CHUGAI SEIYAKU KABUSHIKI KAISHA

No. 5-1, 5-chome, Ukima, Kita-ku, Tokyo, JAPAN

hereby apply for the grant of a (c) Standard Patent for an invention entitled

\(N\)-SUBSTITUTED UREIDOBENZYL PENICILLANIC ACID AND PROCESS FOR PRODUCING THE SAME.

which is described in the accompanying (g) complete specification.

(Note: The following applies only to Convention applications)

Details of basic application(s)

<table>
<thead>
<tr>
<th>Application No.</th>
<th>Country</th>
<th>Filing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>106775/1980</td>
<td>Japan</td>
<td>5 August 1980</td>
</tr>
</tbody>
</table>

Address for Service:

PHILLIPS ORMONDE AND FITZPATRICK
Patent and Trade Mark Attorneys
367 Collins Street
Melbourne, Australia 3000

Dated (o) 24th July, 1981

PHILLIPS, ORMONDE & FITZPATRICK
Attorneys for:
CHUGAI SEIYAKU KABUSHIKI KAISHA

PHILLIPS ORMONDE AND FITZPATRICK
Patent and Trade Mark Attorneys
367 Collins Street
Melbourne, Australia
In support of the (a) Convention application made by
(b) CHUGAI SEIYAKU KABUSHIKI KAISHA

73549/81

(hereinafter called “applicant(s)” for a patent (c)

for an

α-SUBSTITUTED UREIDOBENZYL PENICILLANIC ACID AND PROCESS
FOR PRODUCING THE SAME

I/We (c)

Teiichiro SAKAMOTO, Deputy President of CHUGAI SEIYAKU KABUSHIKI KAISHA of No. 5-1, 5-chome, Ukima, Kita-ku, Tokyo, Japan
do solemnly and sincerely declare as follows:

1. I am/We are the applicant(s).
 (or, in the case of an application by a body corporate)

1. I am/We are authorized to make this declaration on behalf of the applicant(s).

2. I am/We are the actual inventor(s) of the invention.
 (or, where the applicant(s) is/are not the actual inventor(s))

2. (g) Nobuhiro OI, Bunya AOKI, Teizo SHINOZAKI, Kanji MORO, Toshio KUROKI, Isao MATSUNAGA, Takao NOTO, Toshiyuki NEBASHI, Yusuke HARADA, Hisao ENDO, Takao KIMURA, Kana KOJIMA, Masahiko MATSUMOTO, Hiroshi OKAZAKI, Haruki OGAWA and Minoru SHINDO, residing at 6-24-15, Hon-cho, Hoyz-shi, Tokyo, Japan; 4-4-17, 5-307, Nishihara-cho, Tanashi-shi, Tokyo, Japan; 1-16-5, Tsubakiyama, Hasuda-shi, Saitama-ken, Japan; 2-11-9, Kurihara, Kuki-shi, Saitama-ken, Japan; 2-23, Sakuradai, Nerima-ku, Tokyo, Japan; 3140-20, Nishiohizumi-cho, Nerima-ku, Tokyo, Japan; 2200, 3-4-204, Yamazaki-cho, Machida-shi, Tokyo, Japan; 687-63, Oaza Yoshida, Kawagoe-shi, Saitama-ken, Japan; 7-31-1-507, Toshima, Kita-ku, Tokyo, Japan; 1157-13, Ondamachi, Midori-ku, Tokyo, Japan; 3-1-8-504, Ohtsugaoka, Shonan-cho, Higashikatsushika-gun, Chiba-ken, Japan; 2-20-9, Inogashira, Mitaka-shi, Tokyo, Japan; 3-6-3, Kajigaya, Takatsu-ku, Kawasaki-shi, Kanagawa-ken, Japan; 1061-40, Minamikirishima-cho, Saitama-ken, Japan; 4-14-17, Hishitsusujioka, Chofu-shi, Tokyo, Japan and 4-10-7, Nukui, Nerima-ku, Tokyo, Japan, respectively

is/are the actual inventor(s) of the invention and the facts upon which the applicant(s) is/are entitled to make the application arc as follows:

(a) Applicant is the assignee of the invention from the actual inventors.

(Note: Paragraphs 3 and 4 apply only to Convention applications)

3. The basic application(s) for patent or similar protection on which the application is based is/are identified by country, filing date, and basic applicant(s) as follows:

(b) Japan on August 5, 1980 by CHUGAI SEIYAKU KABUSHIKI KAISHA

4. The basic application(s) referred to in paragraph 3 hereof was/were the first application(s) made in a Convention country in respect of the invention the subject of the application.

Declared at (a) Tokyo, Japan

Dated (b) August 10, 1981

[m] CHUGAI SEIYAKU KABUSHIKI KAISHA

Teiichiro Sakamoto
Deputy President
Compounds are useful as antibacterial agents.

Claim 1. A compound of the formula (I):

\[
\text{HO} \quad \text{CO-N-CONH-CH-CONH} \quad \text{CH}_3 \quad \text{COOH}
\]

(wherein \(R^1 \) is a hydrogen atom or a hydroxyl group, \(X \) is a lower alkyl group of \(C_{n-5} \), \(Y \) is a substituent for \(X \) and represents the group \((OR^2)_m\), \(-CN\), \(-COOR^3\), \(-R^4 \) or \(R^5 \), \(R^2 \) is a hydrogen atom, a lower alkyl group of \(C_{1-4} \), a lower alkanoyl group of \(C_{2-4} \), or a lower alkyl group of \(C_{2-4} \) substituted by a hydroxyl group or a lower alkoxy group of \(C_{1-4} \), \(R^3 \) is a hydrogen atom or a lower alkyl group of \(C_{1-4} \), \(R^4 \) is a hydrogen atom, nitro group or a lower alkoxy group of \(C_{1-4} \), \(R^5 \) is a hydroxyl group or the group \(-COOR^3\) (wherein \(R^3 \) has the same meaning as defined above), \(n \) is 2 when \(Y \) is the group \((OR^2)_m\) and is 1 when \(Y \) is one of the other groups, \(m \) is 1, 2 or 3, \(l \) is 0, 1, 2 or 3) or a pharmaceutically acceptable salt thereof.
AUSTRALIA

Patents Act

COMPLETE SPECIFICATION

(ORIGINAL)

Application Number: 7354981

Lodged: 7/3/1977

Complete Specification Lodged:

Accepted: 7/19/1977

Published: 10/26/1977

Priority: 7/3/1973

Related Art:

APPLICANT'S REF.: File: FP/C-1-574

Name(s) of Applicant(s): CHUGAI SEIYAKU KABUSHIKI KAISHA

Address(es) or Applicant(s): No. 5-1, 5-chome, Ukima,
Kita-ku, Tokyo, JAPAN

Actual Inventor(s): Nobuhiro OI
Yuri AOKI
Teizo SHINOZAKI
Kanji MORO
Toshio KUROKI
Isao MATSUMAGA

Takao NOTO
Toshiyuki NEBASHI
Yusuke HARADA
Hisao ENDO
Takao KIMURA
Kana KOJIMA
Masahiko MATSUMOTO
Hiroshi OKAZAKI
Haruki OCHIAI
Minoru SHINDO

Address for Service is: PHILLIPS, ORMONDE & FITZPATRICK
Patent and Trade Mark Attorneys
367, Collins Street
Melbourne, Australia, 3000

Complete Specification for the invention entitled:

α-SUBSTITUTED UREIDOBFENZYLPECILLANIC ACID AND
PROCESS FOR PRODUCING THE SAME.

The following statement is a full description of this invention, including the best method of performing it known to applicant(s):

P 10/11/77
α-SUBSTITUTED UREDOBENZYLPENICILLANIC ACID AND
PROCESS FOR PRODUCING THE SAME

This invention relates to a compound of the formula (I):

\[
\text{HO} \quad \text{CO-N CONH-CH CONH} \quad \text{X} \quad \text{Y} \quad \text{R}^1 \quad \text{CH}_3 \quad \text{CH}_3 \quad \text{COOH}
\]

(wherein \(R^1\) is a hydrogen atom or a hydroxyl group, \(X\) is a lower alkyl group of \(C_{n-5}\), \(Y\) is a substituent for \(X\) and represents the group \((OR^2)_m\), -CN, -COOR, \(R^4\) or \((R^5)_l\), \(R^2\) is a hydrogen atom, a lower alkyl group of \(C_{1-4}\), a lower alkanoyl group of \(C_{2-4}\), or a lower alkyl group of \(C_{2-4}\) substituted by a hydroxyl group or a lower alkoxy group of \(C_{1-4}\), \(R^3\) is a hydrogen atom or a lower alkyl group of \(C_{1-4}\), \(R^4\) is a hydrogen atom, nitro group or a lower alkoxy group of \(C_{1-4}\), \(R^5\) is a hydroxyl group or the group -COOR (wherein \(R^3\) has the same meaning as defined above), \(n\) is 2 when \(Y\) is the group \((OR^2)_m\) and is 1 when \(Y\) is one of the other groups, \(m\) is 1, 2 or 3, \(l\) is 0, 1, 2 or 3) or a pharmaceutically acceptable salt thereof, and a process for producing the same.

British Patents No. 1,250,611, No. 1,301,961, No. 1,426,199 as well as USP 3,931,405, 3,933,795, 3,936,442, 3,939,149, 3,959,258, 3,974,140, 3,978,223, 3,980,792, 4,016,282, West German Patent Offenlegungsschrift No. 2,311,328, Belgium Patent 877,295 and Japanese Patent Public Disclosure No. 3532/78 disclose a variety of α-benzoylureido-α-benzylpenicillins, but none of these prior art references make mention of
compounds wherein the benzoyl group is substituted by a hydroxyl group.

British Patent No. 1,260,882 discloses α-benzoylureido-α-benzylpenicillins which has a 4-chloro-3-hydroxybenzoyl group, 3-chloro-4-hydroxybenzoyl group, or m-hydroxybenzoyl group as the benzoyl group. However, it makes no mention of a benzoyl group having two hydroxyl groups.

West German Patent Offenlegungsschrift No. 1,904,851 discloses a variety of α-benzoylureido-α-benzylpenicillin.

Although it discloses a compound wherein the benzoyl group is substituted by a hydroxyl group, that is, D-α-(N-p-hydroxybenzoylureido) benzylpenicillin, no mention is made of a compound wherein the benzoyl group is substituted by two hydroxyl groups.

