MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A
We, PFIZER LIMITED, of Ramsgate Road, Sandwich, Kent, Great Britain hereby apply for the grant of a standard patent for an invention entitled:

"QUINOLONE CARDIAC STIMULANTS"

which is described in the accompanying complete specification.

DETAILS OF BASIC APPLICATION

Number of Basic Application: - 8529362

Name of Convention Country in which Basic Application was filed: - Great Britain

Date of Basic application: - 28 November, 1985

Our address for service is: -

C/- Spruson & Ferguson
Patent Attorneys
Level 33 St Martins Tower
31 Market Street
Sydney New South Wales Australia

DATED this TWENTY-SEVENTH day of NOVEMBER 1986

PFIZER LIMITED

By:

TO: THE COMMISSIONER OF PATENTS

AUSTRALIA

SBR/JS/0011T
COMMONWEALTH OF AUSTRALIA
THE PATENTS ACT 1952
DECLARATION IN SUPPORT OF A
CONVENTION APPLICATION FOR A PATENT

In support of the Convention Application made for a
patent for an invention entitled:
"QUINOLONE CARDIAC STIMULANTS"

Title of Invention

Full name(s) and address(es) of
Declara i(s)

Anthony Alister Dunning
of Hackington Road, Tyler Hill, Canterbury, Kent, England

do solemnly and sincerely declare as follows:

1. I am authorised by PFIZER LIMITED the applicant for the patent

 (or, in the case of an application by a body corporate)

2. The basic application as defined by Section 141 of the Act was made

 in Great Britain

 by PFIZER LIMITED

3. Sim on Fraser Campbell and David Anthony Roberts

 of Grey Friars, Upper Street, Kingsdown, Deal, Kent, England
 and 8, Box Tree Mews, Ivy Road, Macclesfield, Cheshire, England.

 respectively,

 (respectively)

 are the actual inventor(s) of the invention and the facts upon
 which the application is entitled to make the application are
 as follows:

 PFIZER LIMITED is entitled by Contract of Employment
 between the inventors as employees and PFIZER LIMITED as
 employer, as a person who would be entitled to have the patent
 assigned to it if a patent were granted upon an application
 made by the inventors.

4. The basic application referred to in paragraph 2 of this Declaration was the first application(s) made in a Convention country in respect of the invention the subject of the application.

Declared at Sandwich, this 16th day of October 1986

Signature of Declarant(s)

Anthony Alister Dunning for Pfizer Limited
Claim

1. A substituted 2-(1H)-quinolone of the formula:

```
\begin{align*}
\text{Het} & \quad 7 \\
\text{R} & \quad 8 \\
\text{O} & \quad 1 \\
\text{N} & \quad 2 \\
\end{align*}
```

or a pharmaceutically acceptable salt thereof,

wherein "Het" is a 5-membered monocyclic aromatic heterocyclic group containing at least one nitrogen atom in the aromatic ring and attached by a nitrogen atom to the 5-, 6-, 7- or 8-position of the quinolone;

"Het" being substituted by a group selected from

\[-C-(C_1-C_4 \text{ alkyl}), -R^1, -C-R^1 \text{ and } -C-R^2 \quad \text{wherein } R^1 \text{ is a phenyl group optionally substituted by 1 to 3 substituents each independently selected from } C_1-C_4 \text{ alkyl, } C_1-C_4 \text{ alkoxy, hydroxy, halo, trifluoromethyl, } -\text{CONR}^{24}, -\text{SO}_2\text{NR}^{24}, -\text{N(R}^{3}\text{)}\text{SO}_2(C_1-C_4 \text{ alkyl}) \text{ and } -S(O)_n(C_1-C_4 \text{ alkyl}) \text{ where } R^3 \text{ and } R^4 \text{ are each } H \text{ or } C_1-C_4 \text{ alkyl and } n \text{ is } 0, 1 \text{ or } 2, \text{ and } R^2 \text{ is a heterocyclic group selected from }...

/2
thienyl, furyl, imidazolyl, triazolyl and tetrazolyl, said heterocyclic group being attached to the adjacent carbonyl group by a ring carbon atom and being optionally substituted by up to two substituents each independently selected from C\textsubscript{1}-C\textsubscript{4} alkyl, C\textsubscript{1}-C\textsubscript{4} alkoxy and halo;

"Het" also being optionally substituted by up to two C\textsubscript{1}-C\textsubscript{4} alkyl groups;

and R, which is attached to the 5-, 6-, 7- or 8- position of the quinolone, is H, C\textsubscript{1}-C\textsubscript{4} alkyl, C\textsubscript{1}-C\textsubscript{4} alkoxy, hydroxy, CF\textsubscript{3}, halo, cyano or hydroxymethyl.

14. A compound of the formula:-

![Diagram](image)

or an acid addition salt thereof,

wherein "Het" is a 5-membered monocyclic aromatic heterocyclic group containing at least one nitrogen atom in the aromatic ring and attached by a nitrogen atom to the 3-, 4-, 5- or 6-position of the benzene ring. "Het" being substituted by a group selected from -CO(C\textsubscript{1}-C\textsubscript{4} alkyl), -R1, -COR1 and -COR2 where R1 and R2 are as defined in claim 1, "Het" also being optionally substituted by up to two C\textsubscript{1}-C\textsubscript{4} alkyl groups;

R, which is attached to the 3-, 4-, 5- or 6-position of the benzene ring, is H, C\textsubscript{1}-C\textsubscript{4} alkyl, C\textsubscript{1}-C\textsubscript{4} alkoxy, hydroxy, CF\textsubscript{3}, halo, cyano or hydroxymethyl;

and Q is a leaving group.

