MICROSCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS
We, BAYER AKTIENGESellschaft
of D-5090 Leverkusen, Bayerwerk, Germany
hereby apply for the grant of a Standard Patent for an invention
entitled "NEW COMPOUNDS, PROCESSES FOR THEIR PREPARATION AND
THEIR USE AS MEDICAMENTS"
which is described in the accompanying complete specification.
For a Convention application - details of basic application-
Number P3623941.0 Country Germany Date of Application 16th July 1986
Our address for service is ARTHUR S. CAVE & CO., Patent and Trade
Mark Attorneys, 1 Alfred Street, Sydney, New South Wales,
Australia 2000.
Dated this 14th day of July, 1987.

BAYER AKTIENGESellschaft
By Its Patent Attorneys,
ARTHUR S. CAVE & CO.

To:
Commissioner of Patents

ARTHUR S. CAVE & CO.
PATENT AND TRADE MARK ATTORNEYS
SYDNEY
ASC 1
The present invention relates to new amino-5,6,7,8-tetrahydronaphthyl-oxyacetic acids, processes for their preparation and the use of amino-5,6,7,8-tetrahydronaphthyl-oxyacetic acids as medicaments, in particular as antithrombotics, antiatherosclerotics and antiischaemic agents.

i. Amino-5,6,7,8-tetrahydronaphthyl-oxyacetic acids of the general formula (I)

\[
\text{NHRI} \quad 0 \quad \text{OCH}_2 \text{COR}^2
\]

in which

\[
/^{\text{R}}^1 \text{represents } C-\text{R}^3 \text{ or SO}_2\text{R}^4
\]

wherein

\[
\text{R}^3 \text{ represents aryl, substituted aryl, heteroaryl,}
\]
OH

aralkyl or the group CH-aryl and

wherein

R^4 represents aryl or substituted aryl, and
R^2 represents OH, alkoxy, phenoxy, benzoxy or
NR^5R^6,

wherein

R^5 and R^6 are identical or different and each
represents hydrogen or alkyl, or
one of the radicals R^5 or R^6 represents benzyl,
and physiologically acceptable salts thereof with mono-
or divalent cations.
Complete Specification for the invention entitled "NEW COMPOUNDS, PROCESSES FOR THEIR PREPARATION AND THEIR USE AS MEDICAMENTS".

The following statement is a full description of this invention including the best method of performing it known to me:-

ASC 49
The present invention relates to new amino-5,6,7,8-tetrahydronaphthyl-oxyacetic acids, processes for their preparation and the use of amino-5,6,7,8-tetrahydronaphthyl-oxyacetic acids as medicaments, in particular as antithrombotics, antiatherosclerotics and anti-ischaemic agents.

Thrombosis and arteriosclerotic vascular changes are controlled, above all, by the interaction of two metabolites of arachidonic acid, that is to say by thromboxan A$_2$ (TXA$_2$) and by prostacyclin (PGI$_2$). TXA$_2$ has an aggregating effect on blood platelets, and PGI$_2$ has an antiaggregating effect. Moreover, TXA$_2$ has a vasoconstrictory effect and PGI$_2$ a vasodilatory effect.

In a number of thrombo-embolic and ischaemic diseases, hyperaggregability of the platelets or an increased platelet consumption leads to an increased thromboxan synthesis, so that the TXA$_2$ and PGI$_2$ equilibrium is disturbed. It is therefore desirable for the therapy and prophylaxis of thrombo-embolic and ischaemic diseases for the thromboxan effect to be inhibited and the protective properties of the PGI$_2$ therefore to be increased.

It has now been found, surprisingly, that certain amino-5,6,7,8-tetrahydronaphthyl oxyacetic acids have a specific and potent antagonistic action in respect of thromboxan A$_2$.

Thromboxan-antagonistic and platelet aggregation-inhibiting amino-5,6,7,8-tetrahydronaphthyl oxyacetic acids of the general formula (1)

$$\text{NHR}^1 \quad \text{CCH}_2\text{COR}^2$$

Le A 24 505
in which

\[R^1 \text{ represents } C-R^3 \text{ or } SO_2R^4 \]

wherein

\[R^3 \text{ represents aryl, substituted aryl, heteroaryl, OH aralkyl or the group } CH\text{-aryl and} \]

wherein

\[R^4 \text{ represents aryl or substituted aryl, and} \]

\[R^2 \text{ represents OH, alkoxy, phenoxy, benzoxy or } \]

\[NR^5R^6, \]

wherein

\[R^5 \text{ and } R^6 \text{ are identical or different and each represents hydrogen or alkyl, or one of the radicals } R^5 \text{ or } R^6 \text{ represents benzyl, and} \]

physiologically acceptable salts thereof with mono- or divalent cations have been found.

Compounds of the general formula (I) which are of particular interest are those

in which

\[R^1 \text{ represents CO-R}^3 \text{ or } SO_2R^4, \]

wherein

\[R^3 \text{ represents phenyl or naphthyl which optionally carries 1, 2 or 3 identical or different substitu-} \]

\[\text{ents from the group comprising halogen, cyano, trifluoromethyl and alkyl with 1 to 4 C atoms, or rep-} \]

\[\text{resents pyridine, quinoline or aralkyl with 7 to 12 carbon atoms, the aralkyl radical option-} \]

\[\text{ally being substituted in the alkyl part by} \]

\[\text{halogen or hydroxyl and optionally being substi-} \]

\[\text{tuted in the aryl part by halogen or alkyl with} \]

Le A 24 505
1 to 4 carbon atoms, or represents the group \(\text{CHOH-aryl} \),

wherein

- aryL denotes phenyl or naphthyl which is optionally substituted by 1, 2 or 3 radicals from the group comprising halogen, cyano, trifluoromethyl and alkyl with 1 to 4 carbon atoms,
- \(R^6 \) represents phenyl or naphthyl, which optionally carry 1, 2 or 3 identical or different substituents from the group comprising halogen, cyano, trifluoromethyl and alkyl with 1 to 4 carbon atoms, and
- \(R^2 \) represents hydroxyl, phenoxy, benzoxy or alkoxy with 1 to 4 carbon atoms, or represents the group \(\text{NR}_5^5 \text{R}_6^6 \),

wherein

- \(R^5 \) and \(R^6 \) are identical or different and each represent hydrogen or alkyl with 1 to 4 carbon atoms, or
- one of the radicals \(R^5 \) or \(R^6 \) represents benzyl, and physiologically acceptable salts thereof with monovalent or divalent cations.