The inventors of this application filed patent applications in many countries with respect to an invention directed to a group of pericillanic acid derivatives having 3- and 4-hydroxy groups on the phenyl nucleus of the α-benzoylureido moiety, and the invention has been published in some countries, for example, as U.S. patent 4,229,348 and West German Patent Offenlegungsschrift No. 2,921,348. However, the substituent of these derivatives corresponding to the group of -X-Y of the compound of this invention is a hydrogen atom or a lower alkyl group and, therefore, the derivatives clearly differ in chemical structure from those of this invention.

The α-substituted ureidobenzylpenicillins of the formula (I) are undocumented novel compounds. They have high antibacterial activity against Gram-positive and Gram-negative
bacteria, particularly those of the genus Pseudomonas, and they have higher in vivo activity than any of the known compounds. Therefore, the compounds of the formula (I) and pharmaceutically acceptable salts thereof are useful as an antibacterial agent.

One object of this invention is to provide an effective antibacterial compound of the formula (I) and a pharmaceutically acceptable salt thereof.

The lower alkyl group by which X in the formula (I) is meant, the lower alkyl group, lower alkanoyl group and lower alkoxy group included in the definition of R², the lower alkyl group by which R³ is meant, and the lower alkoxy group by which R⁴ is meant are a saturated hydrocarbon group which may be linear or branched. The number of carbon atoms in the lower alkyl group by which X is meant is selected from the range of 2 to 5 when the substituent Y means \((OR²)^m \), and is selected from the range of 1 to 5 when Y means one of the other groups, namely, the group \(-CN, -COOR³, -O-\overline{\smile}_{\overline{\smile}}^R^4 \) or \((R⁵)_\overline{\smile} \). The substituent Y in the lower alkyl group by which X is meant may be positioned on any of the 1- to 5-position or 2- to 5-position carbon atoms.

Since the α-substituted ureidobenzylpenicillins of this invention have a carboxyl group at 3-position and optionally at Y, they are capable of forming salts with various basic materials on the carboxyl group, and among the so formed salts, those with pharmaceutically acceptable basic materials are important. Examples of such salts include inorganic base salts, for example, salts of alkali metals (e.g. sodium and
potassium) and salts of alkaline earth metals (e.g. calcium), as well as organic base salts for example procaine and dibenzyl-ethylenediamine salts. These salts may be produced by the conventional technique, namely, by treating the carboxyl group with an equivalent molar amount of the basic materials described above.

Because of the presence of an asymmetric carbon atom in the 6-acetamide group, the compounds of this invention include optical isomers, i.e. DL-, D- and L-isomers, and in some cases, even a diastereomer, and these isomers are included in the definition of the α-substituted ureidobenzylpenicillins of this invention.

The compounds of the formula (I), or the α-substituted ureidobenzylpenicillins, can be produced by various methods. According to one method, α-substituted ureidophenylacetic acid of the formula (II):

\[
\begin{align*}
\text{R}^6 & \text{CON-CONH-CH-COOH} \\
\text{R}^6 & \text{X} \\
\text{Y} & \text{Y}^1 \\
\text{R}^1 & \text{R}^1 \\
\end{align*}
\]

(wherein \(\text{R}^1 \) is a hydrogen atom, hydroxyl group or a protected hydroxyl group, \(\text{R}^6 \) is a hydroxyl group or a protected hydroxyl group, \(\text{Y}^1 \) is either the same as \(\text{Y} \) in the formula (I) or \(\text{Y} \) containing a protected hydroxyl or carboxyl group, and \(\text{X} \) is the same as \(\text{X} \) in the formula (I)) or a reactive derivative thereof is reacted with 6-aminopenicillanic acid of the formula (III):
(wherein \(R^7 \) is a hydrogen atom or a protecting group) or a reactive derivative thereof, and the protecting group, if any, in \(R^{11}, R^6, R^7 \) or \(Y^1 \) is removed.

The protecting group of the hydroxyl group contained in \(R^{11}, R^6 \) or \(Y^1 \) of the formula (II) may be any group that can be easily removed under mild conditions. Examples are an acyl group such as a formyl group, acetyl group, propionyl group, butyryl group, or chloroacetyl group; an aralkyl group such as a benzyl group, benzhydryl group or trityl group; a substituted aralkyl group having a substituent such as methoxy group or nitro group on the aryl nucleus of these aralkyl groups; a monovalent silyl group such as a trimethylsilyl group, triethyldimethoxysilyl group, diethyldimethoxysilyl group, trimethoxysilyl group, or triethoxysilyl group; a divalent silyl group such as a dimethylsilyl group in case of protecting adjacent two hydroxyl groups; and a group conventionally used to protect the hydroxyl group such as a t-butyl group, methoxymethyl group, phenacyl group or a tetrahydropyranyl group.

Examples of the protecting group for carboxyl group included in the definition of \(Y^1 \) are a halogenated lower alkyl group such as a chloromethyl group, 2,2,2-trichloroethyl group or 2,2,2-trifluoroethyl group; an aralkyl group such as a benzyl group, benzhydryl group or trityl group; and a substituted aralkyl group having a substituent such as a...
methoxy group or nitro group on the aryl nucleus of these aralkyl groups.

The reactive derivative of the α-substituted ureido-phenylacetic acid of the formula (II) is such that the carboxyl group to be involved in the reaction is activated, and examples are an acid anhydride, active ester, active amide and acid halide. More specifically, the reactive derivative is illustrated by a mixed anhydride with an aliphatic carboxylic acid such as pivalic acid, trichloroacetic acid or pentanoic acid; a mixed anhydride with alkyl carbonic acid; a mixed anhydride with phenylphosphoric acid; a mixed anhydride with aromatic carboxylic acid; an ester such as 1-hydroxybenzotriazolyl ester, 2,4-dinitrophenylester, N-hydroxysuccinimidyl ester, N-hydroxyphthalimidyl ester, pentachlorophenyl ester, phenylazophenyl ester, cyanomethyl ester and methoxymethyl ester; and an acid amide with imidazole, triazole or tetrazole.

When R7 in the formula (III) means a protecting group, particularly, an ester-forming group, the amide-bond forming reaction may be performed efficiently by using a carbodiimide (e.g. N,N'-dicyclopentylcarbodiimide, N,N'-diethylcarbodiimide, N-cyclohexyl-N'-morpholinoethylcarbodiimide or N,N'-diisopropylcarbodiimide) as a condensing agent for the substituted ureidophenylacetic acid that is not converted to a reactive derivative but which remains a carboxylic acid.

When all of the hydroxyl and carboxyl groups contained in R11, R6 and Y1 of the formula (II) are protected, the α-substituted ureidophenyl acetic acid may be subjected to the reaction in the form of a halide. The acetic acid can be
converted to a chloride by either treating it with a conventionally used halogenating agent such as oxalyl chloride or thionyl chloride, or by treating the same with a Vilsmeyer's reagent obtained by reaction between dimethylformamide or N-methylformanilide and thionyl chloride, phosphorous oxychloride, trichloromethyl chloroformate or phosgene.

When R^7 of the 6-aminopenicillanic acid of the formula (III) is a protecting group, examples of such protecting group include a salt-forming organic or inorganic base such as alkali metal, alkaline earth metal, triethylamine, N-methylpiperadine and pyridine; a halogenated lower alkyl group such as a chloromethyl group, 2,2,2-trichloroethyl group or 2,2,2-trifluoroethyl group; an aralkyl group such as a benzyl group, benzhydryl group or trityl group; a substituted aralkyl group having a substituent such as methoxy or nitro group on the aryl nucleus of these aralkyl groups; and a silyl group such as a trimethylsilyl group, triethyisilyl group, dimethylmethoxysilyl group, diethylmethoxysilyl group, trimethoxy-silyl group or triphenylsilyl group.

The reactive derivative of the 6-aminopenicillanic acid means a derivative wherein the 6-amino group is activated. The 6-amino group may be activated by, for example, introducing a silyl group such as trimethylsilyl group into the 6-amino group.

The amide-bond forming reaction is preferably performed in an inert organic solvent such as acetone, tetrahydrofuran, dimethylformamide, pyridine, acetonitrile, dioxane, chloroform, dichloromethane, dichloroethane or ethyl acetate. A hydro-
philic inert organic solvent may be used as a mixture with water. The reaction is usually performed under cooling or at room temperature but it may be performed under heating. To be more specific, the reaction temperature is usually selected from the range of -30 to 30°C, and preferably it is selected from the range of 0 to 10°C when the α-substituted ureidophenylacetic acid is used in the form of an active ester or active amide, and from the range of -15 to -5°C when it is used in the form of an acid anhydride, and from the range of -20 to -10°C when it is used in the form of an acid halide. The reaction period varies with the reaction temperature, the compound subjected to the reaction, the solvent used, etc., but it is properly selected from the range of 0.5 to 48 hours, preferably from 1 to 24 hours.

After completion of the amide-bond forming reaction, any protecting group present in the reaction product it removed. If the protecting group for the hydroxyl group in \(R_{11} \), \(R_6 \) and \(Y_1 \) is an acyl group, it can be removed by treatment with an inorganic or organic base. Examples of the inorganic base include a hydroxide of alkali metal such as sodium hydroxide or potassium hydroxide; a hydroxide of alkaline earth metal such as magnesium hydroxide or calcium hydroxide; a carbonate salt of alkali metal such as sodium carbonate or potassium carbonate; a carbonate salt of alkaline earth metal such as magnesium carbonate or calcium carbonate; a bicarbonate salt of alkali metal such as sodium hydrogen carbonate or potassium hydrogen carbonate; a phosphate salt of alkaline earth metal such as calcium phosphate; a hydrogenphosphate salt of alkali
metal such as disodium hydrogenphosphate or dipotassium hydrogenphosphate; and ammonia. Examples of the organic base include an acetate salt of alkali metal; a trialkylamine such as trimethylamine or triethylamine; and an alcoholamine such as diethylaminoethanol or triethanolamine. The removal of the acryl group with these base is performed in water or organic solvents containing an alcoholic hydroxyl group (e.g. methanol, ethanol or ethanolamine) or a mixture thereof. Preferred examples are methanolic ammonia and a triethanolamine/triethanolamine/dimethylformamide mixture.

If the protecting group is an aralkyl or a substituted aralkyl group, it may be removed by catalytic reduction, for example, by catalytic reduction using palladium-carbon. If the protecting group is a t-butyl group, methoxymethyl group, phenacyl group, tetrahydropyranyl group or silyl group, it can be removed with an inorganic acid such as hydrochloric acid.