2. A compound as claimed in claim 1 wherein "Het" is a pyrrolyl, imidazolyl, pyrazolyl, triazolyl or tetrazolyl group substituted as defined in claim 1.
The following statement is a full description of this invention, including the best method of performing it known to us.
Abstract

Quinolone Cardiac Stimulants

Quinolone cardiac stimulants of the formula:

\[
\text{Het} \quad \text{(I)}
\]

or a pharmaceutically acceptable salt thereof,
wherein "Het" is a 5-membered monocyclic aromatic heterocyclic group containing at least one nitrogen atom in the aromatic ring and attached by a nitrogen atom to the 5-, 6-, 7- or 8- position of the quinolone;

"Het" being substituted by a group selected from

- \(\text{C}(\text{C}_1-\text{C}_4 \text{ alkyl}) \), -R\(^1\), -C-R\(^1\) and -C-R\(^2\) wherein R\(^1\) is a phenyl group optionally substituted by 1 to 3 substituents each independently selected from \(\text{C}_1-\text{C}_4 \text{ alkyl} \), \(\text{C}_1-\text{C}_4 \text{ alkoxy} \), hydroxy, halo, trifluoromethyl, -CON\(\text{R} \), -SO\(\text{NR} \), \(\text{R} \text{SO}_2(\text{C}_1-\text{C}_4 \text{ alkyl}) \) and -S(0)\(\text{R} \)\(\text{C}_1-\text{C}_4 \text{ alkyl} \) where \(\text{R} \)\(^3\) and \(\text{R} \)\(^4\) are each H or \(\text{C}_1-\text{C}_4 \) alkyl and \(n \) is 0, 1 or 2, and \(\text{R} \)\(^2\) is a heterocyclic group selected from thiophenyl, furyl, imidazolyl, triazolyl and tetrazolyl, said heterocyclic group being attached to the adjacent carbonyl group by a ring carbon atom and being optionally substituted by up to two substituents each independently selected from \(\text{C}_1-\text{C}_4 \) alkyl, \(\text{C}_1-\text{C}_4 \) alkoxy and halo;

"Het" also being optionally substituted by up to two \(\text{C}_1-\text{C}_4 \) alkyl groups;

and \(R \), which is attached to the 5-, 6-, 7- or 8- position of the quinolone, is H, \(\text{C}_1-\text{C}_4 \) alkyl, \(\text{C}_1-\text{C}_4 \) alkoxy, hydroxy, CF\(_3\), halo, cyano or hydroxymethyl.
QUINOLONE CARDIAC STIMULANTS

DESCRIPTION

This invention relates to substituted quinolone cardiac stimulants which in general selectively increase the force of myocardial contraction without producing a significant increase in the heart rate. The compounds are useful in the curative or prophylactic treatment of cardiac conditions, in particular in the treatment of heart failure.

Thus according to the invention there are provided substituted 2-(1H)-quinolones of the formula:

\[
\text{R} \backslash \text{Het} 3 \text{H}
\]

and their pharmaceutically acceptable salts,

wherein "Het" is a 5-membered monocyclic aromatic heterocyclic group containing at least one nitrogen atom in the aromatic ring and attached by a nitrogen atom to the 5-, 6-, 7- or 8- position of the quinolone;

"Het" being substituted by a group selected from

- \(\text{C}-\left(\text{C}_1-\text{C}_4 \text{ alkyl}\right) \), \(-\text{R}^1\), \(-\text{C}-\text{R}^1\) and \(-\text{C}-\text{R}^2\) wherein \(\text{R}^1\) is a phenyl group optionally substituted by 1 to 3 substituents each independently selected from \(\text{C}_1-\text{C}_4 \text{ alkyl}, \text{C}_1-\text{C}_4 \text{ alkoxy}, \text{hydroxy}, \text{halo}, \text{trifluoromethyl}, -\text{CONR}^3 \text{R}^4, -\text{SO}_2 \text{NR}^3 \text{R}^4, -\text{N}\left(\text{R}^3\right)\text{SO}_2\left(\text{C}_1-\text{C}_4 \text{ alkyl}\right) \) and \(-\text{S(O)}\left(\text{C}_1-\text{C}_4 \text{ alkyl}\right)\) where \(\text{R}^3 \) and \(\text{R}^4 \) are each \(\text{H} \) or \(\text{C}_1-\text{C}_4 \text{ alkyl} \) and \(n \) is 0, 1 or 2, and \(\text{R}^2 \) is a heterocyclic group selected from thiényl, furyl, imidazolyl, triazolyl and tetrazolyl, said heterocyclic group being attached to the adjacent carbonyl group by a ring carbon atom and being optionally substituted by up to two substituents each independently selected from \(\text{C}_1-\text{C}_4 \text{ alkyl}, \text{C}_1-\text{C}_4 \text{ alkoxy} \) and halo.
"Het" also being optionally substituted by up to two C₃–C₄ alkyl groups;

and R, which is attached to the 5-, 6-, 7- or 8-position of the quinolone, is H, C₁–C₄ alkyl, C₁–C₄ alkoxy, hydroxy, CF₃, halo, cyano or hydroxymethyl.

"Halo" means F, Cl, Br or I. C₃ and C₄ alkyl and alkoxy groups can be straight or branched chain. The preferred alkyl and alkoxy groups are methyl and methoxy.

