We, Automotive Products plc, of Tachbrook Road, Leamington Spa, Warwickshire CV31 3ER, England hereby apply for the grant of a standard patent for an invention entitled:

"FRICITION CLUTCH DRIVEN PLATE"

which is described in the accompanying complete specification.

DETAILS OF BASIC APPLICATION

Number of Basic Application:--
85 30010

Name of Convention Country in which Basic Application was filed:--
Great Britain

Date of Basic application:--
5 December 1985

Our address for service is:--

C/- Spruson & Ferguson
Patent Attorneys
Level 33 St Martins Tower
31 Market Street
Sydney New South Wales Australia

DATED this SECOND day of DECEMBER 1986

Automotive Products plc

By:


TO: THE COMMISSIONER OF PATENTS
AUSTRALIA

SBR:JMA:129U
Title of Invention

"Friction Clutch Driven Plate"

Full name(s) and address(es) of Declarant(s)

George Derrick Pears
of 69 Kenilworth Road
Coventry
England

do solemnly and sincerely declare as follows:

1. I am authorised by Automotive Products plc the applicant(s) for the patent to make this declaration on its behalf.

2. The basic application(s) as defined by Section 141 of the Act was made in Great Britain on 5 December 1985 by Automotive Products plc.

3. Peter Frederick Crawford and Ian Commander Maycock of The Gables, Stoneleigh Road, Bubbenhall, Warwickshire England, and 149 Cubbington Road, Lillington, Leamington Spa, Warwickshire, England (respectively) where the actual inventor(s) of the invention and the facts upon which the applicant(s) is/are entitled to make the application are as follows:

The inventors are employees of Automotive Products plc to whom their invention belongs by virtue of Section 39(1) of the Patents Act 1977 of Great Britain.

4. The basic application(s) referred to in paragraph 2 of this Declaration was/ were the first application(s) made in a Convention country in respect of the invention(s) the subject of the application.

Declared at Leamington this 25th day of September 1986.

Signature of Declarant(s)
Claim

1. A friction clutch driven plate comprising a hub assembly provided with a carrier for a friction material arrangement, said carrier extending radially outwardly of the hub and being provided with outwardly extending teeth around its outer periphery, a friction material arrangement in annular disposition and having inwardly directed teeth to engage with the teeth of the carrier and provide drive between the carrier and the friction material arrangement, and said annular disposition comprising sections of the friction material arrangement disposed in succession in an annular array and capable of at least axial movement one relative another.
Complete Specification for the invention entitled:

"FRICITION CLUTCH DRIVEN PLATE"

The following statement is a full description of this invention, including the best method of performing it known to us.
ABSTRACT

"Friction Clutch Driven Plate"

A friction clutch driven plate has an internally splined hub 11 rotationally fast with two side plates 14, 15, and bears an intermediate plate 22 capable of some limited rotation relative to the hub. The plate 22 has outer peripheral teeth 35 engaging with teeth 36 on the inner periphery of an annulus 34 of friction material formed by successive sections 34A of the friction material. Axially of the driven plate, the sections 34A can each move relatively one to another to an extent limited by the peripheral edges 39 and 41 of the side plates. A encircling strap 43 opposes the effect of centrifugal force on the sections 34A and keeps the teeth 35 and 36 in mesh.
This invention relates to improvements in friction clutch driven plates.

It concerns, though not exclusively, development of the friction clutch driven plate described in our published British Patent Specification GB 2 154 288 A which discloses a driven plate of the type (hereinafter called "the type referred to") comprising a hub assembly incorporating a hub and at least one flange extending therefrom, a carrier for a friction material arrangement, said carrier being arranged adjacent to the flange and capable of limited relative angular rotation with respect to said flange and coupled to the flange by resilient rotary drive means, the carrier being provided with outwardly extending teeth around the outer periphery, and a friction material arrangement in annular disposition and having inwardly directed teeth to engage with teeth on the carrier and provide drive between the carrier and friction material.