The protecting group for the carboxyl group included in the definition of Y^1 in the formula (II) and the protecting group by which R^7 in the formula (III) is meant can be removed by reduction with a metal and acid, say, zinc-acetic acid if the protecting group is a halogenated lower alkyl group, and by catalytic reduction with, say, palladium-carbon, or by using organic or inorganic acid such as formic acid, trifluoroacetic acid, benzensulfonic acid, p-toluenesulfonic acid, hydrochloric acid or a cationic ion-exchange resin or a Lewis acid such as aluminum chloride if the protecting group is an aralkyl group or a substituted aralkyl group. If the protecting group is a silyl group, it can be removed by either the
acids mentioned above or an alcohol such as methanol. If R^7 is a salt-forming base, it can be removed by treatment with an acid.

The object compound can be isolated from the reaction mixture and the isolate can be purified easily by any of the conventional techniques, for example, by extraction with an organic solvent such as dichloromethane, chloroform, tetrahydrofuran or ethyl acetate, or by various techniques of chromatography using activated carbon, silica gel, ion exchange resin, dextran crosslinked polymer or a high porous polymer of styrene-divinylbenzene or acrylic ester.

The α-substituted ureidophenylacetic acid of the formula (II) is a novel compound, and it can be produced by, for example, reacting a corresponding α-aminophenylacetic acid with a corresponding N-substituted benzoyl-N-substituted alkylcarbamic acid halide having a protected hydroxyl group and/or carboxyl group, and by removing the protecting group if necessary. For the applicable protecting groups and the means to remove them, see the foregoing description of the protecting groups for R^6, R^{11} and Y^1.

According to another method of producing the compounds of the formula (I), or the α-substituted ureidobenzylpenicillins, an N-benzoylcarbamic acid halide of the formula (IV):

$$\begin{align*}
R^8 & \quad \text{CON-CO-Z} \\
R^8 & \quad \text{(IV)}
\end{align*}$$
(wherein \(R^8 \) is a protected hydroxyl group, \(Y^2 \) corresponds to \(Y \) and may contain a protected hydroxyl or carboxyl group, and \(Z \) is a halogen atom is reacted with an \(\alpha \)-aminobenzylpenicillin of the formula (V).

\[
\text{H}_2\text{O} \quad \text{CH-CONH}
\]

\[
\begin{array}{c}
\text{O} \\
\text{CH}_3 \\
\text{CH}_3 \\
\text{COOR}^7 \\
\end{array}
\]

(v)

(wherein \(R^{11} \) and \(R^7 \) have the same meaning as defined above) or a reactive derivative thereof, and any protecting group that is present in the resulting product is removed.

The protecting groups in \(R^8 \) and \(Y^2 \) in the formula (IV) have the same meanings as defined for the protecting groups in \(R^6 \) and \(Y^1 \). The reactive derivative of the \(\alpha \)-aminobenzylpenicillins of the formula (V) is such that the \(\alpha \)-amino group is activated by introducing in it a silyl group such as trimethylsilyl group.

The reaction is preferably performed in an inert organic solvent such as acetone, tetrahydrofuran, acetonitrile, dimethylformamide, pyridine, dioxane, chloroform, dichloromethane, dichloroethane or ethyl acetate. A hydrophilic inert organic solvent may be used as a mixture with water. The reaction is usually performed under cooling or heating, preferably at a temperature between 0 and 30°C. The reaction period is usually selected from the range of 1 to 48 hours, preferably from 1 to 10 hours. The protecting group present in the reaction product is removed by the same technique as described for removal of the protecting groups from \(R^{11}, R^6 \),
The object compound can be isolated from the reaction mixture and the isolate can be purified by the same method as described for the first method of producing the α-substituted ureidobenzylpenicillin.

The N-benzoylcarbamic acid halide of the formula (IV) is a novel compound and it can be produced by treating a corresponding benzamide or its derivative with a carbonylating agent such as phosgene, trichloromethyl chloroformate in an organic solvent such as dichloromethane, tetrahydrofuran or ethyl acetate.

An isomer of the α-substituted ureidobenzylpenicillins of the formula (I) can be produced efficiently by the same method as described above except that an α-substituted ureidophenylacetic acid (formula (II)) and α-aminobenzylpenicillin (formula (V)) having the desired optical activity, or an N-benzoylcarbamic acid halide (formula (IV)) having optical activity and capable of forming the desired diastereomer. The desired optically active substance can be obtained by using a conventional optical resolution technique.

The object compound of this invention, or the compound of the formula (I), and pharmaceutically acceptable salts thereof can be formulated into pharmaceutical preparations adapted to various administration routes in a manner similar to that used for other penicillin compounds. Therefore, one aspect of this invention is various pharmaceutical compositions adapted for human beings or animals. These compositions are provided by a conventional method using a necessary pharmaceutical carrier, diluent and/or excipient. An injection
may be prepared by formulating the compound into a suspension, solution or emulsion in an oily or aqueous vehicle. A suppository can also be made of the compound by using a conventional suppository base such as coconut oil or other glycerides.

The content of the active compound varies depending on the administration route, but usually it is above 0.1%, say between 5 and 99%, and preferably between 10 and 60%. The amount of administration for human beings is usually in the range of 100 to 3000 mg per day for an adult. The daily administration in an amount of 500 to 2000 mg is preferred for an adult though the exact amount varies with the route and frequency of administration, body weight, age, and the conditions of the patient.

To demonstrate the pharmaceutical advantages of the end compounds of this invention, the minimum inhibitory concentration (MIC, \(\mu g/ml \)) of some of the compounds and their efficacy (as indicated by \(ED_{50} \)) in treating mice infected with microorganisms of the genus Pseudomonas were compared with those of two compounds known to be effective against the microorganisms of the genus Pseudomonas, i.e. \(6[D(-)\alpha-(4-ethyl-2,3-dioxo-l-piperazinylcarbonylamino)phenylacetamide]penicillanic acid \) (commonly referred to as piperacillin) and \(6[D(-)\alpha-{3-(3,4-di-hydroxybenzoyl)-3-methyl-l-ureido}\alpha-phenylacetamido]penicillanic acid \) (described in West German Patent Offenlegungsschrift No. 2,921,324 and hereunder referred to as compound Z).

1. MIC measurement

(1) Method
In vitro antibacterial activity was measured by the agar plate doubling dilution method described below. A test culture incubated overnight in a heart infusion broth was diluted by 100 to 1000 fold and one spoonful of the culture was inoculated on heart infusion agars (HI agar) containing various concentrations of a specific compound and the inoculates were incubated at 37°C for 20 hours.

(2) Results

The results of measurement of the MIC of the test compounds are shown in Table I wherein the compounds are identified by the symbols (A, B, ... L) that are keyed to those used in the Examples.
<table>
<thead>
<tr>
<th>Microorganism</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis PCI-219</td>
<td>0.2</td>
<td>0.78</td>
<td>0.4</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Staphylococcus aureus 209P</td>
<td>0.78</td>
<td>1.56</td>
<td>1.56</td>
<td>0.4</td>
<td>0.78</td>
<td>0.78</td>
<td>0.4</td>
</tr>
<tr>
<td>Escherichia coli NIHJ</td>
<td>0.4</td>
<td>6.25</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.78</td>
</tr>
<tr>
<td>Shigella flexneri 2b</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Salmonella paratyphi A</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Klebsiella pneumoniae 15c</td>
<td>0.4</td>
<td>3.12</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Proteus mirabilis 9'</td>
<td>1.56</td>
<td>3.12</td>
<td>0.78</td>
<td>1.56</td>
<td>0.2</td>
<td>0.78</td>
<td>0.4</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-272</td>
<td>0.4</td>
<td>0.78</td>
<td>0.4</td>
<td>0.2</td>
<td>0.78</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-169</td>
<td>0.78</td>
<td>3.12</td>
<td>0.4</td>
<td>0.78</td>
<td>3.12</td>
<td>0.78</td>
<td>0.4</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-169-CM-222</td>
<td>3.12</td>
<td>25</td>
<td>0.78</td>
<td>1.56</td>
<td>3.12</td>
<td>1.56</td>
<td>0.4</td>
</tr>
<tr>
<td>Microorganism</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Bacillus subtilis PCI-219</td>
<td>0.2</td>
<td>0.78</td>
<td>0.4</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Staphylococcus aureus 209P</td>
<td>0.78</td>
<td>1.56</td>
<td>1.56</td>
<td>0.4</td>
<td>0.78</td>
<td>0.78</td>
<td>0.4</td>
</tr>
<tr>
<td>Escherichia coli NIHJ</td>
<td>0.4</td>
<td>6.25</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.78</td>
</tr>
<tr>
<td>Shigella flexneri 2b</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
</tr>
<tr>
<td>Salmonella paratyphi A</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
</tr>
<tr>
<td>Klebsiella pneumoniae 15c</td>
<td>0.4</td>
<td>3.12</td>
<td>0.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Proteus mirabilis 9'</td>
<td>1.56</td>
<td>3.12</td>
<td>0.78</td>
<td>1.56</td>
<td>0.2</td>
<td>0.78</td>
<td>0.4</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-272</td>
<td>0.4</td>
<td>0.78</td>
<td>0.4</td>
<td>0.2</td>
<td>0.78</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-169</td>
<td>0.78</td>
<td>3.12</td>
<td>0.4</td>
<td>0.78</td>
<td>3.12</td>
<td>0.78</td>
<td>0.4</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-169-CM-222</td>
<td>3.12</td>
<td>25</td>
<td>0.78</td>
<td>1.56</td>
<td>3.12</td>
<td>1.56</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Test compound</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>Z</th>
<th>pipera-cillin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microorganism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus subtilis PCI-219</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Staphylococcus aureus 209P</td>
<td>0.4</td>
<td>0.78</td>
<td>0.78</td>
<td>1.56</td>
<td>0.78</td>
<td>0.4</td>
<td>≤0.2</td>
</tr>
<tr>
<td>Escherichia coli NIHJ</td>
<td>0.4</td>
<td>3.12</td>
<td>0.4</td>
<td>0.78</td>
<td>0.78</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Shigella flexneri 2b</td>
<td>≤0.1</td>
<td>0.2</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>0.78</td>
</tr>
<tr>
<td>Salmonella paratyphi A</td>
<td>≤0.1</td>
<td>0.4</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Klebsiella pneumoniae 15c</td>
<td>≤0.1</td>
<td>3.12</td>
<td>≤0.1</td>
<td>0.4</td>
<td>0.4</td>
<td>≤0.1</td>
<td>3.12</td>
</tr>
<tr>
<td>Proteus mirabilis 9'</td>
<td>1.56</td>
<td>12.5</td>
<td>0.78</td>
<td>0.78</td>
<td>1.56</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-272</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>12.5</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-169</td>
<td>3.12</td>
<td>0.4</td>
<td>3.12</td>
<td>3.12</td>
<td>0.78</td>
<td>0.2</td>
<td>12.5</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-169-CM-222</td>
<td>3.12</td>
<td>1.56</td>
<td>0.78</td>
<td>6.25</td>
<td>3.12</td>
<td>0.4</td>
<td>25</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>Z</th>
<th>piperacillin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis PCI-219</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Staphylococcus aureus 209P</td>
<td>0.4</td>
<td>0.78</td>
<td>0.78</td>
<td>1.56</td>
<td>0.78</td>
<td>0.4</td>
<td><0.2</td>
</tr>
<tr>
<td>Escherichia coli NIHJ</td>
<td>0.4</td>
<td>3.12</td>
<td>0.4</td>
<td>0.78</td>
<td>0.78</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Shigella flexneri 2b</td>
<td>≤0.1</td>
<td>0.2</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>0.78</td>
</tr>
<tr>
<td>Salmonella paratyphi A</td>
<td>≤0.1</td>
<td>0.4</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>≤0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Klebsiella pneumoniae 15c</td>
<td>≤0.1</td>
<td>3.12</td>
<td>≤0.1</td>
<td>0.4</td>
<td>0.4</td>
<td>≤0.1</td>
<td>3.12</td>
</tr>
<tr>
<td>Proteus mirabilis 9</td>
<td>1.56</td>
<td>12.5</td>
<td>0.78</td>
<td>0.78</td>
<td>1.56</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-272</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>12.5</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-169</td>
<td>3.12</td>
<td>0.4</td>
<td>3.12</td>
<td>3.12</td>
<td>0.78</td>
<td>0.2</td>
<td>12.5</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa J-169-CM-222</td>
<td>3.12</td>
<td>1.56</td>
<td>0.78</td>
<td>6.25</td>
<td>3.12</td>
<td>0.4</td>
<td>25</td>
</tr>
</tbody>
</table>
2. EC\textsubscript{50} measurement