Although the compounds of the formula (I) are written as 2-(1H)-quinolones, it should be realised that the following tautomerism can occur:

![Tautomerism Diagram]

However, as the keto-form is considered the more stable tautomer, the end products herein will be named and illustrated as quinolones although those skilled in the art will realise that both tautomers may be present or that any particular compound so named may exist predominantly as the hydroxy tautomer and the following disclosure is to be interpreted to incorporate all tautomeric forms.

Preferably, "Het" contains 1, 2, 3 or 4 nitrogen atoms (and no other heteroatoms) in the aromatic ring.

Examples of said group "Het" are pyrrolyl, imidazolyl, pyrazolyl, triazolyl and tetrazolyl, all substituted as defined for formula (I). "Het" is preferably a 1-imidazolyl group substituted as defined for formula (I).

"Het" is preferably attached to the 6-position of the quinolone.

R is preferably attached to the 8-position.

R is preferably H, C₁–C₄ alkyl, CF₃ or halo. More preferably R is H, CH₃, CF₃ or Br. R is most preferably CH₃.
The most preferred individual compounds of the formula (I) have the formula:-

$$\text{Het}$$

where Het is as defined for formula (I), and is preferably a 1-imidazolyl group substituted as defined for formula (I).

In the quinolones of the formulae (I) and (IA), "Het" is more preferably an imidazol-1-yl group substituted by (a) one or two methyl groups and (b) a group of the formula $-\text{CO}(\text{C}_1-\text{C}_4 \text{ alkyl})$, $-\text{R}^1$, $-\text{COR}^1$ or $-\text{COR}^2$ where R^1 is a phenyl group optionally substituted by 1 or 2 substituents each selected from $\text{C}_1-\text{C}_4 \text{ alkyl}$, $\text{C}_1-\text{C}_4 \text{ alkoxy}$, hydroxy, halo, $-\text{CF}_3$, $\text{C}_1-\text{C}_4 \text{ alkylthio}$, $\text{C}_1-\text{C}_4 \text{ alkylsulphynyl}$, $\text{C}_1-\text{C}_4 \text{ alkylsulphonyl}$ and $-\text{NH}_2\text{SO}_2(\text{C}_1-\text{C}_4 \text{ alkyl})$, and R^2 is a triazolyl group optionally substituted by a $\text{C}_1-\text{C}_4 \text{ alkyl}$ group.

Most preferably, "Het" is an imidazol-1-yl group substituted by an acetyl group and by one or two methyl groups.

The most preferred compound is 6-(4-acetyl-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone.

The pharmaceutically acceptable salts of the compounds of the formula (I) are either acid addition salts formed from acids which form non-toxic acid addition salts containing pharmaceutically acceptable anions, such as hydrochloride, hydrobromide, hydroiodide, sulphate or bisulphate, phosphate or hydrogen phosphate, acetate, maleate, fumarate, lactate, tartrate, citrate, gluconate, methanesulphonate and p-toluenesulphonate salts, or are metal salts, particularly the alkaline earth or alkali metal salts. The preferred metal salts are the sodium and potassium salts. All the salts are preparable by conventional techniques.

The cardiac stimulant activity of the compounds of the formula (I) is shown by their effectiveness in one or more of the following tests: (a) increasing the force of contraction in the "Starling" dog heart - lung preparation measured via a left ventricular catheter; (b) increasing myocardial contractility
(left ventricular dp/dt max.) in the anaesthetised dog measured via a left ventricular catheter; (c) increasing myocardial contractility in the conscious dog with an implanted left ventricular transducer (dp/dt max.) or an exteriorised carotid artery loop (systolic time intervals).

In test (a), the positive inotropic effect of the test compound following bolus administration is measured in the "Starling" dog heart-lung preparation. The selectivity for increase in force versus frequency of contraction of the test compound is obtained.

In test (b), the positive inotropic action of the test compound following intravenous administration is measured in the anaesthetised dog. The magnitude and duration of this action, and the selectivity for increase in force versus frequency of contraction of the test compound are obtained, as are the peripheral effects, e.g. the effect on blood pressure.

In test (c) the positive inotropic action of the test compound following intravenous or oral administration to a conscious dog with an implanted left ventricular transducer (dp/dt max.) or an exteriorised carotid artery loop (systolic time intervals) is measured. The magnitude of the inotropic action, the selectivity for increase in force versus frequency of contraction, and the duration of action of the inotropic effect of the test compound are all obtained.

The compounds of the formula (I) can be administered alone but will generally be administered in admixture with a pharmaceutical carrier selected with regard to the intended route of administration and standard pharmaceutical practice. For example they may be administered orally in the form of tablets containing such excipients as starch or lactose, or in capsules either alone or in admixture with excipients, or in the form of elixirs or suspensions containing flavouring or colouring agents. They may be injected parenterally, for example, intravenously, intramuscularly or subcutaneously. For parenteral administration, they are best used in the form of a sterile aqueous solution which may contain other solutes, for example, enough salts or glucose to make the solution isotonic.
For administration to man in the curative or prophylactic
treatment of cardiac conditions such as congestive heart failure,
it is expected that oral dosages of the compounds of the invention
will be in the range from 1 mg to 250 mg daily, taken in 1 to 3
divided doses per day, for an average adult patient (70kg).
Dosages for intravenous administration would be expected to be
within the range 0.1 to 100mg per single dose as required, for
example in the treatment of acute heart failure. Thus for a
typical adult patient, individual tablets or capsules might
contain 1.0 to 100mg of active compound, in a suitable
pharmaceutically acceptable vehicle or carrier. Variations may
occur depending on the weight and condition of the subject being
treated as will be known to medical practitioners.