Fluorine and chlorine are of particular interest from the group of halogens.

The new amino-5,6,7,8-tetrahydronaphthalene-oxyacetic acid derivatives of the formula (I) can exist both as enantiomers and enantiomer pairs, and if a further asymmetry is present in one of the radicals, as diastereomeric pairs.

Preferred processes for preparing optical isomers are: making diastereomeric salts of amines of formula II with optical active acids, separation of the diastereomeric salts by crystallisation and following isolation of the free optical active amines, or via the preparation of optical active imines of ketones of formula V with (+) or (-) \(\alpha \)-methylbenzylamines, subsequent hydration of the imine-double-bond and removal of the benzylmoiety by further hydration.

It has furthermore been found that the amino-5,6,7,8-tetrahydronaphthyl-oxyacetic acids I are obtained by a process in which the amines of the general formula (II)

Le A 24 505

- 3 -
in which

\[R^2 \] has the abovementioned meaning,

are reacted with carboxylic acids of the general formula
\[R^3 \text{-COOH}, \ R^3 \] having the abovementioned meaning, or

activated derivatives thereof, such as acid chlorides or

anhydrides or activated esters, or with sulphonic acids

of the general formula \(R^4 \text{-SO}_3\text{H}, \ R^4 \) having the above-

mentioned meaning, or activated derivatives thereof, such

as acid chlorides or activated esters, in a manner which

is known per se. In the case where \(R^2 = \text{OH} \), the reaction

is followed by hydrolysis to give the free carboxylic

acids.

It has furthermore been found that the amino-

5,6,7,8-tetrahydronaphthyl-oxyacetic acid derivatives \(I \)

are also obtained by a process in which the phenols of

the general formula (III)

\[\text{(III)} \]

in which

\[R^1 \] has the abovementioned meaning,

are reacted with acetic acid derivatives of the general

formula (IV)

\[X-\text{CH}_2\text{-COR}^2 \]

(IV)

in which

\(X \) denotes a leaving group, such as, for example,
CL, Br, I, SO₂CH₃ or SO₂– and

R² has the abovementioned meaning, in the presence of acid-binding agents.

This process variant is particularly suitable if R¹ contains no sulphur atom.

In the case where R² ≠ OH, the reaction is followed by hydrolysis to give the free carboxylic acids.

The aminotetralin-oxyacetic acid derivatives II are obtained from the corresponding tetralones V

\[
\begin{align*}
\text{R}^7 & \quad \text{OCH₂COR}^2 \\
\end{align*}
\]

wherein

R⁷ is a keto group and

R² has the abovementioned meaning,

The tetralones V are obtained by alkylation of the corresponding hydroxytetralins VI

\[
\begin{align*}
\text{OH} & \quad \text{R}^7 \\
\end{align*}
\]

in which

R⁷ has the abovementioned meaning,

with acetic acid derivatives of the general formula X-CH₂-CO₂R² (IV), in which X and R² have the abovementioned meaning, by processes which are known from the literature (for example Patai "The Chemistry of the Le A 24 505

- 5 -
The hydroxytetralones VI are known from the literature in some cases (for example J. Org. Chem. 14, page 366 (1949)), and some of them can be prepared from the known methoxytetralones XI by ether cleavage by a process analogous to those known from the literature (for example Org. Syntheses, Volume 51, page 109; and J. Chem. Soc. 1855 (1949)).

The aminotetralin-oxyacetic acid derivatives II can likewise be obtained by a process in which the acetamides VII

\[
\begin{align*}
\text{NH-C-CH}_3 \\
\text{OCH}_2\text{COR}^2
\end{align*}
\]

(VII)

in which \(\text{R}^2 \) has the abovementioned meaning, are subjected to acid or basic hydrolysis in a known manner. VII can be obtained in a manner analogous to that already described for III \(\rightarrow \) II, by alkylation of the OH group of the phenols VIII

\[
\begin{align*}
\text{NH-C-CH}_3 \\
\text{HO}
\end{align*}
\]

(VIII)

with the acetic acid derivatives IV. The acetylated amino-hydroxytetralins VIII are obtained from the corresponding amino-hydroxytetralins IX.
or salts thereof with inorganic acids, by acetylation of the amino and hydroxyl function and subsequent selective hydrolysis of the ester by generally known processes.

The phenols of the general formula III can also be prepared from the aminohydroxytetralins IX by processes analogous to those known from the literature (for example Chem. Ber. 103, 788 (1970)). This procedure is particularly suitable if \(R^1 \) does not contain a sulphur atom. The phenols of the general formula III can also be prepared from compounds of the general formula XII

\[
\text{OCH}_3
\]

by ether cleavage by known processes, for example by reaction with BBr₃.

The amino-hydroxy-tetralones IX are known in some cases (for example J. Med. Chem. 22, 1469 (1979)), or they can be prepared via the methoxy-aminotetralins X

\[
\text{H}_3\text{CO}
\]

or salts thereof with inorganic acids, by reductive amination from the corresponding known methoxy-tetralones XI
in which

\[R^7 \] has the abovementioned meaning,
by processes analogous to known processes.

Examples which may be mentioned of the methoxy-tetralones XI used as starting substances are: 5-methoxy-1-tetralone, 5-methoxy-2-tetralone, 6-methoxy-1-tetralone, 6-methoxy-2-tetralone and 6-methoxy-3-tetralone.

The syntheses sequences can be summarized in an equation as follows, starting from the methoxy-tetralones XI:
wherein

R^1, R^2, and R^7 have the abovementioned meanings.
In the case where \(R^1 = C-R^3 \), \(R^3 \) having the abovementioned meaning, the end products I are obtained by a process in which the amines of the general formula II are reacted with the corresponding carboxylic acids \(R^2\text{-COOH} \) or activated derivatives thereof, for example acid chlorides, acid anhydrides or activated esters.