(1) Method

Five-week-old ddY male mice (five constituting one group) weighing 21 to 25 g on average were administered intraperitoneally with 5% mucin suspensions of test microorganisms that were incubated in brain heart infusion agar plates overnight at 37°C. One hour and three hours after the inoculation, the mice were injected subcutaneously with various concentrations of the test compounds. The ED\textsubscript{50} of each test compound was determined from the number of the mice that were still alive five days after injection of the respective doses.

(2) Results

The test results are shown in Table II.

Table II: ED\textsubscript{50}(SC) mg/head

<table>
<thead>
<tr>
<th>Test microorganism</th>
<th>Counts of cells inoculated</th>
<th>Test compound</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>1×10^4</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>J-272</td>
<td></td>
<td>0.61</td>
<td>1.20</td>
<td>1.48</td>
<td>1.52</td>
</tr>
</tbody>
</table>

continued

Test compound				pipera-		
---------------	---	---	---	cillin	---	---
G	2.20	2.00	1.71	1.18	2.30	10.0
I						
The data in Tables I and II shows that the end compounds of this invention have lower in vitro activity than the controls but that they have higher in vivo activity against at least certain strains of the genus Pseudomonas.

The method for producing the end compounds of this invention is now described more specifically by reference to the following examples which are given here for illustrative purposes only and are by no means intended to limit the scope of the invention.

Example 1

1. To 70 ml of a suspension of dried dichloromethane containing 5.0 g of N-(3-hydroxypropyl)-3,4-dihydroxybenzamide and 12.9 g of trimethylsilyl chloride, 40 ml of a solution of dried dichloromethane containing 11.5 g of triethylamine was added dropwise under cooling with ice water. The resulting mixture was refluxed for 40 minutes in a nitrogen atmosphere. Under cooling, 2.8 ml of trichloromethyl chloroformate was added dropwise at a temperature between -10 and -5°C. The temperature of the mixture was elevated gradually and after stirring at between 0 and 5°C for 2 hours, excess phosgene and solvent were distilled off under vacuum. Dry dichloromethane (80 ml) was added to the residue and the insoluble portion was filtered off by gravity and subjected to a reaction which is described hereunder.

2. Trimethylsilyl chloride (7.8 g) was added dropwise at between 5 and 10°C to 100 ml of a solution of dried dichloromethane containing 10.8 g of anhydrous ampicillin and 7.1 g of triethylamine. After stirring the mixture at the same
temperature for one hour, the dichloromethan solution prepared
in (1) above was added dropwise at between 0 and 5°C under
stirring. Following stirring at between 5 and 10°C for one
hour, the mixture was evaporated to dryness at room tempera-
ture under vacuum, and a mixture of 300 ml of ethyl acetate
and 100 ml of cold 1N-hydrochloric acid was added to the
residue and the organic layer was separated. The organic
layer was then washed with 300 ml of cold saturated brine,
and extracted twice with 300 ml of a cold saturated aqueous
solution of sodium hydrogencarbonate. The separated aqueous
layer was washed with 100 ml of ethyl acetate. The aqueous
layer was mixed with 250 ml of ethyl acetate, treated with
cold 6N-hydrochloric acid to have its pH adjusted to about
1.5, and saturated with sodium chloride. The organic layer
was then separated, washed with 100 ml of cold saturated
brine, dried with anhydrous magnesium sulfate and the solvent
was distilled off under vacuum. The residue was subjected to
column chromatography on activated carbon (for chromatograph
grade) and eluted with ethyl acetate. The eluates were combined
and concentrated under vacuum until the volume was about 30 ml.
The concentrate was added to 300 ml of n-hexane under stirring
to give 5.0 g of 6[D(-)-α-{3-(3,4-dihydroxybenzoyl)-3-(3-
hydroxypropyl)-1-ureido}-α-phenylacetamido]penicillanic acid
(hereunder referred to as compound (A)) as a white powder.

IR ν \text{KBr} \text{ max (cm}^{-1}) : 3700 - 2300, 1775, 1675, 1600, 1515
NMR (DMSO-d$_6$, 60 MHz) δ(ppm): 1.41 (3H, s), 1.55 (3H, s), 1.4 - 2.0 (2H, br), 3.36 (2H, t, $J = 6$Hz), 3.75 (2H, br), 4.20 (1H, s), 5.3 - 5.8 (3H, m), 6.7 - 7.5 (8H, m), 9.2 (2H, br)

UV $\lambda_{\text{EtOH}}^\text{max}$ nm(ε): 209 (3.1 x 10^4), 295 (6.3 x 10^3), 225 (shoulder), 271 (6.1 x 10^3)

Ferric chloride color reaction: positive (dark green)

(a) By repeating the procedure of Example 1(1) except that 5.0 g of N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by 5.0 g of N-(5-hydroxypentyl)-3,4-dihydroxybenzamide, 5.2 g of 6[D(-)-a-{3-(3,4-dihydroxybenzoyl)-3-(5-hydroxypentyl)-1-ureido}-a-phenylacetamido]penicillanic acid (hereunder referred to as compound (C) was obtained as a white powder.

IR $\nu_{\text{KBr}}^\text{max}$ (cm$^{-1}$): 3700 - 2200, 1770, 1675, 1660, 1515

NMR (DMSO-d$_6$, 60 MHz) δ(ppm): 1.3 (6H, brs), 1.41 (3H, s), 1.55 (3H, s), 3.1 - 3.9 (4H, m), 4.21 (1H, s), 5.3 - 5.8 (3H, m), 6.7 - 7.5 (8H, m), 9.14 (1H, d, $J = 7$ Hz), 9.24 (1H, d, $J = 7$ Hz)

UV $\lambda_{\text{EtOH}}^\text{max}$ nm(ε): 207 (2.2 x 10^4), 225 (shoulder), 272 (4.0 x 10^3), 293 (4.3 x 10^3)

Ferric chloride color reaction: positive (dark green)

(b) By repeating the procedure of Example 1(1) except that 5.0 g of N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by 5.0 g of N-[2-(2-hydroxyethoxy)ethyl]-3,4-dihydroxybenzamide, 5.2 g of 6[D(-)-a-{3-(3,4-dihydroxybenzoyl)-3-{2-(2-hydroxyethoxy)ethyl}-1-ureido}-a-phenylacetamido]penicillanic acid (hereunder referred to as compound (D)) was obtained as a white powder.
IR $v_{\text{max}}^{\text{KBr}}$ (cm$^{-1}$): 3700 – 2200, 1775, 1675, 1600, 1515, 1050

NMR (DMSO-d$_6$, 60 MHz) δ(ppm): 1.41 (3H, s), 1.55 (3H, s)
3.3 – 4.1 (8H, m), 4.20 (1H, s), 5.3 – 5.8 (3H, m),
6.7 – 7.6 (8H, m), 9.08 (1H, d, J = 7 Hz),
9.20 (1H, d. J = 7 Hz)

UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm(ε): 207 (2.8 x 104), 224 (shoulder),
270 (4.6 x 103), 295 (4.6 x 103)

Ferric chloride color reaction: positive (dark green)

(c) By repeating the procedure of Example 1(1) except that
5.0 g of N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was
replaced by 5.0 g of N-(2-methoxyethyl)-3,4-dihydroxybenzamide,
and that trimethylsilyl chloride and triethylamine were used
in amounts of 9.7 g and 8.6 g, respectively, 7.0 g of 6(D(-)–
15
α-(3-′,4-dihydroxybenzoyl)-3-(2-methoxyethyl)-1-ureido)-α-
phenylacetamide]penicillanic acid (hereunder referred to as
compound (E)) was obtained as a white powder.

IR $v_{\text{max}}^{\text{KBr}}$ (cm$^{-1}$). 3700 – 2300, 1775, 1675, 1600, 1515, 1055

NMR (DMSO-d$_6$, 60 MHz) δ(ppm): 1.41 (3H, s), 1.56
(3H, s), 3.18 (3H, s), 3.40 (2H, br), 3.85 (2H, br),
4.20 (1H, s), 5.3 – 5.8 (3H, m), 6.7 – 7.6 (8H, m),
9.11 (1H, d, J = 7 Hz), 9.15 (1H, d. J = 7 Hz)

UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm(ε): 208 (2.8 x 104), 224 (shoulder),
272 (5.9 x 103), 295 (-9 x 103)

Ferric chloride color reaction: positive (dark green)

(d) By repeating the procedure of Example 1(1) except that
5.0 g of N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was
replaced by 4.0 g of N-(2-cyanoethyl)-3,4-dihydroxybenzamide
and that trimethylsilyl chloride and triethylamine were used
in amounts of 7.9 g and 7.1 g, 4.0 g of 6-[D(-)-α-{3-(3,4-
dihydroxybenzoyl)-3-(2-cyanoethyl)-1-ureido}-α-phenylacetamido]-
penicillanic acid (hereunder referred to as compound (F)) was
obtained as a white powder.