Thus the present invention provides a pharmaceutical
composition comprising a compound of the formula (I) as defined
above or pharmaceutically acceptable salt thereof, together with a
pharmaceutically acceptable diluent or carrier.

The invention also provides a method of stimulating the heart
of a human being, which comprises administering to said human a
compound of formula (I) or pharmaceutically acceptable salt
thereof, or a pharmaceutical composition as defined above, in an
amount sufficient to stimulate the heart of said human.

The invention yet further provides a compound of the formula
(I) or pharmaceutically acceptable salt thereof, for use as a
medicament, in particular for use in stimulating the heart of a
human being suffering from congestive heart failure.

The invention yet further provides the use of a compound of
the formula (I), or of a pharmaceutically acceptable salt thereof,
for the manufacture of a medicament for use as a cardiac
stimulant.

The compounds of formula (I) can be prepared by a number of
routes, including the following:-
Route A:-

This method is illustrated as follows:

The novel intermediates (II) also form a part of the invention.

Het and R are as defined for formula (I) and Q is a leaving group such as C_1-C_4 alkoxy, preferably ethoxy or methoxy. The cyclisation is preferably carried out by treating the propenamide derivative (II) with concentrated, desirably substantially anhydrous (98%), sulphuric acid at room temperature until the reaction is complete, typically in 6-48 hours. If necessary, heating at up to 100°C can be carried out to accelerate the reaction. The product can then be isolated and purified by conventional procedures.

The propenamide (II) can also be used in acid addition salt form (e.g. as a hydrochloride).

A typical reaction is illustrated as follows:-
The starting materials of the formula (II) can be prepared by conventional procedures. A typical route, which is illustrated in detail in the following Preparations, is as follows:-

Route B

This route prepares compounds in which "Het" has a substituent of the formula \(-\text{CO}(C_1-C_4 \text{ alkyl})\), \(-\text{COR}^1\) or \(-\text{COR}^2\) where \(R^1\) and \(R^2\) are as defined for formula (I) (and, of course, optionally up to 2 \(C_1-C_4\) alkyl substituents). It involves the reaction of the corresponding compounds having a cyano substituent on "Het" with a Grignard or lithio derivative of the formula \(R^5\text{MgX}\) or \(R^5\text{Li}\) where \(X\) is I, Br or Cl and \(R^5\) is \(C_1-C_4\) alkyl or a group of the formula \(R^1\) or \(R^2\), followed by treatment with an aqueous acid, preferably an aqueous mineral acid such as hydrochloric acid. It is preferred to use a Grignard reagent of the formula \(R^5\text{MgBr}\).

The reaction is typically carried out by heating the starting cyano-substituted compound with the Grignard or lithio reagent in a suitable organic solvent, e.g. tetrahydrofuran, at up to the reflux temperature, generally for 1-6 hours, followed by stirring with the acid, typically at room temperature for a short period. The product can then be isolated and purified by conventional means.
A typical reaction is illustrated as follows:

The cyano-containing starting materials can be prepared by conventional procedures such as are described in the following Preparations (see also European patent application publication no. 0166533). A typical route is as follows:
\[
\text{CH}_3\text{NHNH} + \text{ICl} \rightarrow \text{Et}_3\text{N/CH}_2\text{Cl}_2 \rightarrow \text{N}_3\text{NHI}_2 \rightarrow (1)\text{n-BuLi} + (2)\text{H}_2\text{O} \rightarrow \text{N}_3\text{NH} \rightarrow \text{SnCl}_2\cdot 2\text{H}_2\text{O} \rightarrow \text{EtOH} \rightarrow \text{EtO} + \text{COCl} \rightarrow \text{pyridine} \rightarrow \text{H}_2\text{SO}_4 \rightarrow \text{CuCN}_3 \rightarrow \text{Pd(OAc)}_2 \rightarrow \text{CN} \]
Route C

This route prepares compounds in which "Het" has a substituent of the formula R^1 where R^1 is as defined for formula (I) (and, of course, optimally up to two C_1-C_4 alkyl groups), and involves the reaction of the corresponding compound having a bromo- or iodo- substituent on "Het" with an aryl zinc halide of the formula R^1-Zn-X where X is I, Br or Cl. The reaction is desirably carried out in the presence of a palladium (0) catalyst. X is preferably Cl. Also, it is preferred to use a starting material having an iodo substituent on "Het".

The reaction is typically carried out by heating the bromo- or iodo-substituted starting material with the aryl zinc halide in the presence of a palladium catalyst, preferably tetrakis (triphenylphosphine) palladium (0), and in a suitable organic solvent, e.g. tetrahydrofuran, at up to the reflux temperature, generally for 1-24 hours. The product can then be isolated and purified by conventional means.

Typical reactions of this type are illustrated as follows:-

\[
\begin{align*}
\text{I} & \quad \text{ZnCl,} \\
\text{CH}_3
\end{align*}
\]

and

\[
\begin{align*}
\text{F} & \quad \text{ZnCl,} \\
\text{CH}_3
\end{align*}
\]
The bromo- and iodo-substituted starting materials can be prepared by conventional procedures (see e.g. European patent application publication no. 0166533). A typical route is illustrated as follows:-
Route D

This route involves the demethylation of a compound of the formula (I) in which "Het" contains a methoxy-phenyl substituent, thereby producing the corresponding hydroxy-phenyl substituted compound.

