame post (13).

5. The bicycle as claimed in claims 2, 3 or 4, characterized therein,
that the angular joints (21, 23; 24, 25) are designed as toggle joints, the pivot axis (29) of which are arranged to form an acute angle to a normal to the longitudinal axis of the cross beams, and that the pivot pin (33) of the toggle joint, when the joint is in its stretched out position, is guided in fittings (32), and in the folded position of the joint is situated outside said fittings within a joint portion (34) having a rather big play.

6. The bicycle as claimed in claim 2, 3 or 4, characterized therein, that the pivot pins (43) of the angular joints (23, 25) are arranged at an angle to the vertical as well as to the horizontal longitudinal medial planes of the associated cross beam (14, 15).

7. The bicycle as claimed in claim 2, 3 or 4, characterized therein, that each angular joint (21, 23; 24, 25) consists of a movable link coupling, e.g. an elastic coupling, a universal joint or the like, which beside being pivotable in the axial plane of the associated cross beam, also is pivotable at an angle thereto.

8. The bicycle as claimed in one or more of the preceding claims, characterized therein, that the intermediate joint (21) of at least one of the cross beams (14) is provided with a locking device (37) for locking the joint in its stretched out position.

9. The bicycle as claimed in claim 8, characterized therein, that the locking device is constituted by a spring loaded lock bolt (40) which is arranged displaceably against the action of a spring (41) in the longitudinal direction of the cross beam (14), from a position in which it extends through both joint halves (30, 31) of the joint (21) to a position within one of the joint halves.
10. The bicycle as claimed in one or more of the preceding claims, characterized therein, that the frame (11) is provided with a device (45) for holding together the separate frame parts when the frame is in its folded position.
INTERNATIONAL SEARCH REPORT

International Application No PCT/SE87/00366

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

| B 62 K 15/00 |

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Minimum Documentation Searched</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 4</td>
<td>B 62 K 15/00</td>
</tr>
<tr>
<td>Nat C1</td>
<td>63h:3</td>
</tr>
<tr>
<td>US C1</td>
<td>280:278, 281, 287</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category *</th>
<th>Citation of Document, ** with Indication, where appropriate, of the relevant passages ***</th>
<th>Relevant to Claim No. ****</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE, B, 1 084 159 (TRIPAD FAHRADBAU JOHANN TRIENENS) 23 June 1960</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE, A, 2 651 305 (KLIMPSCH G N) 11 May 1978</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>FR, A, 873 573 (MM H REBOUL ET R PLANCHON) 13 July 1942</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

** Later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*** Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

**** Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 1987-11-25

Date of Mailing of this International Search Report: 1987-12-02

International Searching Authority: Swedish Patent Office

Signature of Authorized Officer: Gran Carlström

Form PCT/ISA/910 (second sheet) (January 1988)