IR ν_{KBr}^{max} (cm\(^{-1}\)) : 3700 - 2300, 2200, 1770, 1685, 1600,
1510

NMR (DMSO-\textsubscript{d}\textsubscript{6}, 60 MHz) δ (ppm): 1.41 (3H, s), 1.55 (3H, s),
2.78 (2H, br), 3.98 (2H, br), 4.20 (1H, s),
5.3 - 5.8 (3H, m), 6.7 - 7.5 (8H, m), 9.09 (1H, d,
J = 7 Hz), 9.14 (1H, d, J = 7 Hz)

UV \lambda_{\text{EtOH}}^{max} nm(ε): 207 (2.8 \times 104), 225 (shoulder),
276 (5.1 \times 103), 295 (5.5 \times 103)

Ferric chloride color reaction: positive (dark green)

(e) By repeating the procedure of Example 1(1) except that
5.0 g of N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was
replaced by 3.5 g of N-ethoxycarbonylmethyl-3,4-dihydroxybenzamide
and that trimethylsilyl chloride and triethylamine were used
in amounts of 5.9 g and 5.3 g, respectively, 4.0 g of 6[D(-)-
α-{3-(3,4-dihydroxybenzoyl)-3-ethoxycarbonylmethyl-1-ureido}-
α-phenylacetamido]penicillanic acid (hereunder referred to as
compound (G)) was obtained as a white powder.

IR ν_{KBr}^{max} (cm\(^{-1}\)) : 3700 - 2200, 1770, 1730, 1685, 1600,
1515
NMR (DMSO-\textit{d}_6, 60 MHz) \(\delta (\text{ppm}): 1.0 - 1.4 \ (3\text{H, m}), \)
1.40 (3\text{H, s}), 1.55 (3\text{H, s}), 3.8 - 4.6 (4\text{H, m}),
4.20 (1\text{H, s}), 5.3 - 5.9 (3\text{H, m}), 6.7 - 7.6 (8\text{H, m}),
9.22 (1\text{H, d, } J = 7\text{ Hz}), 9.47 (1\text{H, d. } J = 7\text{ Hz})

UV \(\lambda_{\text{max}}^{\text{EtOH}} \text{nm(\varepsilon): } 208 \ (2.5 \times 10^4), 226 \text{ (shoulder),} \)
285 (4.8 \times 10^3), 294 (4.8 \times 10^3)

Ferric chloride color reaction: positive (dark green)

(f) By repeating the procedure of Example 1(1) except that
5.0 g of \(\text{N-(3-hydroxypropyl)-3,4-dihydroxybenzamide} \) was
replaced by 5.0 g of \(\text{N-benzyl-3,4-dihydroxybenzamide} \) and that
trimethylsilyl chloride and triethylamine were used in amounts
of 8.4 g and 7.5 g, respectively, 4.0 g of 6-[D(-)]\(\alpha \)-[(3-(3,4-
dihydroxybenzoyl)-3-benzyl-1-ureido]-\(\alpha \)-phenylacetamido]-
penicillanic acid (hereunder referred to as compound (H))
was obtained as a white powder.

IR \(\nu_{\text{max}}^{\text{KBr}} \text{ (cm}^{-1}\text{): } 3700 - 2200, 1770, 1680, 1600, 1510 \)

NMR (DMSO-\textit{d}_6, 60 MHz) \(\delta (\text{ppm}): 1.42 \ (3\text{H, s}), 1 \ 55 \ (3\text{H, s}), \)
4.21 (1\text{H, s}), 4.8 - 5.1 (2\text{H, brs}), 5.3 - 5.8 (3\text{H, m}),
6.7 - 7.6 (13\text{H, m}), 9.16 (1\text{H, d, } J = 7\text{Hz}),
9.24 (1\text{H, d, } J = 7\text{Hz})

UV \(\lambda_{\text{max}}^{\text{EtOH}} \text{nm(\varepsilon): } 208 \ (3.2 \times 10^4), 272 \ (4.7 \times 10^3), \)
295 (5.3 \times 10^3)

Ferric chloride color reaction: positive (dark green)

(g) By repeating the procedure of Example 1(1) except that
5.0 g of \(\text{N-(3-hydroxypropyl)-3,4-dihydroxybenzamide} \) was
replaced by 2.7 g of \(\text{N-cyanomethyl-3,4-dihydroxybenzamide} \)
and that trimethylsilyl chloride and triethylamine were used
in amounts of 5.8 g and 5.2 g, respectively, 2.0 g of 6[D(-)-
α-{3-(3,4-dihydroxybenzoyl)-3-cyanomethyl-1-ureido}-α-
phenylacetamido]penicillanic acid (hereunder referred to as
compound (I)) was obtained as a white powder.

IR ν\textsubscript{KBr} (cm-1): 3700 - 2300, 1770, 1760, 1500, 1515

NMR (DMSO-d\textsubscript{6}, 60 MHz) δ(ppm): 1.41 (3H, s), 1.56 (3H, s),
4.20 (1H, s), 4.6 (2H, brs), 5.3 - 5.8 (3H, m),
6.8 - 7.6 (8H, m), 9.21 (2H, d, J = 7 Hz)

UV λ\textsubscript{\text{EtOH}}\text{max} nm(ε): 207 (3.3 x 104), 226 (shoulder),
278 (6.9 x 103), 296 (7.4 x 103)

Ferric chloride color reaction: positive (dark green)

(h) By repeating the procedure of Example 1(1) except that
5.0 g of N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was
replaced by 5.0 g of N-furfuryl-3,4-dihydroxybenzamide and
that trimethylsilyl chloride and triethylamine were used in
amounts of 9.2 g and 8.2 g, 5.5 g of 6[D(-)-α-{3-(3,4-
dihydroxybenzoyl)-3-furfuryl-1-ureido}-α-phenylacetamido]-
penicillanic acid (hereunder referred to as compound (J))
was obtained as a white powder.

IR ν\textsubscript{KBr} (cm-1): 3700 - 2200, 1770, 1680, 1600, 1510

NMR (DMSO-d\textsubscript{6}, 60 MHz) δ(ppm): 1.41 (3H, s), 1.55 (3H, s),
4.20 (1H, s), 4.8 - 5.1 (2H, brs), 5.3 - 5.8 (3H, m),
6.1 - 7.6 (11H, m), 9.18 (2H, d, J = 7 Hz)

UV λ\textsubscript{\text{EtOH}}\text{max} nm(ε): 206 (3.4 x 104), 272 (5.3 x 103),
294 (5.8 x 103)

Ferric chloride color reaction: positive (dark green)
By repeating the procedure of Example 1(1) except that 5.0 g of N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by 5.0 g of N-(3-acetoxypropyl)-3,4-dihydroxybenzamide and that trimethylsilyl chloride and triethylamine were used in amounts of 8.1 g and 7.2 g, respectively, 3.5 g of 6-[D(-)-α-{3-(3,4-dihydroxybenzoyl)-3-(3-acetoxypropyl)-1-ureido}-α-phenylacetamido]penicillanic acid (hereunder referred to as compound (K)) was obtained as a white powder.

IR νKBr (cm⁻¹): 3700 - 2300, 1775, 1730, 1680, 1600, 1510

NMR (DMSO-d₆, 60 MHz) δ (ppm): 1.41 (3H, s), 1.5 - 2.1 (2H, br), 1.55 (3H, s), 1.88 (3H, s), 3.6 - 4.1 (4H, m), 4.21 (1H, s), 5.3 - 5.8 (3H, m), 6.8 - 7.6 (8H, m) 9.17 (1H, d, J = 7 Hz), 9.30 (1H, d, J = 7 Hz)

UV λₘₐₓ EtOH nm (ε): 205 (2.8 x 10⁴), 223 (shoulder), 272 (4.0 x 10³), 293 (4.4 x 10³)

Ferric chloride color reaction: positive (dark green)

Example 2

(1) To a mixture of 30 ml of dried dichloromethane and 30 ml of tetrahydrofuran that had suspended therein 5.0 g of N-(2-hydroxyethyl)-3,4-dihydroxybenzamide and 13.8 g of trimethylsilyl chloride, 30 ml of a solution of dried dichloromethane containing 12.3 g of triethylamine was added dropwise under cooling with ice water. The resulting mixture was refluxed for 40 minutes in a nitrogen atmosphere. Under cooling, 3.0 ml of trichloromethyl chloroformate was added dropwise at a
temperature between -10 and -5°C. The temperature of the mixture was elevated gradually and after stirring at between 0 and 5°C for 2 hours, excess phosgene and solvent were distilled off under vacuum. Dried dichloromethane (80 ml) was added to the residue and the insoluble portion was filtered off by gravity and subjected to a reaction which is described below.

(2) Trimethylsilyl chloride (8.4 g) was added dropwise at between 5 and 10°C to 110 ml of a solution of dried dichloromethane containing 11.6 g of anhydrous ampicillin and 7.6 g of triethylamine. After stirring the mixture at the same temperature for one hour, the dichloromethane solution prepared in (1) above was added dropwise at between 0 and 5°C under stirring. Following stirring at between 5 and 10°C for one hour, about 100 ml of cold saturated brine was added to the mixture and the organic layer was separated. The organic layer was then washed with 300 ml of cold saturated brine, and extracted twice with 300 ml of a cold saturated aqueous solution of sodium hydrogencarbonate. The separated aqueous layer was washed with 100 ml of ethyl acetate. The aqueous layer was mixed with 250 ml of ethyl acetate, treated with cold 6N-hydrochloric acid to have its pH adjusted to about 1.5, and saturated with sodium chloride. The organic layer was then separated, washed with 100 ml of cold saturated brine, dried with anhydrous magnesium sulfate and the solvent was distilled off under vacuum. The residue was subjected to column chromatography on Sephadex LH-20 (the trade name for a dextran crosslinked polymer produced by Fine Chemicals Corp.)
and eluted with acetone. The eluate was concentrated under vacuum until the volume was about 30 ml. The concentrate was treated with 300 ml of diethyl ether to give 3.0 g of 6[D(-)-\(\alpha\)-{3-(3,4-dihydroxybenzoyl)-3-(2-hydroxyethyl)-1-ureido}-\(\alpha\)-phenylacetamide]penicillanic acid (hereunder referred to as compound (B)) as a white powder.