The demethylation is preferably carried out by heating the methoxy starting material in an aqueous mineral acid, preferably aqueous HBr or HI, and typically 48% w/w aqueous HBr or 55% w/w aqueous HI, at from room temperature up to the reflux temperature, generally for from 0.5-5 hours. The product can then be isolated and purified by conventional means.

A typical reaction is illustrated as follows:

\[
\begin{align*}
\text{CH}_3 & \quad \text{N} & \quad \text{N} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{N} & \quad \text{N} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{N} & \quad \text{N} & \quad \text{CH}_3 \\
\text{CH}_3 & \quad \text{N} & \quad \text{N} & \quad \text{CH}_3
\end{align*}
\]

The methoxy-starting materials are prepared by conventional procedures, typically by the method outlined in Route C above.

Route E

This route prepares compounds in which "Het" has a \(C_1-C_4 \) alkylsulphinyl-phenyl substituent, and involves the reaction of the corresponding compound having a \(C_1-C_4 \) alkylthio-phenyl substituent with a suitable oxidising agent, e.g. m-chloroperbenzoic acid or hydrogen peroxide.

The reaction is typically carried out by stirring the alkylthio-substituted starting material with meta-chloroperbenzoic acid (m-CPBA) in a suitable organic solvent, e.g. dichloromethane, at 0°C, generally for 0.5-3 hours. The product can then be isolated and purified by conventional means.
A typical reaction of this type is illustrated as follows:--

Route F

This route prepares compounds in which "Het" has a C₁-C₄ alkylsulphonyl-phenyl substituent, and involves the reaction of the corresponding compound having a C₁-C₄ alkylsulphinyl-phenyl substituent with a suitable oxidising agent, e.g. m-chloroperbenzoic acid or hydrogen peroxide.

The reaction is typically carried out by stirring the alkylsulphinyl-substituted starting material with meta-chloroperbenzoic acid in a suitable organic solvent, e.g. dichloromethane, at up to 30°C, generally for 0.5-3 hours. The product can then be isolated and purified by conventional means.

A typical reaction of this type is illustrated as follows:--
Alternatively, compounds in which R is a phenyl group substituted by a C₁-C₄ alkylsulphonyl group (and, of course, optionally by up to two C₁-C₄ alkyl groups) can be prepared by the direct oxidation of the corresponding C₁-C₄ alkylthio derivatives using an excess (at least two equivalents) of the oxidising agent.

Route G

The compounds of the formula (I) can also be prepared by the Goldberg reaction, as follows:

\[
\text{Het.H} + Q \xrightarrow{\text{base, copper catalyst}} \text{Compounds (I)}
\]

Q is a leaving group such as Cl, Br or I. Q is preferably Br or I. The reaction is carried out in the presence of a copper catalyst, preferably a copper (0) catalyst such as finely divided copper-bronze. Potassium carbonate is a useful base. A typical reaction involves the reaction of the bromo-quinolone with the heterocycle in the presence of copper-bronze, potassium carbonate and iodine with heating at up to about 200°C in a suitable organic solvent, eg., N-methyl-2-pyrrolidone. The product can then be isolated and purified conventionally.

The quinolone starting materials are either known compounds (see European patent application publication no. 0148623) or can be prepared by conventional techniques.

Where the compounds of the invention contain one or more asymmetric centres, then the invention includes the separated enantiomers and diastereoisomers or mixtures thereof. The separated forms can be obtained by conventional means.

The following Examples illustrate the invention (all temperatures are in °C):-
EXAMPLE 1

Preparation of 6-(2-acetyl-4-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 0.25 H₂O

\[
\begin{align*}
\text{COCH₃} & \quad \text{N} & \quad \text{H} & \quad \text{CH₃} \\
\text{CH₃} & \quad \text{N} & \quad \text{O} & \quad \text{CH₃} \\
\text{H₂SO₄} & \quad \text{COCH₃} & \quad \text{N} & \quad \text{H} & \quad \text{CH₃} \\
\end{align*}
\]

Trans-1-{4-[N-(3-ethoxypropenamido)-3-methylphenyl]-2-acetyl-4-methylimidazole (0.33 g) was added with stirring to 98% w/w sulphuric acid (1 cm³) at 0°C. After 24 hours at room temperature (20°C) the mixture was poured carefully onto ice (20 g) and the resulting solution was basified to pH 8 with saturated aqueous sodium bicarbonate. The mixture was then extracted with dichloromethane (3 x 100 cm³), and the combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give a solid which was recrystallised from ethyl acetate/methanol to afford the title compound, m.p. 312-314°C (0.13 g).

Analysis Z:-

Found: C, 67.3; H, 5.5; N, 14.5;

Calculated for C₁₆H₁₅N₃O₂.0.25 H₂O: C, 67.3; H, 5.4; N, 14.7.

EXAMPLE 2

Preparation of 6-(5-acetyl-2,4-dimethylimidazol-1-yl)-8-methyl-2-(1H)-quinolone

This compound, m.p. 240-242°C, was prepared similarly to Example 1 from the appropriately substituted propenamide derivative and 98% H₂SO₄.