If the activated derivatives are employed, the reaction is advantageously carried out in the presence of an acid-binding agent, such as, for example, alkali metal hydroxides or carbonates or alkaline earth metal hydroxides or carbonates or organic bases, such as triethylamine, pyridine or N-ethylmorpholine.

Suitable solvents, depending on the nature of the carboxylic acid derivative employed, are organic solvents, such as, for example, methylene chloride, chloroform, ethyl acetate, tetrahydrofuran, ether or dimethylformamide, or protic solvents, such as, for example, water, methanol or ethanol.

The reaction temperature is between 0 and 100°C, preferably between 0 and 30°C.

If the free carboxylic acids \(R^3\text{-COOH} \) are employed, the reaction can be carried out, for example, in the manner described in Chem. Ber. 103, 788 (1970).

In the case where \(R^1 = SO_2R^4 \), \(R^4 \) having the abovementioned meaning, the end products I are obtained by reacting the amines of the general formula II with the corresponding sulphonic acids \(R^4\text{SO}_3\text{H} \) or activated derivatives thereof, such as, for example, sulphonylic acid chlorides, sulphonylic acid anhydrides or sulphonylic acid esters, in the presence of an acid-binding agent, such as, for example, alkali metal hydroxides or carbonates or alkaline earth metal hydroxides or carbonates or organic bases, such as, for example, triethylamine, pyridine or N-ethylmorpholine.

Suitable diluents are the same as those which

Le A 24 505
have already been mentioned for the reaction with the
carboxylic acid derivatives. If \(R^2 \) in the compounds of
the general formula I represents \(O\text{-alkyl} \) or \(NR^5R^6 \), the
reaction can be followed by hydrolysis under basic or
acid conditions in a generally known manner.

The compounds of the general formula I are also
obtained by the process variant from the phenols III in
which \(R^1 \) has the abovementioned meaning by a procedure
in which the phenols III are alkylated with acetic acid
derivatives of the general formula IV in which \(R^2 \) and \(X \)
have the abovementioned meaning.

The alkylation is advantageously carried out in
the presence of an acid-binding agent, such as, for
example, alkali metal hydroxides or carbonates or alka-
line earth metal hydroxides or carbonates or organic
bases, such as, for example, triethylamine, pyridine or
diazabicycloundecane, in organic solvents, such as ace-
tone, butanone, dimethylformamide, dimethylsulphoxide,
ethanol, dioxane or toluene.

It is frequently advantageous to add an alkali
metal halide, such as, for example, sodium iodide or
potassium iodide, and a water-binding agent, such as a
3\(\times \) molecular sieve.

The reaction temperature is between 50 and 150°,
preferably between 50 and 80°C, depending on the solvent.

Examples which may be mentioned of the compounds
of the general formula I are: 5-(4-fluorophenylsulphonyl-
amino)-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetic acid,
5-phenylsulphonylamino-5,6,7,8-tetrahydro-naphth-1-yl-
oxyacetic acid, 5-(4-Methylphenylsulphonylamino)-5,6,7,8-
tetrahydro-naphth-1-yl-oxyacetic acid, 5-(3,4-dichlorobenzoylamino)-5,6,7,8-
tetrahydro-naphth-1-yl-oxyacetic acid, 5-(3,4-dichloro-
benzoylamino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic
acid, 5-(4-fluorophenylsulphonylamino)-5,6,7,8-tetra-
hydro-naphth-2-yl-oxyacetic acid, 5-phenylsulphonylamino-
5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 6-(3,4-
dichlorobenzoylamino)-5,6,7,8-tetrahydro-naphth-1-yl-oxy-
Le A 24 505
acetic acid, 6-(4-fluorophenylsulphonyl)amino)-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetic acid, 6-(4-chlorophenylsulphonyl)amino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 6-(4-fluorophenylsulphonylamino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 7-(4-fluorophenylsulphonyl)amino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 7-(4-chlorophenylsulphonyl)amino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 7-(4-chlorophenylsulphonylamino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 5-(4-methylphenylsulphonylamino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 6-(4-methylphenylsulphonyl)amino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 5-(4-trifluoromethylphenylsulphonylamino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 5-(4-cyanophenylsulphonylamino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 6-(4-trifluoromethylphenylsulphonylamino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 5-(4-cyanophenylsulphonylamino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid, 6-(4-cyanophenylsulphonylamino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid.

Possible formulation forms are the customary galenic administration forms, for example creams, tablets, pills, capsules, suppositories, emulsions and infusion and injection solutions. These formulation forms are prepared by methods which are known per se, using customary auxiliaries and excipients.

The medicaments thus prepared are used as required, for example by local, parenteral or oral administration.

Formulations which contain the compounds according to the invention in concentrations of about 0.1 to 10% by weight are particularly suitable. Aqueous solutions, which if appropriate are buffered to a pH of 6 to 8, are particularly preferred.

Le A 24 505
The dosage of the substituted amino-5,6,7,8-tetrahydro-naphthyl-oxyacetic acid derivatives in the medicaments according to the invention is preferably in a range from 0.05 to 100 mg/kg, in particular 0.1 to 20 mg/kg of body weight.

The substituted amino-5,6,7,8-tetrahydro-naphthyl-oxyacetic acids contained in the medicaments according to the invention are used as thromboxan antagonists and platelet aggregation-inhibitors for preventing and treating thromboses, thromboembolisms and ischaemic diseases, and as antiasthmatics and as antiallergics.

Method

10 Platelet aggregation inhibition in vitro

Blood from healthy donors who have taken no medicament for at least 14 days is used for the in vitro determination of the platelet aggregation-inhibiting action. The blood is taken up in 3.8% strength sodium citrate solution. Platelet-rich plasma (PRP) is obtained by centrifugation at 150 g at room temperature for 20 minutes (Jürgens/Beller: Klinische Methoden der Blutgerinnungsanalyse (Clinical Methods of Blood Coagulation Analysis); Thieme Verlag, Stuttgart 1959). The platelet aggregation is determined by the turbidometric method (Born, G.V.R.: J. Physiol. 162, 67, 1962) in an aggregometer at 37°C. For this, PRP is incubated with the test substance at 37°C and the aggregation is then induced by addition of a collagen suspension. For the in vitro experiments, the minimum effective active compound concentration (MEC) which inhibits platelet aggregation in the corresponding PRP samples is quoted.