\[
\begin{align*}
\text{IR } & \nu_{\text{max}}^{\text{KBr}} \text{ (cm}^{-1}) : 3700 - 2200, 1770, 1675, 1600, 1510 \\
\text{NMR (DMSO-d}_6, 60 \text{ MHz}) & \delta(\text{ppm}) : 1.41 (3\text{H, s}), 1.56 (3\text{H, s}), \\
& 3.3 - 4.1 (4\text{H, m}), 4.21 (1\text{H, s}), 5.3 - 5.9 (3\text{H, m}), \\
& 6.7 - 7.6 (8\text{H, m}), 9.21 (1\text{H, d, } J = 7 \text{ Hz}), 9.33 \\
& (1\text{H, d, } J = 7 \text{ Hz}). \\
\text{UV } & \lambda_{\text{max}}^{\text{EtOH}} \text{ nm}(\varepsilon) : 204 (3.3 \times 10^4), 221 (\text{shoulder}), \\
& 266 (5.4 \times 10^3), 295 (5.6 \times 10^3) \\
\text{Ferric chloride color reaction: positive (dark green)}
\end{align*}
\]

Example 3

To 70 ml of dried dichloromethane having 12.9 g of amoxicillin trihydrate suspended therein, 12.9 g of N,O-bis(trimethylsilyl) acetamide was added at between 10 and 15°C, and stirred to form a homogeneous mixture. To the mixture, a dichloromethane solution as prepared in Example 1(1) was added dropwise at between 5 and 10°C. The mixture was stirred at the same temperature for one hour, and after evaporating the mixture to dryness at room temperature under vacuum, a mixture of 250 ml of ethyl acetate, 50 ml of tetrahydrofuran and 100 ml of cold 1N-hydrochloric acid was added to the residue, and the organic layer was separated. The organic layer was then washed with 300 ml of cold saturated
brine, and extracted twice with 300 ml of a cold saturated aqueous solution of sodium hydrogencarbonate. To the extract, a mixture of 250 ml of ethyl acetate and 50 ml of tetrahydrofuran was added, and its pH was adjusted to about 1.5 with cold 6N-hydrochloric acid. The aqueous layer was saturated with sodium chloride and the organic layer was separated. The organic layer was washed with 100 ml of cold saturated brine, dried with anhydrous magnesium sulfate, and the solvent was distilled off under vacuum. The residue was subjected to column chromatography on activated carbon (for chromatography) and eluted with acetone. The eluates were combined and concentrated under vacuum until the volume was about 30 ml. The concentrate was added to 300 ml of ethyl ether under stirring to give 4.5 g of \(\text{6D(-)-\text{-a-}\{3-(3,4-dihydroxybenzoyl)-3-(3-hydroxypropyl)-1-ureido\-a-\{4-hydroxy-phenyl\}acetamido\}penicillinanic acid (hereunder referred to as compound (L)) as a white powder.}

\[
\begin{align*}
\text{IR } & \nu^\text{KBr} \text{ (cm}^{-1}) : 3700 - 2300, 1770, 1680, 1610, 1515 \\
\text{NMR (DMSO-}\delta^6, 60 \text{ MHz}\) } & \delta (\text{ppm}) : 1.42 (3\text{H, s}), 1.56 (3\text{H, s}), 1.3 - 1.9 (2\text{H, br}), 3.1 - 4.0 (4\text{H, m}), 4.20 (1\text{H, s}), 5.3 - 5.7 (3\text{H, m}), 6.5 - 7.3 (7\text{H, m}), 9.0 (2\text{H, br}) \\
\text{iUV } & \lambda^\text{EtOH}_{\text{max}} \text{ nm(\varepsilon)} : 206 (2.8 \times 10^4), 224 (2.2 \times 10^4), 276 (6.6 \times 10^3), 283 (6.4 \times 10^3), 295 (5.4 \times 10^3) \\
\text{Ferric chloride color reaction: positive (dark green)}
\end{align*}
\]

\underline{Example 4}

(1) To 100 ml of a suspension of dried dichloromethane containing 4.7 g of D(-)-phenylglycine and 7.8 g of trimethyl-
silyl chloride, 7.1 g of triethylamine was added at between 5 and 10°C. Then 1 ml of N,O-bis(trimethylsilyl)acetamide was added dropwise at the same temperature, and following stirring for one hour at room temperature, a dichloromethane solution as prepared in Example 1(1) was added dropwise under stirring at between 5 and 10°C. The mixture was stirred at the same temperature for one hour, and after it was evaporated to dryness at room temperature under vacuum, a mixture of 300 ml of ethyl acetate and 100 ml of cold 1N-hydrochloric acid was added to the residue, and the organic layer was separated. The organic layer was washed with 300 ml of cold saturated brine and extracted twice with 300 ml of a cold saturated aqueous solution of sodium hydrogencarbonate. To the extract, 250 ml of ethyl acetate was added, and its pH was adjusted to about 1.5 with cold 6N-hydrochloric acid. The aqueous layer was saturated with sodium chloride and the organic layer was separated. The organic layer was washed with 100 ml of cold saturated brine, dried with anhydrous magnesium sulfate and the solvent was distilled off under vacuum. The residue was crystallized with acetone-chloroform and recrystallized from the same solvent system to give 5.5 g of D(-)-α-{3-(3,4-dihydroxybenzoyl)-3-(3-hydroxypropyl)-l-ureido}phenylacetic acid as colorless crystals.

m.p. (with decomposition): 139 - 141°C

Elemental analysis:

Calculated for C_{19}H_{20}N_{2}O_{7}\cdot H_{2}O :
C, 56.16; H, 5.46; N, 6.89 (%)
Found : C, 56.30; H, 5.40; N, 6.87 (%)
IR ν_{KBr} (cm$^{-1}$): 3540, 3500, 1690, 1670, 1595, 1520

NMR (DMSO-d_6, 60 MHz) δ(ppm): 1.3 - 2.0 (2H, m), 3.35 (2H, t, J = 6 Hz), 3.73 (2H, t, J = 6.5 Hz), 5.22 (1H, d, J = 7 Hz), 6.7 - 7.5 (8H, m), 9.19 (1H, d, J = 7 Hz)

Ferric chloride color reaction: positive (dark green)

(2) To 50 ml of a suspension of dried dichloromethane containing 4.0 g of the phenylacetic acid obtained in (1) above and 4.9 g of trimethylsilyl chloride, 4.2 g of triethylamine was added dropwise at between 5 and 10°C. By stirring the mixture at between 15 and 20°C for an hour, a solution of trimethylsilylated phenylacetic acid was obtained, and it was subjected to a reaction which is described below.

(3) To 30 ml of a dried dichloromethane solution containing 1.2 g of trichloromethyl chloroformate, 0.8 g of dimethylformamide was added at -20°C, and following stirring at between 0 and 5°C for one hour, the dichloromethane solution prepared in (2) above was added at -30°C, and the mixture was stirred at between -10 and -15°C for 1.5 hours. Subsequently, a solution prepared by dissolving 5.5 g of N,O-bistrimethylsilyl acetamide in 50 ml of a dried dichloromethane suspension containing 2.9 g of 6-aminopenicillanic acid was added dropwise to the mixture at between -10 and -15°C and stirred at the same temperature for one hour.

By performing extraction and purification as in Example 1(2), 4.0 g of compound A was obtained. The compound had the same IR, NMR and UV data as that of the compound obtained in Example 1.
(a) By repeating the procedure of Example 4(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by N-(2-hydroxyethyl)-3,4-dihydroxybenzamide, D(-)-α-\{3-(3,4-dihydroxybenzoyl)-3-(2-hydroxyethyl)-l-ureido\}phenylacetic acid was produced, and the acetic acid was subjected to the same procedure as in Example 4(2) to give compound (B). The compound had the same IR, NMR, and UV data as that of the compound obtained in Example 2.

(b) By repeating the procedure of Example 4(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by N-(5-hydroxypentyl)-3,4-dihydroxybenzamide, D(-)-α-\{3-(3,4-dihydroxybenzoyl)-3-(5-hydroxypentyl)-l-ureido\}phenylacetic acid was produced, and the acetic acid was subjected to the same procedure as in Example 4(2) to give compound (C). The compound had the same IR, NMR and UV data as that of the compound obtained in Example 1(a).

(c) By repeating the procedure of Example 4(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by N-{2-(2-hydroxyethoxy)ethyl}-3,4-dihydroxybenzamide, D(-)-α-[3-(3,4-dihydroxybenzoyl)-3-{2-(2-hydroxyethoxy)ethyl}l-ureido]phenylacetic acid was produced, and the acetic acid was subjected to the same procedure as in Example 4(2) to give compound (D). The compound had the same IR, NMR and UV data as that of the compound obtained in Example 1(b).

(d) By repeating the procedure of Example 4(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by N-(2-methoxyethyl)-3,4-dihydroxybenzamide and that the amount of trimethyloxysilyl chloride and triethylamine was decreased by
one molar equivalent, D(-)-α-{3-(3,4-dihydroxybenzoyl)-3-(2-methoxyethyl)-1-ureido}phenylacetic acid was produced, and the acetic acid was subjected to the same procedure as in Example 4(2) to give compound (E). The compound had the same IR, NMR and UV data as that of the compound obtained in Example 1(c).

By repeating the procedure of Example 4(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by N-(2-cyanoethyl)-3,4-dihydroxybenzamide and that the amount of trimethylsilyl chloride and triethylamine was decreased by one molar equivalent, D(-)-α-{3-(3,4-dihydroxybenzoyl)-3-(2-cyanoethyl)-1-ureido}phenylacetic acid was produced, and the acetic acid was subjected to the same procedure as in Example 4(2) to give compound (F). The compound had the same IR, NMR and UV data as that of the compound obtained in Example 1(d).

By repeating the procedure of Example 4(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by N-ethoxycarbonylmethyl-3,4-dihydroxybenzamide and that the amount of trimethylsilyl chloride and triethylamine was decreased by one molar equivalent, D(-)-α-{3-(3,4-dihydroxybenzoyl)-3-ethoxycarbonylmethyl-1-ureido}phenylacetic acid was produced, and the acetic acid was subjected to the same procedure as in Example 4(2) to give compound (G). The compound had the same IR, NMR and UV data as that of the compound obtained in Example 1(e).

By repeating the procedure of Example 4(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by
33

N-benzyl-3,4-dihydroxybenzamide and that the amount of trimethylsilylchloride and triethylamine was decreased by one molar equivalent, D(-)-α-{3-(3,4-dihydroxybenzoyl)-3-benzyl-1-ureido}phenylacetic acid was produced, and the acetic acid was subjected to the same procedure as in Example 4(2) to give compound (H). The compound had the same IR, NMR and UV data as that of the compound obtained in Example 1(f).