Analysis Z:-

Found: C, 69.0; H, 5.8; N, 14.4;

Calculated for C₁₇H₁₇N₃O₂: C, 69.2; H, 5.8; N, 14.2.
EXAMPLE 3

Preparation of 6-(4-acetyl-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 0.17 H₂O

\[
\text{\begin{align*}
\text{CH}_3 & \quad \text{N} \\
\text{CN} & \quad \text{H}
\end{align*}} \quad \xrightarrow{(1) \text{MeMgBr/THF}} \quad \text{\begin{align*}
\text{CH}_3 & \quad \text{N} \\
\text{\quad \text{O}} & \quad \text{H}
\end{align*}} \quad \xrightarrow{(2) \text{HCl}} \quad \text{\begin{align*}
\text{CH}_3 & \quad \text{N} \\
\text{CH}_3 & \quad \text{H}
\end{align*}}
\]

Methyl magnesium bromide (1.11 cm³ of a 3M solution in diethyl ether) was added dropwise to a stirred solution of 6-(4-cyano-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (0.15 g) in tetrahydrofuran (THF) (25 cm³) at 0° under nitrogen. The mixture was heated under reflux for 2 hours, cooled to room temperature, quenched with water (10 cm³) and then stirred for 30 minutes with 5M hydrochloric acid (10 cm³). The mixture was basified with 10% sodium carbonate solution and extracted with dichloromethane (3 x 100 cm³). The combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]). Elution with methanol:dichloromethane, 1:19 by volume, followed by combination and evaporation of appropriate fractions gave a solid which was recrystallised from ethyl acetate-methanol to afford the title compound, m.p. 306-308° (0.05 g).

Analysis %:-

Found: \(C, 67.4; \) \(H, 5.4; \) \(N, 14.8; \)

Calculated for \(C_{16}H_{15}N_3O_2 \), 0.17 \(H_2O \): \(C, 67.6; \) \(H, 5.4; \) \(N, 14.8 \).
EXAMPLES 4-8

The following compounds (formula IC) were prepared similarly to the procedure of Example 3 using the appropriate Grignard reagent of the formula R^5MgBr and 6-(4-cyano-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone as the starting materials:

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{CN} & \quad \text{N} \\
\text{CH}_3 & \quad \text{H} \\
\text{O} & \quad \text{O}
\end{align*}
\]

(1) R^5MgBr/THF

(2) 5M HCl

(IC)
<table>
<thead>
<tr>
<th>Example No.</th>
<th>R^5</th>
<th>Form Isolated and m.p. (°C)</th>
<th>Analysis % (Theoretical in brackets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>C_2H_5</td>
<td>Free base, 261-3°</td>
<td>69.0 5.9 13.7 (69.2 5.8 14.2)</td>
</tr>
<tr>
<td>5</td>
<td>$\text{CH(CH}_3\text{)}_2$</td>
<td>Free base, 0.17 H$_2$O, 224-7°</td>
<td>69.3 6.3 13.2 (69.2 6.2 13.5)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Free base, 0.5 H$_2$O, 290-3°</td>
<td>71.4 4.9 11.7 (71.6 5.1 11.9)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Free base, 0.25 H$_2$O, 310-3°</td>
<td>69.7 5.1 11.1 (69.9 5.1 11.1)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Free base, 0.25 H$_2$O, 288-90°</td>
<td>69.0 4.7 11.7 (69.0 4.5 11.5)</td>
</tr>
</tbody>
</table>
EXAMPLE 9

Preparation of 6-(4-[1-methyl-1,2,4-triazol-5-ylcarbonyl]-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone

\[
\begin{align*}
\text{CH}_3 & \\
\text{N} & \\
\text{MgBr,} & \\
\text{MgBr,} & \\
\text{T.H.F.} & \\
\text{CH}_3 & \\
\text{CH}_3 & \\
\text{CN} & \\
\text{CH}_3 & \\
\text{N} & \\
\text{H} & \\
\text{N} & \\
\text{N} & \\
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3 & \\
\text{N} & \\
\text{MgBr,} & \\
\text{T.H.F.} & \\
\text{CH}_3 & \\
\text{CH}_3 & \\
\text{CN} & \\
\text{CH}_3 & \\
\text{N} & \\
\text{H} & \\
\text{N} & \\
\end{align*}
\]

\[\text{n-Butyllithium (4 cm}^3 \text{ of a 1.5 M solution in diethyl ether) was added dropwise to a stirred solution of 1-methyl-1,2,4-triazole (0.50 g) in tetrahydrofuran (THF) (20 cm}^3 \text{ at } -70^\circ \text{ under nitrogen. After 15 minutes anhydrous magnesium bromide etherate (1.55 g) was added and the mixture was warmed to room temperature over 1 hour. 6-(4-Cyano-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (0.26 g) was added and the mixture was heated under reflux for 4.5 hours. The cooled mixture was quenched with water (10 cm}^3 \text{) and then stirred for 30 minutes with 2M hydrochloric acid (10 cm}^3 \text{). The mixture was basified with 10\% aqueous sodium carbonate solution to pH 10 (approximately) and extracted with ethyl acetate (3 x 100 cm}^3 \text{). The combined and dried (MgSO}_4) organic extracts were evaporated in vacuo to give a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]). Elution with methanol:chloroform, 1:50 by volume, followed by combination and evaporation of appropriate fractions, gave a solid which was boiled in ethyl acetate. Filtration afforded the title compound, m.p. 293-4^\circ, (0.05 g).
\]

Analysis:

- Found: C, 62.1; H, 4.7; N, 24.1;
- Calculated for C_{18}H_{16}N_{6}O_{2}: C, 62.1; H, 4.6; N, 24.1.
EXAMPLE 10
Preparation of 6-(5-acetyl-2,4-dimethylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (Alternative to Example 2)

This compound was prepared similarly to Example 3 using 6-(5-cyano-2,4-dimethylimidazol-1-yl)-8-methyl-2-(1H)-quinolone and methyl magnesium bromide as the starting materials.