Platelet aggregation inhibition ex vivo

For the ex vivo investigations, the active substance is administered orally to the animals in a tylose suspension. After 90 minutes, the animals are exsanguinated and the PRP is obtained by means of centrifugation. The aggregation inhibition is measured analogously to the method described for the in vitro experiments; however, there is no preincubation of the samples.

The results of the collagen-induced platelet
aggregation of some examples are shown in the table.

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Inhibition of platelet aggregation (in vitro)</th>
<th>Limit concentration [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>0.3 - 0.1</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>3 - 1</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>0.3 - 0.1</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>0.3 - 0.1</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>0.1 - 0.03</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>10 - 3</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>10 - 3</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>10 - 3</td>
</tr>
</tbody>
</table>

Example 1

5-Amino-1-methoxy-5,6,7,8-tetrahydro-naphthalene hydrochloride

50 mmol of 5-methoxy-1-tetralone, 0.5 mol of NH₄OAc and 35 mmol of NaBH₃CN are stirred in 150 ml of absolute MeOH at room temperature for 24 hours. The mixture is acidified to pH 2 with concentrated HCl and evaporated, the residue is taken up in 50 ml of H₂O and the mixture is extracted by shaking 2-3 x with ether. Any precipitates which arise are filtered off and combined with the H₂O phase. The H₂O phase is brought to pH 10 with solid KOH, saturated with NaCl and extracted by shaking 3 x with ethyl acetate. After drying with Na₂SO₄, the organic phase is evaporated, the residue is dissolved in ether and the product is precipitated as the hydrochloride by passing in HCl. Yield: 79%; melting point: 250°C.

The following compounds were prepared in an analogous manner:

Example 2

5-Amino-2-methoxy-5,6,7,8-tetrahydro-naphthalene hydrochloride

Yield: 79% of theory; melting point: 262°C.

Example 3

6-Amino-1-methoxy-5,6,7,8-tetrahydro-naphthalene hydrochloride

Le A 24 505
Yield: 62% of theory; melting point: 258°C.

Example 4
6-Amino-2-methoxy-5,6,7,8-tetrahydro-naphthalene hydrochloride

Yield: 42% of theory; melting point: 239°C.

Example 5
7-Amino-1-methoxy-5,6,7,8-tetrahydro-naphthalene hydrochloride

Yield: 61.4% of theory; melting point: 97°C.

Example 6
5-Amino-1-hydroxy-5,6,7,8-tetrahydro-naphthalene hydrobromide

0.15 mol of 5-amino-1-methoxy-5,6,7,8-tetrahydro-naphthalene hydrochloride is heated at a bath temperature of 125°C in 75 ml of aqueous 48% strength HBr for 3 hours. The mixture is evaporated, the residue is dissolved in a little ethanol and the products are precipitated as the hydrobromides by addition of ether.

Yield: 80% of theory; melting point: 152°C.

The following compounds were prepared in an analogous manner:

Example 7
5-Amino-2-hydroxy-5,6,7,8-tetrahydro-naphthalene hydrobromide

Yield: 18% of theory

Example 8
6-Amino-1-hydroxy-5,6,7,8-tetrahydro-naphthalene hydrobromide

Yield: 72% of theory; melting point: 248°C.

Example 9
6-Amino-2-hydroxy-5,6,7,8-tetrahydro-naphthalene hydrobromide

Yield: 84% of theory; melting point: 275°C.
Example 10

7-Benzzenesulphonylamino-1-methoxy-5,6,7,8-tetra-hydro-naphthalene

10.25 g (56 mmol) of 7-amino-1-methoxy-5,6,7,8-tetra-hydro-naphthalene are dissolved in 100 ml of analytical grade pyridine. 10.6 g (60 mmol) of benzenesulphonyl chloride are added dropwise at room temperature, exothermic reaction, subsequently stir at room temperature for 1 hour, reaction mixture concentrated in vacuo, residue purified over a silica gel column (K₆₀, mobile phase toluol:acetone 10:1).

Yield: 10.8 g (61% of theory)

Rf value (K₆₀ film) 0.75 (mobile phase: toluene:ethanol: triethylamine 10:3:1).

Example 11

5-Benzoylamino-1-hydroxy-5,6,7,8-tetrahydro-naphthalene

50 mmol of benzoic acid and 50 mmol of 1-hydroxy-benzotriazole (HOBT) are taken in 200 ml of absolute tetrahydrofuran at 0°C. 55 mmol of dicyclohexylcarbodiimide (DCC) are added under N₂ and the mixture is stirred at 0°C for 1 hour and then at room temperature for 1 hour. 50 mmol of 5-amino-1-hydroxy-5,6,7,8-tetrahydro-naphthalene hydrobromide and 50 mmol of triethylamine are added to this solution and the mixture is stirred at room temperature for 6 hours.

The mixture is filtered, the residue is rinsed thoroughly with tetrahydrofuran and the filtrate is evaporated. The residue is taken up in ethyl acetate and washed once with saturated NaHCO₃ solution, once with 1N HCl, once with saturated NaHCO₃ solution and once with saturated NaCl solution. After drying over Na₂SO₄, the mixture is evaporated, the residue is dissolved in a little acetone, and after 1 hour in a refrigerator the residual dicyclohexylurea which has precipitated out is filtered off. The filtrate is evaporated and the residue is recrystallized from acetone by
addition of petroleum ether.
Yield: 53% of theory; melting point: 160°C.