Specification GB 2154 288 A discloses a friction material arrangement in the form of a solid ring of friction material capable of some axial movement relative to the carrier by the teeth on the ring moving axially in the gaps between the teeth on the carrier.
This allows the friction material some axial compliance when the driven plate is in use and being clamped between a drive plate and a pressure plate of a friction clutch. However the solid ring of friction material may be rather rigid and its axial compliance thus restricted, so the phenomenon known as "heat spotting" of the pressure plate may still occur to an undesirable extent.

An object of the invention is to provide a friction clutch driven plate capable of being constructed so that when it is used the aforesaid disadvantage of heat spotting may be avoided or at least mitigated.

According to the invention there is provided a friction clutch driven plate comprising a hub assembly provided with a carrier for a friction material arrangement, said carrier extending radially outwardly of the hub and being provided with outwardly extending teeth around its outer periphery, a friction material arrangement in annular disposition and having inwardly directed teeth to engage with the teeth of the carrier and provide drive between the carrier and the friction material, and said annular disposition comprising sections of the friction material arrangement disposed in succession in an annular array and capable of at least axial movement one relative to another.

Preferably the driven plate has means to limit
outward radial movement of the sections relative to the carrier. Such means opposes the effect of centrifugal force on the sections of friction material.

Axial constraining means may be provided to retain the teeth of the friction material arrangement in engagement with the teeth of the carrier.

Each section of the friction material arrangement may be substantially a sector of an annulus.

The friction material used in the arrangement may be a mineral-based essentially non-metallic friction material.

The hub and carrier may be permanently fast in rotation one with the other about the axis of the driven plate.

Alternatively, the construction of the driven plate may be such that at least one flange extends from the hub, the carrier is adjacent to the flange and capable of limited relative angular rotation with respect to said flange, and said carrier is coupled the flange by resilient rotary drive means. The resilient rotary drive means can control relative rotation between the carrier and flange and provide damping of vibrations in the drive through the driven plate.

The driven plate may be intended for use in a dry clutch, that is one without lubrication of friction
faces, for that purpose an asbestos-based friction material is suitable. However, substitutes for asbestos-based materials which have been introduced to eliminate health risks from asbestos are also suitable.

The driven plate may be used in a clutch of a motor vehicle.

The invention will now be further described, by way of example, with reference to the accompanying drawings in which:

*Fig. 1 is a cross-section through a clutch driven plate illustrating a first embodiment formed according to the invention;

*Fig. 2 is a fragmentary view in the direction of arrow II of Fig. 1, with some parts removed in the interests of clarity;

*Fig. 3 is a view corresponding to Fig. 1 illustrating a second embodiment of clutch driven plate formed according to the invention,

*Fig. 4 is a view similar to Fig. 2, of a modification of the sections of the friction material arrangement which is in an annular disposition, and

*Fig. 5 is a view corresponding to Fig. 3 of a modification of the clutch driven plate in Fig. 3.

In the drawings like reference numerals identify like or comparable parts.
The friction clutch driven plate shown in Figs. 1 and 2 incorporates a hub 11 having internal splines 12 to enable the hub to drive a gearbox input shaft. The hub is generally cylindrical with a projecting boss 13 remote from its two ends. Two annular side plates 14 and 15 are secured to the hub 11 at the extremities of the boss 13 so that they form two mutually spaced flanges which together with the hub 11 form a hub assembly. In this example, the inner edges of the side plates 14 and 15 have sets of inwardly directed teeth 16 and 17 which bite into shoulders at the edges of the boss 13 and are then more positively located by deforming these shoulders as illustrated at 18 and 19. The outer parts of the side plates or flanges 14 and 15 are also held in the required mutually spaced relationship by large shouldered rivets 21 which serve another purpose to be described subsequently and are normally referred to as stop pins. The hub assembly as thus far described is in practice assembled around other parts of the driven plate which are now to be described.