(h) By repeating the procedure of Example 4(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by N-cyanomethyl-3,4-dihydroxybenzamide and that the amount of trimethylsilylchloride and triethylamine was decreased by one molar equivalent, D(-)-α-{3-(3,4-dihydroxybenzoyl)-3-cyanomethyl-1-ureido}phenylacetic acid was produced. The acetic acid was subjected to the same procedure as in Example 4(2) to give compound (I). The compound had the same IR, NMR and UV data as that of the compound obtained in Example 1(g).

(i) By repeating the procedure of Example 4(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by N-furfuryl-3,4-dihydroxybenzamide and that the amount of trimethylsilyl chloride and triethylamine was decreased by one molar equivalent, D(-)-α-{3-(3,4-dihydroxybenzoyl)-3-furfuryl-1-ureido}phenylacetic acid was produced, and the acetic acid was subjected to the same procedure as in Example 4(2) to give compound (J). The compound had the same IR, NMR and UV as that of the compound obtained in Example 1(h).

(j) By repeating the procedure of Example 4(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by N-(3-acetoxypropyl)-3,4-dihydroxybenzamide and that the
amount of trimethylsilyl chloride and triethylamine was decreased by one molar equivalent, D(-)-α-[3-(3,4-dihydroxybenzoyl)-3-(3-acetoxypropyl)-1-ureido]phenylacetic acid was produced, and the acetic acid was subjected to the same procedure as in Example 4(2) to give compound (K). The compound had the same IR, NMR and UV data as that of the compound obtained in Example 1(i).

(k) By repeating the procedure of Example 4(1) except that D(-)-phenylglycine was replaced by D(-)-4-hydroxyphenylglycine, D(-)-α-[3-(3,4-dihydroxybenzoyl)-3-(3-hydroxypropyl)-1-ureido]-4-hydroxyphenylacetic acid was produced, and the acetic acid was subjected to the same procedure as in Example 4(2) to give compound (L). The compound had the same IR, NMR and UV data as that of the compound obtained in Example 3.

Example 5

(1) A suspension of 5.0 g of N-(3-hydroxypropyl)-3,4-dihydroxybenzamide in 150 ml of tetrahydrofuran was prepared. To the suspension, 7.64 g of dimethyl dichlorosilane was added, and 11.98 g of triethylamine was added dropwise slowly to the mixture under stirring at room temperature. The mixture was heated for 60 minutes under reflux, cooled to 10°C, mixed with 1.6 ml of trichloromethyl chloroformate, and the mixture was stirred at 25°C for 3 hours.

(2) A suspension of 9.5 g of anhydrous ampicillin in 100 ml of ethyl acetate was prepared. To the suspension, 6.5 g of trimethylsilyl chloride was added, and 6.1 g of triethylamine was added dropwise slowly to the mixture under stirring while it was cooled with ice. After the mixture was stirred for
another one hour at between 5 and 10°C, the tetrahydrofuran solution prepared in (1) above was added to the mixture which was then stirred for one to two hours at about 20°C. After completion of the reaction, 200 ml of water was added to the mixture which was stirred thoroughly. The mixture was left to stand to separate the organic layer. The organic layer was washed with cold saturated brine and extracted with 200 ml of a cold saturated aqueous solution of sodium hydrogen-carbonate. The separating aqueous layer was washed with ethyl acetate. Then, 270 ml of ethyl acetate was added to the aqueous layer whose pH was adjusted to about between 1 and 2 with cold 6N-hydrochloric acid. The aqueous layer was saturated with sodium chloride and the organic layer was separated. The organic layer was washed with 100 ml of cold saturated brine three times, dried with anhydrous magnesium sulfate, and concentrated under vacuum. The concentrate was added to 500 ml of n-hexane under stirring to give 11.5 g of a crude compound A as a pale yellow powder. A mixture of 7.0 g of the crude compound A and 0.9 g of sodium hydrogen carbonate was dissolved in 30 ml of cold water, and the solution was subjected to column chromatography on DIAION HP-30 (the trade name for an ion exchange resin produced by Mitsubishi Chemical Industries Limited) and eluted first with water, then with hydrous acetone (acetone conc.: 10 v/v%). The eluates were combined, mixed with 200 ml of ethyl acetate and had the pH adjusted to about 1.5 with cold 1N-hydrochloric acid. The aqueous layer was saturated with sodium chloride and the organic layer was separated. The organic layer was washed
with 100 ml of cold saturated brine, dried with anhydrous magnesium sulfate, and concentrated under vacuum until the volume was about 30 ml. The concentrate was added to 300 ml of n-hexane under stirring to provide 5.0 g of compound (A) as a white powder. The compound had the same IR, NMR and UV data as that of the compound obtained in Example 1.

(a) By repeating the procedure of Example 5(1) except that N-(3-hydroxypropyl)-3,4-dihydroxybenzamide was replaced by N-(2-hydroxyethyl)-3,4-dihydroxybenzamide, compound (B) was obtained. The compound had the same IR, NMR and UV data as that of the compound obtained in Example 2.

(b) To 70 ml of ethyl acetate having 12.9 g of amoxicillin trihydrate suspended therein, 12.9 g of N,O-bis(trimethylsilyl)-acetamide was added at between 10 and 15°C, and stirred to form a homogeneous mixture. To the mixture, a tetrahydrofuran solution as prepared in Example 4(1) was added dropwise. The mixture was stirred at about 20°C for 1 to 2 hours. By subsequently treating the mixture as in Example 5(1), 4.7 g of compound (L) was produced. The compound had the same IR, NMR and UV data as that of the compound obtained in Example 3.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A compound of the formula (I):

\[
\text{HO} \quad \text{CO-N-CNH-CH-CNH} \quad \text{CH}_3 \\
\text{HO} \quad \text{Y} \quad \text{X} \quad \text{R}^1
\]

((wherein \(R^1\) is a hydrogen atom or a hydroxyl group, \(X\) is a lower alkyl group of \(C_{n-5}\), \(Y\) is a substituent for \(X\) and represents the group \((OR^2)_m\), -CN, -COOR\(^3\), \(\text{OR}^4\) or \((R^5)_k\), \(R^2\) is a hydrogen atom, a lower alkyl group of \(C_{1-4}\), a lower alkanoyl group of \(C_{2-4}\), or a lower alkyl group of \(C_{2-4}\) substituted by a hydroxyl group or a lower alkoxy group of \(C_{1-4}\), \(R^3\) is a hydrogen atom or a lower alkyl group of \(C_{1-4}\), \(R^4\) is a hydrogen atom, nitro group or a lower alkoxy group of \(C_{1-4}\), \(R^5\) is a hydroxyl group or the group -COOR\(^3\) (wherein \(R^3\) has the same meaning as defined above), \(n\) is 2 when \(Y\) is the group \((OR^2)_m\) and is 1 when \(Y\) is one of the other groups, \(m\) is 1, 2 or 3, \(k\) is 0, 1, 2 or 3) or a pharmaceutically acceptable salt thereof.

2. A compound according to Claim 1 wherein \(X\) is a lower alkyl group of \(C_{2-5}\), \(Y\) is the group \((OR^2)_m\) and \(R^2\) is a lower alkanoyl group of \(C_{2-4}\), or a pharmaceutically acceptable salt thereof.

3. A compound according to Claim 2 wherein \(X\) is a propyl group or acetyl group and \(m\) is 1, or a pharmaceutically acceptable salt thereof.

4. A compound according to Claim 1 wherein \(X\) is a lower alkyl group of \(C_{n-5}\), \(Y\) is a substituent for \(X\) and represents the group \((OR^2)_m\), -CN, -COOR\(^3\), \(R^4\) or \((R^5)_k\),
R2 is a hydrogen atom, a lower alkyl group of C\textsubscript{1-4}, or a lower alkyl group of C\textsubscript{2-4} substituted by a hydroxyl group or a lower alkoxy group of C\textsubscript{1-4}, R3 is a hydrogen atom or a lower alkyl group of C\textsubscript{1-4}, R4 is a hydrogen atom, nitro group or a lower alkoxy group of C\textsubscript{1-4}, R5 is a hydroxyl group or the group -COOR3 (wherein R3 has the same meaning as defined above), n is 2 when Y is the group (OR2)\textsubscript{m} and is 1 when Y is one of the other groups, m is 1, 2 or 3, l is 0, 1, 2 or 3) or a pharmaceutically acceptable salt thereof.

5. A compound according to Claim 1 wherein X is a lower alkyl group of C\textsubscript{2-3}, Y is the group (OR2)\textsubscript{m}, R2 is a hydrogen atom, a lower alkyl group of C\textsubscript{1-3} or a lower alkyl group of C\textsubscript{2-3} substituted by a hydroxyl group, and m is 1, or a pharmaceutically acceptable salt.

6. A compound according to Claim 5 wherein R2 is a hydrogen atom or a pharmaceutically acceptable salt thereof.

7. An antibacterial agent containing at least one of the compounds or pharmaceutically acceptable salts thereof as described in any of the preceding claims.

8. A process for producing a compound of the formula (I):

\[
\text{HO} \quad \begin{array}{c}
\text{CO-N-CNH-CH-CNH} \\
\text{X} \\
\text{Y} \\
\end{array} \quad \text{S} \quad \text{CH}_3 \\
\text{CH}_3 \\
\text{COOH}
\]

(wherein R1 is a hydrogen atom or a hydroxyl group, X is a lower alkyl group of C\textsubscript{n-5}, Y is a substituent for X and represents the group (OR2)\textsubscript{m}, -CN, -COOR3, \text{R}4 or \text{R}5(\text{R}5)\textsubscript{l}, R2 is a hydrogen atom, a lower alkyl group
of C$_{1-4}$, a lower alkanoyl group of C$_{2-4}$, or a lower alkyl group of C$_{2-4}$ substituted by a hydroxyl group or a lower alkoxy group of C$_{1-4}$, R3 is a hydrogen atom or a lower alkyl group of C$_{1-4}$, R4 is a hydrogen atom, nitro group or a lower alkoxy group of C$_{1-4}$, R5 is a hydroxyl group or the group -COOR3 (wherein R3 has the same meaning as defined above), n is 2 when Y is the group (OR2)$_m$ and is 1 when Y is one of the other groups, m is 1, 2 or 3, l is 0, 1, 2 or 3) or a pharmaceutically acceptable salt thereof, wherein α-substituted ureidophenylacetic acid of the formula (II):

![Chemical structure](image)

(II)

(wherein R11 is a hydrogen atom, hydroxyl group or a protected hydroxyl group, R6 is a hydroxyl group or a protected hydroxyl group, Y1 is either the same as Y in the formula (I) or Y containing a protected hydroxyl or carboxyl group, and X is the same as X in the formula (I)) or a reactive derivative thereof is reacted with 6-aminopenicillanic acid of the formula (III):

![Chemical structure](image)

(III)

(wherein R7 is a hydrogen atom or a protecting group) or a reactive derivative thereof in an inert organic solvent at a temperature between -30 and 30°C, and the protecting group, if any, in R11, R6, R7 or Y1 is removed.
A process according to Claim 8 wherein the α-substituted ureidophenylacetic acid or a reactive derivative thereof is such that the protecting group of the hydroxyl group included in the definition of \(R_{11} \), \(R^6 \) and \(Y^1 \) is selected from the group consisting of an acyl group such as a formyl group, acetyl group, propionyl group, butyryl group, or chloroacetylmethyl group; an aralkyl group such as a benzyl group, benzhydryl group or trityl group; a substituted aralkyl group having a substituent such as a methoxy group or nitro group on the aryl nucleus of these aralkyl groups; a monovalent silyl group such as a trimethylsilyl group, triethylylsilyl group, dimethylmethoxysilyl group, diethylmethoxysilyl group, trimethoxysilyl group, or triethoxysilyl group; a divalent silyl group such as a dimethyldisilyl group in case of protecting adjacent two hydroxyl groups; and a group conventionally used to protect the hydroxyl group such as a t-butyl group, methoxymethyl group, phenacyl group or a tetrahydropyranoyl group.