The compounds summarized in Table 1 were prepared in an analogous manner:
<table>
<thead>
<tr>
<th>Example</th>
<th>Substitution positions</th>
<th>Radical R</th>
<th>% yield (in % of theory)</th>
<th>Melting point (in the case of crystals) or wave number of the amide band in the IR spectrum in the case of oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1 5</td>
<td></td>
<td>76</td>
<td>1655 cm⁻¹</td>
</tr>
<tr>
<td>13</td>
<td>1 5</td>
<td></td>
<td>83</td>
<td>230°C</td>
</tr>
<tr>
<td>14</td>
<td>2 5</td>
<td></td>
<td>31</td>
<td>1660 cm⁻¹</td>
</tr>
<tr>
<td>15</td>
<td>2 5</td>
<td></td>
<td>27</td>
<td>1650 cm⁻¹</td>
</tr>
<tr>
<td>Example</td>
<td>Substitution positions</td>
<td>Radical R</td>
<td>% yield (in % of theory)</td>
<td>Melting point (in the case of crystals) or wave number of the amide band in the IR spectrum in the case of oils</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>OH 1 NH-CO-R 6</td>
<td></td>
<td>60</td>
<td>198°C</td>
</tr>
<tr>
<td>17</td>
<td>OH 1 NH-CO-R 6</td>
<td></td>
<td>77</td>
<td>1660 cm(^{-1})</td>
</tr>
<tr>
<td>18</td>
<td>OH 1 NH-CO-R 6</td>
<td></td>
<td>58</td>
<td>232-33°C</td>
</tr>
<tr>
<td>19</td>
<td>OH 2 NH-CO-R 6</td>
<td></td>
<td>82</td>
<td>173-75°C</td>
</tr>
<tr>
<td>20</td>
<td>OH 2 NH-CO-R 6</td>
<td></td>
<td>58</td>
<td>1640 cm(^{-1})</td>
</tr>
<tr>
<td>21</td>
<td>OH 2 NH-CO-R 6</td>
<td></td>
<td>85</td>
<td>230°C</td>
</tr>
</tbody>
</table>
Example 22
5-Acetylamino-1-hydroxy-5,6,7,8-tetrahydro-naphthalene
50 mmol of 5-amino-1-hydroxy-5,6,7,8-tetrahydro-naphthalene are stirred in a solution of 200 mmol of acetic anhydride and 200 mmol of triethylamine, to which a spatula-tip of dimethylaminopyridine has been added, for 2 hours. The mixture is filtered, the residue is rinsed thoroughly with tetrahydrofuran and the filtrate is evaporated. The residue is taken up in ethyl acetate and the mixture is washed with 1N HCl, saturated NaHCO₃, 1N HCl, saturated NaHCO₃ and saturated NaCl solution, dried over Na₂SO₄ and evaporated. The bis-acetate which remains is dissolved in 100 ml of MeOH and the solution is then added dropwise to 100 ml of 1N KOH at room temperature. The mixture is stirred at an internal temperature of 50°C for 2 hours and acidified with concentrated HCl and the MeOH is stripped off. The acid aqueous phase is extracted by shaking 2 to 3 times with ethyl acetate and the combined organic phases are dried with Na₂SO₄ and evaporated. The residue is recrystallized from ethyl acetate.

Yield: 92% of theory ¹H-NMR (CD₃OD): δ = 1.95 (s, 3H)
The following compounds were prepared in an analogous manner:

Example 23
5-Acetylamino-2-hydroxy-5,6,7,8-tetrahydro-naphthalene
Yield: 33% of theory ¹H-NMR (CD₃OD): δ = 2.0 (s, 3H)

Example 24
6-Acetylamino-1-hydroxy-5,6,7,8-tetrahydro-naphthalene
Yield: 81% of theory ¹H-NMR (CD₃OD): δ = 1.95 (s, 3H)

Example 25
6-Acetylamino-2-hydroxy-5,6,7,8-tetrahydro-naphthalene
Yield: 82% of theory ¹H-NMR (CD₃OD): δ = 2.0 (s, 3H)
Example 26
Methyl 5-benzoxyamino-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetate

50 mmol of 5-benzoxyamino-1-hydroxy-5,6,7,8-tetrahydro-naphthalene and 100 ml of anhydrous potassium carbonate are stirred at 50°C in 100 ml of absolute dimethylformamide for 20 minutes. A solution of 60 mmol of methyl chloroacetate and 25 mmol of potassium iodide in 25 ml dimethylformamide is added dropwise and the mixture is stirred at 50°C for 6 to 8 hours. It is filtered under the influence of heat, the residue is rinsed thoroughly with ethyl acetate and the filtrate is evaporated. The residue is stirred in a mixture of 10% strength NaOH and ethyl acetate or tetrahydrofuran for 10 minutes. The ethyl acetate phase is extracted by shaking once with 10% strength NaOH, dried over Na₂SO₄ and evaporated. The residue is recrystallized from ethyl acetate.