A friction material carrier constituted primarily by an intermediate annular plate 22 is arranged between the side plates 14 and 15 and in itself is freely rotatable on the boss 13. The intermediate plate 22 has circumferentially elongated apertures 23 through which the stop pins 21 extend. The length of these apertures limits the extent of relative angular rotation possible
between the hub assembly and the friction member carrier. Side plates 14 and 15 and intermediate plate 22 also have a series of aligned rectangular spertures 24, 25 and 26 and a circumferentially directed coil spring 27 is arranged in each such set of aligned apertures. These springs provide a resilient rotary drive means between the hub assembly and the friction member carrier.

Between the inner parts of the side plates 14 and 15 and the intermediate plate 22 there is a conventional friction system for providing frictional resistance to movement between the hub assembly and carrier. This consists of two friction washers 28 and 29, one to each side of the intermediate plate and a Belleville spring 31 reacting on side plate 14 and causing a bearing washer 32 to load the friction washers 28 and 29 axially. Bearing washer 32 has at least one tongue 33 engaged in side plate 14 to ensure that it rotates therewith.

The outer periphery of intermediate plate 22 carries a series of radially directed teeth 35 which engage with a corresponding series of inwardly directed teeth 36 on an annular friction material arrangement 34. The arrangement 34 comprises a plurality of sections 34A disposed end to end with some circumferential clearance 42 therebetween.
In the example illustrated each section 34A is wholly formed of friction material and each is substantially in the shape of a sector of an annulus. However each section 34A forming the arrangement 34 can be in the form of two friction facings or layers of friction material sandwiching one or more layers of other material therebetween. The form and the engagement of the teeth 35, 36 is most readily seen in Fig. 2. The opposed drive faces of each tooth 35 are parallel to each other rather than being strictly radial and considering a recess between teeth rather than a tooth itself of the sections 34A, the two drive faces are correspondingly parallel. This arrangement provides that in the event of differential expansion between the intermediate plate 22 and the sections 34A, the radial expansion of the friction material arrangement does not result in a significant increase in circumferential clearance between teeth which may otherwise introduce an undesired freedom for relative rotation. A positive circumferential clearance is shown in Fig. 2 in the interests of clarity but in practice the clearance should be as small as possible. There is however a deliberate radial clearance between the intermediate plate 22 and sections 34A at the toothed connection 35, 36 to ensure that on differential expansion between the carrier and each section 34A, these
two components do not load each other in such a way as might cause distortion.

In the example illustrated each section 34A is constituted by a solid piece of friction facing material as is normally used in dry friction clutches. In the interests of providing sufficient strength for teeth 36, the inner periphery of each section 34A is widened as shown in Fig. 1 while the outer part of each section has two opposed friction faces 37 and 38.

To retain the sections 34A about the carrier 22 an annular retaining strap 43 or other encircling arrangement is disposed in the successive outer peripheral grooves 44 in the sections 34A. The strap 43 opposes the effect of centrifugal force on the sections 34A in order to keep the teeth 36 in mesh with the teeth 35. However there is sufficient clearance between the sides of the strap 43 and the sides of the grooves 44 to allow the sections 34A to move axially relatively one to another and to the carrier 22. This allows the arrangement 34 to have greater axial compliance than if the arrangement 34 were a solid annulus. The clearances 42 are preferably sufficiently large so that in the event of thermal expansion of the sections 34A the latter do not press on one another or do not press on one another to an extent which prevents or unduly restricts the axial movement of the sections one relative to another.
In order to hold the arrangement 34 axially on the teeth 35, the two side plates 14 and 15 extend out beyond the inner periphery of the friction facing and have inwardly turned edges 39 and 41 to provide axial constraining means with a relatively small clearance for axial float of the sections 34A.