Analysis %:

Found: C, 68.8; H, 5.7; N, 14.4;
Calculated for $C_{17}H_{17}N_3O_2$: C, 69.2; H, 5.8; N, 14.2.

EXAMPLE 11
Preparation of 6-(4-(4-fluorophenyl)-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 0.25 H$_2$O

n-Butyllithium (3.5 cm3 of a 1.43 M solution in n-hexane) was added dropwise to a stirred solution of 4-bromo-fluorobenzene (0.88 g) in tetrahydrofuran (THF) (20 cm3) at -70° under nitrogen. After 0.5 hours a solution of anhydrous zinc chloride (0.68 g) in THF (10 cm3) was added dropwise, and the mixture was warmed to room temperature over 1 hour. 6-(4-Iodo-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (0.37 g) and tetrakis (triphenylphosphine) palladium (0) (0.01 g) were added and the mixture heated under reflux for 1.5 hours. The cooled solution was quenched with water (10 cm3) and poured into a saturated solution of ethylenediaminetetraacetic acid disodium salt in water (30 cm3), which had been adjusted to pH 9 by addition of sodium carbonate solution. This mixture was extracted with dichloromethane (3 x 100 cm3) and the combined and dried (MgSO$_4$)
extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:dichloromethane, 1:19 by volume. Collection and evaporation of appropriate fractions afforded a solid which was recrystallised from ethyl acetate to give the title compound, m.p. 289-291° (0.14 g).

Analysis %:–
Found:
C, 71.3; H, 5.0; N, 12.2;
Calculated for $C_{20}H_{16}N_3OF$, 0.25 H_2O: C, 71.2; H, 4.9; N, 12.4.

EXAMPLES 12-19

The following compounds (formula ID) were prepared similarly to the procedure of Example 11 using the appropriately substituted aryl zinc chloride, the appropriate iodoimidazole derivative and tetrakis (triphenylphosphine)palladium (0) as the starting materials:

![Chemical Structure Diagram]
<table>
<thead>
<tr>
<th>Example No.</th>
<th>(R^a)</th>
<th>(R^b)</th>
<th>(R^c)</th>
<th>(R^d)</th>
<th>(R^e)</th>
<th>Form Isolated and m.p. (°C)</th>
<th>Analysis % (Theoretical in brackets)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Free base 0.5 H2O 293-295°</td>
<td>74.1 5.7 12.8 (74.4 5.6 13.0)</td>
</tr>
<tr>
<td>12</td>
<td>-I</td>
<td>-CH₃</td>
<td>-H</td>
<td>-CH₃</td>
<td></td>
<td>Free base 1.0 H2O 265-266°</td>
<td>69.9 5.6 11.4 (69.4 5.8 11.6)</td>
</tr>
<tr>
<td>13</td>
<td>-I</td>
<td>-CH₃</td>
<td>-OCH₃</td>
<td>-CH₃</td>
<td></td>
<td>Free base 0.33 H₂O 280-282°</td>
<td>74.9 5.5 12.8 (74.8 5.5 13.1)</td>
</tr>
<tr>
<td>14</td>
<td>-CH₃</td>
<td>-I</td>
<td>-H</td>
<td>-CH₃</td>
<td></td>
<td>Free base 0.33 H₂O 278-281°</td>
<td>71.8 5.6 12.3 (71.8 5.6 12.0)</td>
</tr>
<tr>
<td>Example No.</td>
<td>R<sup>a</sup></td>
<td>R<sup>b</sup></td>
<td>R<sup>c</sup></td>
<td>R<sup>d</sup></td>
<td>R<sup>e</sup></td>
<td>Form Isolated and m.p. (°C)</td>
<td>Analysis % (Theoretical in brackets)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>16</td>
<td>CH<sub>3</sub></td>
<td>I</td>
<td>-Cl</td>
<td>CH<sub>3</sub></td>
<td>![Image](Form Isolated and m.p.)</td>
<td>Free base</td>
<td>0.17 H<sub>2</sub>O, 305-8°</td>
</tr>
<tr>
<td>17</td>
<td>CH<sub>3</sub></td>
<td>I</td>
<td>-CF<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>![Image](Free base)</td>
<td>Free base</td>
<td>0.25 Et<sub>2</sub>O, 282-4°</td>
</tr>
<tr>
<td>18</td>
<td>CH<sub>3</sub></td>
<td>I</td>
<td>-SCH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>![Image](Free base)</td>
<td>Free base</td>
<td>0.25 H<sub>2</sub>O, 291-3°</td>
</tr>
<tr>
<td>19</td>
<td>CH<sub>3</sub></td>
<td>I</td>
<td>-NH<sub>2</sub>SO<sub>2</sub>CH<sub>3</sub></td>
<td>CH<sub>3</sub></td>
<td>![Image](Free base)</td>
<td>Free base</td>
<td>0.5 H<sub>2</sub>O, 313-6°</td>
</tr>
</tbody>
</table>
EXAMPLE 20

Preparation of 6-(4-(2,4-difluorophenyl)-2-methyl-imidazol-1-yl)-
8-methyl-2-(1H)-quinolone, 0.5 H₂O

This compound, m.p. 262-5°, was prepared similarly to Example 11 using 6-(4-iodo-2-methylimidazol-1-yl)-8-methyl-2-(1H)-
quinolone, 2,4-difluorophenyl zinc chloride and tetrakis
(triphenylphosphine) palladium (0) as the starting materials:

Analysis Z:–
Found: C, 66.9; H, 4.2; N, 11.6;
Calculated for C₀H₁₅F₂N₃O₀.5H₂O: C, 66.7; H, 4.4; N, 11.7.