Yield: 86% of theory; melting point: 242°C

The examples of Table 2 were prepared in an analogous manner:
<table>
<thead>
<tr>
<th>Example No.</th>
<th>Substitution positions</th>
<th>Radical R</th>
<th>Yield % (in % of theory)</th>
<th>Melting point in the case of crystals or wave number of the amide band in the IR spectrum in the case of oils</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>1, 5</td>
<td>-CH₃</td>
<td>92</td>
<td>196°C</td>
</tr>
<tr>
<td>28</td>
<td>1, 5</td>
<td>-OH</td>
<td>72</td>
<td>115°C</td>
</tr>
<tr>
<td>29</td>
<td>1, 5</td>
<td>-N=O</td>
<td>52</td>
<td>1665 cm⁻¹</td>
</tr>
<tr>
<td>30</td>
<td>2, 5</td>
<td>-CH₃</td>
<td>33</td>
<td>165°C</td>
</tr>
<tr>
<td>31</td>
<td>2, 5</td>
<td></td>
<td>91</td>
<td>149-150°C</td>
</tr>
<tr>
<td>Example No.</td>
<td>Substitution positions</td>
<td>Radical R</td>
<td>Yield % (in % of theory)</td>
<td>Melting point in the case of crystals or wave number of the amide band in the IR spectrum in the case of oils</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>32</td>
<td>2 5</td>
<td></td>
<td>45</td>
<td>1665 cm⁻¹</td>
</tr>
<tr>
<td>33</td>
<td>1 6</td>
<td></td>
<td>81</td>
<td>120°C</td>
</tr>
<tr>
<td>34</td>
<td>1 6</td>
<td></td>
<td>69</td>
<td>125-27°C</td>
</tr>
<tr>
<td>35</td>
<td>1 6</td>
<td> </td>
<td>21</td>
<td>1670 cm⁻¹</td>
</tr>
<tr>
<td>36</td>
<td>1 6</td>
<td></td>
<td>75</td>
<td>1665 cm⁻¹</td>
</tr>
<tr>
<td>Example No.</td>
<td>Substitution positions</td>
<td>Radical R</td>
<td>Yield %</td>
<td>Melting point in the case of crystals or wave number of the amide band in the IR spectrum in the case of oils</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>37</td>
<td>2, 4</td>
<td>-CH₃</td>
<td>82</td>
<td>110-115°C</td>
</tr>
<tr>
<td>38</td>
<td>2, 4</td>
<td>[Image]</td>
<td>47</td>
<td>130°C</td>
</tr>
<tr>
<td>39</td>
<td>2, 4</td>
<td>[Image]</td>
<td>14</td>
<td>1665 cm⁻¹</td>
</tr>
<tr>
<td>40</td>
<td>2, 4</td>
<td>[Image]</td>
<td>44</td>
<td>1650 cm⁻¹</td>
</tr>
</tbody>
</table>
Example 41
6-Amino-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetic acid
20 mmol of methyl 6-acetylamino-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetate are refluxed in 300 ml of 2N HCl for 24 hours. The product precipitates on cooling to 0°C.
Yield: 89% of theory; melting point: 271-73°C

The following compounds were prepared in an analogous manner:

Example 42
5-Amino-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetic acid
Yield: 17% of theory 1H-NMR (CD3OD): δ = 4.65 (s, 2H)

Example 43
S-Amino-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid
Yield: 14% of theory 1H-NMR (CD3OD): δ = 4.65 (s, 2H)

Example 44
6-Amino-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetic acid
Yield: 71% of theory; melting point: 305°C

Example 45
Methyl 7,8-tetrahydro-5(6H)-naphthalen-1-yl-oxyacetate
0.5 mol of 5-hydroxy-1-tetralone is refluxed together with 0.6 mol of methyl chloroacetate, 0.25 mol of potassium iodide and 1 mol of potassium carbonate in 1 l of butanone for 6 hours. The mixture is filtered with suction, the residue is rinsed thoroughly with acetone and the filtrate is evaporated. The residue is taken up in 500 ml of methylene chloride and the mixture is washed three times with 0.5 N NaOH and once with water, dried over sodium sulphate and evaporated. The residue is distilled using a bulb tube. (Boiling point: 250°C/0.3 mm) or crystallized from ligroin (melting point: 84-85°C). Yield: 83% of theory.

The following compounds are prepared in an analogous manner:

Example 46
Methyl 7,8-tetrahydro-5(6H)-naphthalen-2-yl-oxyacetate
Yield: 76% of theory; melting point: 116-118°C

Le A 24 505
Example 47
5-Amino-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetamide

50 mmol of methyl 7,8-tetrahydro-5(6H)-naphthalenon-1-yl-oxyacetate are reacted in 100 ml of methanol and 50 ml of NH₃ for 5 hours at 110°C under 100 bar of hydrogen over 5 g of Raney nickel. The mixture is filtered hot with suction, the filtrate is evaporated and the residue is recrystallized from toluene.

Yield: 68% of theory; melting point: 133-140°C

Example 48
5-Amino-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetamide

Yield: 89% of theory; ¹H-NMR (CD₃OD): δ = 4.45 (s, 2H)

Example 49
5-(4-Chlorobenzenesulphonylamino)-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetamide

33 mmol of p-chlorosulphonyl chloride in 20 ml of absolute tetrahydrofuran are added dropwise to 30 mmol of 5-amino-5,6,7,8-tetrahydro-naphth-2-yl-oxyacetamide and 60 mmol of triethylamine in 80 ml of absolute tetrahydrofuran at room temperature. The mixture is subsequently stirred at room temperature for 6 hours and filtered and 30 ml of ether are added. The organic phase is washed with 1N HCl, saturated NaHCO₃ solution and saturated NaCl solution, dried over Na₂SO₄ and evaporated.

Yield: 58% of theory; ¹H-NMR (d₆-DMSO): δ = 4.35 (s, 2H); melting point: 203-5°C

Example 50
5-(4-Chlorobenzenesulphonylamino)-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetamide

Yield: 52% of theory; melting point: 205-208°C; ¹H-NMR (d₆-DMSO): δ = 4.45 (s, 2H)

Example 51
7-Benzenesulphonylamino-5,6,7,8-tetrahydro-1-hydroxy-naphthalene

9.6 g (30 mmol) of 7-benzenesulphonylamino-1-methoxy-5,6,7,8-tetrahydronaphthalene are dissolved in Le A 24 505
150 ml of analytical grade CH₂Cl₂, 40 ml of 1 molar (40 mmol) of boron tribromide solution are added dropwise at room temperature, the reaction mixture is subsequently stirred at room temperature for 1 hour and poured onto ice-water containing a little L-(+)-tartaric acid, the CH₂Cl₂ is separated off and the mixture is dried over MgSO₄ and concentrated in vacuo, crystalline residue.

Yield: 5.7 g (62.7% of theory)

Melting point: 152-154°C

Example 52
Ethyl 7-benzenesulphonylamino-5,6,7,8-tetrahydronaphth-1-yl-oxyacetate

5.3 g (17.5 mmol) of 7-benzenesulphonylamino-5,6,7,8-tetrahydro-1-hydroxy-naphthalene and 2.76 g (20 mmol) of ground K₂CO₃ are stirred in 100 ml of analytical grade dimethylformamide, 3.35 g (20 mmol) of ethyl bromoacetate are added dropwise at room temperature, the reaction mixture is subsequently stirred at room temperature for 1 hour and filtered and the mother liquor is concentrated in vacuo.