10. A process according to Claim 8 wherein the α-substituted ureidophenylacetic acid or a reactive derivative thereof is such that the protecting group for carboxyl group included in the definition of \(Y^1 \) is selected from the group consisting of a halogenated lower alkyl group such as a chloromethyl group, 2,2,2-trichloroethyl group or 2,2,2-trifluoroethyl group; an aralkyl group such as a benzyl group, benzhydryl group or trityl group; and a substituted aralkyl group having a substituent such as a methoxy group or nitro group on the aryl nucleus of these aralkyl groups.
11. A process according to Claim 8 wherein the reactive derivative of the α-substituted ureidophenylacetic acid is either an acid anhydride, active ester, active amide or an acid halide.

12. A process according to Claim 8 wherein the 6-aminopenicillanic acid or a reactive derivative thereof is such that R^7 is a protecting group selected from the group consisting of a salt-forming organic or inorganic base such as alkali metal, alkaline earth metal, triethylamine, N-methylpiperidine or pyridine; a halogenated lower alkyl group such as a chloromethyl group, 2,2,2-trichloroethyl group or 2,2,2-trifluoroethyl group; an aralkyl group such as a benzyl group, benzhydryl group or trityl group; a substituted aralkyl group having a substituent such as methoxy or nitro group on the aryl nucleus of these aralkyl groups; and a silyl group such as a trimethylsilyl group, triethoxysilyl group, dimethylmethoxysilyl group, diethylmethoxysilyl group, trimethoxysilyl group or triphenylsilyl group.

13. A process according to Claim 8 wherein the reactive derivative of 6-aminopenicillanic acid has a silyl group introduced at the 6-amino group.

14. A process according to Claim 8 wherein the inert organic solvent is selected from the group consisting of acetone, tetrahydrofuran, dimethylformamide, pyridine, acetonitrile, dioxane, chloroform, dichloromethane, dichloroethane and ethyl acetate.

15. A process according to Claim 8 wherein an active ester or active amide of α-substituted ureidophenylacetic acid is
reacted with the 6-aminopenicillanic acid or a reactive derivative thereof at a temperature selected from the range of 0 to 10°C.

16. A process according to Claim 8 wherein an acid anhydride of \(\alpha\)-substituted ureidophenylacetic acid is reacted with the 6-aminopenicillanic acid or a reactive derivative thereof at a temperature selected from the range of -15 to -5°C.

17. A process according to Claim 8 wherein an acid halide of \(\alpha\)-substituted ureidophenylacetic acid is reacted with the 6-aminopenicillanic acid or a reactive derivative thereof at a temperature selected from the range of -20 to -10°C.

18. A process according to Claim 8 wherein the protecting group for the hydroxyl group included in the definition of \(R^{11}\), \(R^6\) or \(Y^1\) is removed by treatment with an inorganic or organic base when said protecting group is an acyl group, by catalytic reduction when said protecting group is an aralkyl or substituted aralkyl group, and by treatment with an inorganic acid when said protecting group is a t-butyl group, methoxymethyl group, phenacyl group, tetrahydropyranyl group or a silyl group.

19. A process according to Claim 8 wherein the protecting group for the carboxyl group included in the definition of \(Y^1\) or the protecting group by which \(R^7\) is meant is removed by reduction with a metal and acid when said protecting group is a halogenated lower alkyl group, by catalytic reduction or treatment with an organic acid, inorganic acid or Lewis acid when said protecting group is an aralkyl or substituted aralkyl group, by treatment with an inorganic acid or alcohol when
said protecting group is a silyl group, and by treatment with an acid when said protecting group is a salt-forming group.

20. A process for producing a compound of the formula (I):

\[
\text{HO} - \text{CO-N-CONH-CH-CONH CH}_3
\]

(\text{I})

(wherein \(R^1\) is a hydrogen atom or a hydroxyl group, \(X\) is a lower alkyl group of \(\text{C}_{n-5}\), \(Y\) is a substituent for \(X\) and represents the group \((\text{OR}^2)_m\), \(-\text{CN}\), \(-\text{COOR}^3\), \(\text{R}^4\) \(\text{R}^5\) \(\text{R}^6\)), \(R^2\) is a hydrogen atom, a lower alkyl group of \(\text{C}_{1-4}\), a lower alkanoyl group of \(\text{C}_{2-4}\), or a lower alkyl group of \(\text{C}_{2-4}\) substituted by a hydroxyl group or a lower alkoxy group of \(\text{C}_{1-4}\), \(R^3\) is a hydrogen atom or a lower alkyl group of \(\text{C}_{1-4}\), \(R^4\) is a hydrogen atom, nitro group or a lower alkoxy group of \(\text{C}_{1-4}\), \(R^5\) is a hydroxyl group or the group \(-\text{COOR}^3\) (wherein \(R^3\) has the same meaning as defined above), \(n\) is 2 when \(Y\) is the group \((\text{OR}^2)_m\) and is 1 when \(Y\) is one of the other groups, \(m\) is 1, 2 or 3, \(k\) is 0, 1, 2 or 3) or a pharmaceutically acceptable salt thereof, wherein an N-benzoylcarbamic acid halide of the formula (IV):

\[
\text{R}^8\text{CON-CO-Z}
\]

(\text{IV})

(wherein \(R^8\) is a protected hydroxyl group, \(Y^2\) corresponds to \(Y\) and may contain a protected hydroxyl or carboxyl group, and \(Z\) is a halogen atom is reacted with an \(\alpha\)-amino-\(\text{N-benzylpenicillin}\) of the formula (V):
(wherein R^{11} and R^7 have the same meaning as defined above) or a reactive derivative thereof, and any protecting group that is present in the resulting product is removed.

21. A process according to Claim 20 wherein the N-benzoyl-carbamic acid halide is such that the protecting group for the hydroxyl group included in the definition of R^8, R^{11} and Y^2 is selected from the group consisting of an acyl group such as a formyl group, acetyl group, propionyl group, butyryl group, or chloroacetyl group; an aralkyl group such as a benzyl group, benzhydryl group or trityl group; a substituted aralkyl group having a substituent such as methoxy group or nitro group on the aryl nucleus of these aralkyl groups; a monovalent silyl group such as a trimethylsilyl group, triethylsilyl group, dimethylmethoxysilyl group, diethylmethoxysilyl group, trimethoxysilyl group, or triethoxysilyl group; a divalent silyl group such as a dimethyldisilyl group in case of protecting adjacent two hydroxyl groups; and a group conventionally used to protect the hydroxyl group such as a t-butyl group, methoxymethyl group, phenacyl group or a tetrahydropyranyl group.

22. A process according to Claim 20 wherein the N-benzoyl-carbamic acid halide is such that the protecting group for the carboxyl group included in the definition of Y^2 is selected from the group consisting of a halogenated lower alkyl group.
such as a chloromethyl group, 2,2,2-trichloroethyl group or 2,2,2-trifluoroethyl group; an aralkyl group such as a benzyl group, benzhydryl group or trityl group; and a substituted aralkyl group having a substituent such as a methoxy group or nitro group on the aryl nucleus of these aralkyl groups.

23. A process according to Claim 20 wherein the α-aminobenzyl penicillin or a reactive derivative thereof is such that the protecting group by which R^7 is meant is selected from the group consisting of a salt-forming organic or inorganic base such as alkali metal, alkaline earth metal, triethylamine, N-methylpiperadine or pyridine; a halogenated lower alkyl group such as a chloromethyl group, 2,2,2-trichloroethyl group or 2,2,2-trifluoroethyl group; an aralkyl group such as a benzyl group, benzhydryl group or trityl group; a substituted aralkyl group having a substituent such as methoxy or nitro group on the aryl nucleus of these aralkyl groups; and a silyl group such as a trimethylsilyl group, triethylsilyl group, dimethylmethoxysilyl group, diethylmethoxysilyl group, trimethoxysilyl group or triphenylsilyl group.

24. A process according to Claim 20 wherein the reactive derivative of the α-aminobenzyl penicillin has a silyl group introduced at the α-amino group.

25. A process according to Claim 20 wherein the inert organic solvent is selected from the group consisting of acetone, tetrahydrofuran, acetonitrile, dimethylformamide, pyridine, dioxane, chloroform, dichloromethane, dichloroethane and ethyl acetate.
26. A process according to Claim 20 wherein the reaction temperature is selected from the range of 0 to 30°C.

27. A process according to Claim 20 wherein the protecting group for the hydroxyl group which is included in the definition of \(R^{11}, R^8 \) or \(Y^2 \) is removed by treatment with an inorganic or organic base when said protecting group is an acyl group, by catalytic reduction when said protecting group is an aralkyl or substituted aralkyl group, and by treatment with an inorganic acid when said protecting group is a t-butyl group, methoxymethyl group, phenacyl group, tetrahydropyranyl group or a silyl group.

28. A process according to Claim 20 wherein the protecting group for the carboxyl group which is included in the definition of \(Y^2 \) or the protecting group by which \(R^7 \) is meant is removed by reduction with a metal and acid when said protecting group is a halogenated lower alkyl group, by catalytic reduction or treatment with an organic acid, inorganic acid or Lewis acid when said protecting group is an aralkyl or substituted aralkyl group, by treatment with an inorganic acid or alcohol when said protecting group is a silyl group, and by treatment with an acid when said protecting group is a salt-forming base.