The embodiment shown in Fig. 3 corresponds in most respects to that shown in Figs. 1 and 2. However, the intermediate plate 45 is thicker than the corresponding plate of Fig. 1 so that it conforms to the thickness of the inner part of the arrangement 34. The friction washers 28 and 29 of Fig. 1 are also omitted. The side plates 46 and 47 are of smaller external diameter than the corresponding side plates 14 and 15.

Instead the axially movable arrangement 34 is held on to the intermediate plate 45 by small retainer plates 48 and 49 secured to the intermediate plate 45 by rivets 50.

In a modification, instead of arranging for the teeth 35 to have mutually parallel faces, the teeth 36 of the friction arrangement 34 may have parallel faces in which case the recesses between teeth 35 on the carrier have correspondingly parallel faces.

In the modification shown in Fig. 4 the friction arrangement 34 comprises sectors 34B with circumferential clearances 50 therebetween and having adjacent ends
interlocked by a headed projection 51 on an end of one section 34B engagably retained in an opening 52 in the adjacent end of the adjacent section 34B so that the arrangement 34 holds together when subject to centrifugal force.

Dot-dash line 53 in Fig. 2 indicates that the arrangement 34 may be formed by sections of even shorter circumferential length than that of each sections 34A.

In the further embodiment of the clutch driven plate illustrated in Fig. 5, which in some respects is a modification of the embodiment in Fig. 3, the side plates 46 and 47 of Fig. 3 are omitted as are the springs 27 of Fig. 1. In Fig. 5 the hub 11A is integral or otherwise permanently fast with the flange 45A so that the hub and flange always rotate as one piece about the axis of the driven plate.
The Claims defining the invention are as follows:

1. A friction clutch driven plate comprising a hub assembly provided with a carrier for a friction material arrangement, said carrier extending radially outwardly of the hub and being provided with outwardly extending teeth around its outer periphery, a friction material arrangement in annular disposition and having inwardly directed teeth to engage with the teeth of the carrier and provide drive between the carrier and the friction material arrangement, and said annular disposition comprising sections of the friction material arrangement disposed in succession in an annular array and capable of at least axial movement one relative another.

2. A driven plate as claimed in Claim 1, in which aforesaid sections of the friction material arrangement are capable of limited radial movement one relative to another.

3. A driven plate as claimed in any one preceding claim, having means to limit outward radial movement of the sections relative to the carrier.

4. A driven plate as claimed in claim 3, in which restraining means encircles the annular array of sections to limit outward radial movement of the sections.
5. A driven plate as claimed in Claim 4, in which the restraining means is disposed in peripheral grooves in the sections.

6. A driven plate as claimed in Claim 3, in which a projection at one end of a said section extends substantially circumferentially and engages in an opening at an adjacent end of an adjacent said section.

7. A driven plate as claimed in any one preceding claim, in which axial constraining means are provided on the driven plate to retain the teeth of the friction material arrangement in engagement with the teeth of the carrier.

8. A driven plate as claimed in any one of the preceding claims, in which each section is constituted by a solid piece of friction material having an outer part with two opposed annular friction faces and a widened inner part incorporating aforesaid inwardly directed teeth.

9. A driven plate as claimed in any one of the preceding claims incorporating a radial clearance in the toothed engagement between the sections and the carrier to allow relative radial expansion and contraction of the carrier and said sections.

10. A driven plate as claimed in any one of the preceding claims in which each said section is substantially a sector of an annulus.
11. A friction clutch driven plate substantially as hereinbefore described with reference to Figs. 1 and 2 or Figs. 2 and 3 or Fig. 5 or when modified as described with reference to Fig. 4.

12. A clutch comprising a clutch driven plate as claimed in any one preceding claim.

13. A motor vehicle including a clutch as claimed in Claim 12.

DATED this SECOND day of DECEMBER 1986

Automotive Products plc

Patent Attorneys for the Applicant
SPRUSON & FERGUSON