Yield: 6.6 g (97% of theory)

Rf value: K₆₀ film 0.45 (mobile phase toluene: acetone 4:1)

Example 53
7-Benzenesulphonylamino-5,6,7,8-tetrahydronaphth-1-yl-oxyacetic acid

3.89 g (10 mmol) of ethyl 7-benzenesulphonylamino-5,6,7,8-tetrahydronaphth-1-yl-oxyacetate and 840 mg (15 mmol) of KOH are stirred in 50 ml of C₂H₅OH and 20 ml of H₂O at room temperature for 20 hours. The solvent is stripped off, the residue is partitioned between H₂O and CH₂Cl₂, the mixture is brought to pH 4.5 with 10% strength HCl and extracted twice with CH₂Cl₂, the organic phases are dried over MgSO₄ and concentrated in vacuo, the residue is triturated with ether and the crystals are filtered off with suction and Le A 24 505

- 27 -
dried.
Yield: 1.8 g (49.7% of theory)
Melting point: 205°C

Example 54
5 6-Benzene sulphonylamino-5,6,7,8-tetrahydro-naphth-1-yl-
oxyacetic acid

10 mmol of 6-amino-5,6,7,8-tetrahydro-naphth-1-
yl-oxyacetic acid and 20 mmol of benzenesulphonyl chloride are warmed at 80°C in 40 ml of 10% strength NaOH

for 2 hours. The mixture is then acidified with concentrated HCl and the milky suspension is extracted by shaking twice with ethyl acetate. The combined ethyl acetate phases are rapidly extracted by shaking with 10% strength NaOH (product precipitates out of the ethyl acetate), the NaOH phase is acidified with concentrated HCl and extracted by shaking twice with ethyl acetate and the extract is dried over Na₂SO₄ and evaporated. The residue is boiled up in ethyl acetate and the mixture is filtered. The product crystallizes out after 2-3 hours in a refrigerator.

Yield: 63% of theory ¹H-NMR (NaOD): δ = 4.55 (s, 2H), melting point: 175°C

The following compounds were prepared analogously:

Example 55
6-(4-Chlorobenzenesulphonylamino)-5,6,7,8-tetrahydro-
naphth-1-yl-oxyacetic acid

Yield: 67% of theory; melting point: 248°C

Example 56
6-Benzene sulphonylamino-5,6,7,8-tetrahydro-naphth-2-yl-
oxyacetic acid

Yield: 54% of theory ¹H-NMR (NaOD): δ = 4.5 (s, 2H)

Example 57
5-(4-Chlorobenzenesulphonylamino)-5,6,7,8-tetrahydro-
naphth-2-yl-oxyacetic acid

10 mmol of 5-(4-chlorobenzenesulphonylamino)-
5,6,7,8-tetrahydro-naphth-2-yl-oxyacetamide are heated under reflux in 12 ml of 2N KOH and 40 ml of MeOH for 6 Le A 24 505
hours. The methanol is stripped off, 30 ml of 1N KOH are added and the mixture is extracted by shaking twice with CH₂Cl₂. The H₂O phase is brought to pH 2 with concentrated HCl and the precipitate is filtered off and dried thoroughly.
Yield: 71% of theory
¹H-NMR (d₆-DMSO): δ = 4.6 (s, 2H)
The following compounds are prepared analogously:

Example 58

5-(4-Chlorobenzenesulphonylamino)-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetic acid
Yield: 66% of theory; melting point: 210°C (ethyl acetate/petroleum ether)

Example 59

5-(4-Fluorobenzenesulphonylamino)-5,6,7,8-tetrahydronaphth-1-yl-oxyacetic acid
Yield: 68% of theory; melting point: 211°C

Example 60

5-Benzoylamino-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetic acid

50 mmol of methyl 5-benzoylamino-5,6,7,8-tetrahydro-naphth-1-yl-oxyacetate are stirred in 60 ml of 1N NaOH and 120 ml of MeOH at room temperature for 6 hours. The methanol is stripped off, the NaOH solution is extracted by shaking with ethyl acetate and the extract is then acidified with 10% strength HCl solution. The acid solution is extracted by shaking 3 times with ethyl acetate or tetrahydrofuran, the extract is dried over Na₂SO₄ and evaporated and the residue is dried under a high vacuum.
Yield: 94% of theory; IR: 1745 cm⁻¹ (CO₂H)

Further examples which were prepared in an analogous manner are summarized in Table 3:
Table 3

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Substitution positions</th>
<th>Radical R</th>
<th>Yield % (in % of theory)</th>
<th>Wave number of the carbonyl band in the IR spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OCH₂CO₂H</td>
<td>NH-CO-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>5</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>62</td>
<td>1</td>
<td>5</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>5</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>5</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Example No.</td>
<td>Substitution positions</td>
<td>Radical R</td>
<td>Yield % (in % of theory)</td>
<td>Wave number of the amide band in the IR spectrum in the case of oils</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>65</td>
<td>-OCH$_2$CO$_2$H</td>
<td></td>
<td>96</td>
<td>1745 cm$^{-1}$</td>
</tr>
<tr>
<td>66</td>
<td>-OCH$_2$CO$_2$H</td>
<td></td>
<td>94</td>
<td>1740 cm$^{-1}$</td>
</tr>
<tr>
<td>67</td>
<td>-OCH$_2$CO$_2$H</td>
<td></td>
<td>89</td>
<td>1730 cm$^{-1}$</td>
</tr>
<tr>
<td>68</td>
<td>-OCH$_2$CO$_2$H</td>
<td></td>
<td>95</td>
<td>1725 cm$^{-1}$</td>
</tr>
<tr>
<td>69</td>
<td>-OCH$_2$CO$_2$H</td>
<td></td>
<td>95</td>
<td>1725 cm$^{-1}$</td>
</tr>
<tr>
<td>70</td>
<td>-OCH$_2$CO$_2$H</td>
<td></td>
<td>89</td>
<td>1725 cm$^{-1}$</td>
</tr>
</tbody>
</table>
The Claims defining the invention are as follows:

1. Amino-5,6,7,8-tetrahydro-2-naphthaloxycetic acids of the general formula (I)

\[
\begin{align*}
\text{NHR}^1 \\
\text{OCH}_2\text{COR}^2
\end{align*}
\]

(I)

in which

\[\text{R}^1 \text{ represents } \text{C}-\text{R}^3 \text{ or } \text{SO}_2\text{R}^4\]

wherein

\[\text{R}^3 \text{ represents aryl, substituted aryl, heteroaryl, OH}
\]

aralkyl or the group \(\text{CH}-\text{aryl}\) and

wherein

\[\text{R}^4 \text{ represents } \text{aryl or substituted aryl, and}
\]

\[\text{R}^2 \text{ represents } \text{OH, alkoxy, phenoxy, benzoxy or NR}^5\text{R}^6,
\]

wherein

\[\text{R}^5 \text{ and R}^6 \text{ are identical or different and each represents hydrogen or alkyl, or one of the radicals R}^5 \text{ or R}^6 \text{ represents benzyl, and physiologically acceptable salts thereof with mono- or divalent cations.}
\]

2. Compounds of the general formula (I) according to Claim 1,

in which

\[\text{R}^1 \text{ represents } \text{CO}-\text{R}^3 \text{ or } \text{SO}_2\text{R}^4,\]

wherein

\[\text{R}^3 \text{ represents phenyl or naphthyl which optionally carries 1, 2 or 3 identical or different substituents from the group comprising halogen, cyano, trifluoromethyl and alkyl with 1 to 4 C atoms, or represents pyridine, quinoline or aralkyl with 7 to 12 carbon atoms, the aralkyl radical.}
optionally being substituted in the alkyl part by halogen or hydroxyl and optionally being substituted in the aryl part by halogen or alkyl with 1 to 4 carbon atoms, or represents the group CHO-aryl,

wherein

aryl denotes phenyl or naphthyl which is optionally substituted by 1, 2 or 3 radicals from the group comprising halogen, cyano, trifluoromethyl and alkyl with 1 to 4 carbon atoms,

R^4 represents phenyl or naphthyl, which optionally carry 1, 2 or 3 identical or different substituents from the group comprising halogen, cyano, trifluoromethyl and alkyl with 1 to 4 C atoms, and

R^2 represents hydroxyl, phenoxy, benzoxy or alkoxy with 1 to 4 carbon atoms, or represents the group NR^5R^6,

wherein

R^5 and R^6 are identical or different and each represent hydrogen or alkyl with 1 to 4 carbon atoms, or

one of the radicals R^5 or R^6 represents benzyl, and physiologically acceptable salts thereof with mono- or divalent cations.

3. Compounds of the general formula (I) according to Claim 1, in which halogen represents fluorine or chlorine in the definitions of the substituents.

4. Process for the preparation of amino-5,6,7,8-tetrahydronaphthyl-oxyacetic acids of the general formula (I)
R represents C-R or SOR

wherein

R represents aryl, substituted aryl, heteroaryl, OH, aralkyl or the group CH-aryl and

wherein

R represents aryl or substituted aryl, and

R represents OH, alkoxy, phenoxy, benzoxy or NR5R6,

wherein

R5 and R6 are identical or different and each represents hydrogen or alkyl, or one of the radicals R or R represents benzyl, characterized in that amines of the general formula (II)
in which

\(R^1 \) has the abovementioned meaning,

are reacted with acetic acid derivatives of the general formula (IV)

\[
X - \text{CH}_2 - \text{COR}^2
\]

(IV)

in which

\(X \) denotes a leaving group, such as chlorine, bromine, iodine, \(\text{SO}_2 \text{CH}_3 \) or tosyl and

\(R^2 \) has the abovementioned meaning,

in the presence of acid-binding agents, in the case where

\(R^2 \neq \text{OH} \), hydrolysis to give the free carboxylic acid

being carried out, if appropriate.

5. Process for the preparation of compounds of the general formula (II) according to Claim 4, characterized in that hydroxytetralins of the general formula (VI)

\[
\begin{array}{c}
\text{O} \\
\text{R}_7 \\
\text{OH} \\
\end{array}
\]

(VI)

in which

\(R_7 \) denotes a keto group,

are alkylated with acetic acid derivatives of the general formula (IV)

\[
X - \text{CH}_2 - \text{COR}^2
\]

(IV)

in which

\(X \) and \(R^2 \) have the meaning given in Claim 4,

and the resulting tetralones of the general formula (V)

\[
\begin{array}{c}
\text{O} \\
\text{R}_7 \\
\text{OCH}_2 \text{COR}^2 \\
\end{array}
\]

(V)
in which

R^2 and R^7 have the abovementioned meaning,
are subjected to reductive amination, or acetamides of
the general formula (VII)

(VII)

in which

R^2 has the abovementioned meaning,
are subjected to acid or basic hydrolysis.

6. Compounds of the general formula (II)

(II)

in which

R^2 has the meaning given in Claim 1.

7. Use of compounds of the general formula (II)
according to Claim 6 for the preparation of compounds of
the general formula (I) according to Claim 1.

8. Medicaments containing a compound of the general
formula (I) according to Claim 1.

9. Process for the preparation of medicaments,
characterized in that compounds of the general formula
(I) according to Claim 1 are converted into a suitable
administration form, if appropriate using inert auxili-
aries and excipients.

10. Use of compounds of the general formula (I)
according to Claim 1 in combating diseases.

11. Use of compounds of the general formula (I)
according to Claim 1 in the preparation of medicaments
for combating thrombo-embolic, ischaemic and arterio-
sclerotic diseases.
12. A compound according to claim 1 or 6, or a process according to claim 4, 5, 7, 9 or 11, or a medicament according to claim 8, or a method according to claim 10 substantially as herein described with reference to any one of the foregoing examples thereof.

13. Any novel compound (including starting and/or intermediate compounds) set forth herein, or any novel process or method or step thereof set forth herein, the said compound, process, method or step being substantially as herein described.

DATED this 14th day of July, 1987.

BAYER AKTIENGESELLSCHAFT
By Its Patent Attorneys,
ARTHUR S. CAVE & CO.