EXAMPLE 21

Preparation of 6-(4-[4-hydroxyphenyl]-2-methyl-imidazol-1-yl)-8-
methyl-2-(1H)-quinolone.H₂O

6-(4-[4-Methoxyphenyl]-2-methylimidazol-1-yl)-8-methyl-2-
(1H)-quinolone (0.35 g) was added with stirring to 55% w/w
hydroiodic acid (10 cm³) at room temperature (20°). The mixture
was heated under reflux for 3 hours, cooled, poured into water
(10 cm³), and basified to pH8 with sodium hydrogen carbonate
solution. The crude product was filtered, washed with water, and
then boiled in ethyl acetate/methanol to remove soluble organic
impurities. The mixture was cooled and the solid filtered and
dried to give the title compound, m.p. > 380°, (0.24 g).

Analysis Z:–
Found: C, 69.0; H, 5.1; N, 11.7;
Calculated for C₂₀H₁₇N₃O₂H₂O: C, 68.8; H, 5.4; N, 12.0.
EXAMPLE 22

Preparation of 6-(4-[4-methylthiophenyl]-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 0.25 H₂O

Meta-Chloroperbenzoic acid (0.11 g) was added in portions over a period of 5 minutes to a stirred suspension of 6-(4-[4-methylthiophenyl]-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (0.2 g) in dichloromethane (10 cm³) at 0°. The mixture was stirred at 0° for 30 minutes, then poured into saturated aqueous sodium carbonate solution (30 cm³) and extracted with dichloromethane (3 x 25 cm³). The combined and dried (MgSO₄) extracts were evaporated in vacuo to give a solid which was recrystallised from dichloromethane to give the title compound, m.p. 313-5°, (0.08 g).

Analysis %:
Found: C, 66.0; H, 4.9; N, 11.0;
Calculated for C₂₁H₁₉N₃O₂S·0.25 H₂O: C, 66.1; H, 5.1; N, 11.0.
EXAMPLE 23
Preparation of 6-(4-[4-methylsulphonylphenyl]-2-methyl-imidazol-1-yl)-8-methyl-2-(1H)-quinolone

meta-Chloroperbenzoic acid (0.11 g) was added to a stirred solution of 6-(4-[4-methylsulphinylphenyl]-2-methyl-imidazol-1-yl)-8-methyl-2-(1H)-quinolone (0.14 g) in dichloromethane (20 cm³) at room temperature. After 30 minutes the mixture was poured into saturated sodium carbonate solution (30 cm³) and extracted with dichloromethane (3 x 30 cm³). The combined and dried (MgSO₄) extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:dichloromethane, 1:19 by volume. Collection and evaporation of appropriate fractions afforded a solid which was recrystallised from ethyl acetate to give the title compound, m.p. 345-7° (0.06 g).

Analysis Z:-
Found: C, 63.9; H, 5.0; N, 10.5;
Calculated for C₂¹H₁₉N₃O₃S: C, 64.1; H, 4.8; N, 10.7.
Example 24 (Alternative to Example 3)

Preparation of 6-(4-acetyl-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 0.25 H₂O.

A mixture of 6-bromo-8-methyl-2-(1H)-quinolone (2.38g), (see Preparation 67 of European patent application publication no. 0148623), 4-acetyl-2-methylimidazole (2.48g), finely divided copper-bronze (0.64g), potassium carbonate (1.38g), and a few crystals of iodine was stirred and heated in N-methyl-2-pyrrolidone (8cm³) at 190°C for 24 hours under nitrogen. The cooled mixture was then poured into methanol : dichloromethane (100cm³, 1:10 by volume), stirred and filtered. The filtrate was poured into aqueous ammonia (20 cm³, s.g. 0.880) and the mixture was filtered through "Solkafloc" (Trademark for a cellulose-based filtering aid). The filtrate was separated and the aqueous phase was re-extracted with methanol : dichloromethane (3 x 100cm³), 1:10 by volume). The combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trademark]). Elution with methanol : dichloromethane, 1:33 by volume, followed by combination and evaporation of the appropriate fractions, gave unreacted starting bromo-quinolone (0.68g) and a solid which was recrystallised from ethyl acetate/methanol to afford the title compound, m.p. 306-8°, (0.26g), which was also confirmed spectroscopically to be identical to the product of Example 3.
Analysis:

Found: \(\text{C}, 67.6; \text{H}, 5.7; \text{N}, 14.6; \)

Calculated for \(\text{C}_{16} \text{H}_{15} \text{N}_{3} \text{O}_{2}, 0.25 \text{H}_2\text{O}: \text{C}, 67.3; \text{H}, 5.5; \text{N}, 14.7. \)

The following Preparations, in which all temperatures are in °C, illustrate the preparation of certain starting materials used in the previous Examples:-
Preparation 1

6-(2-Iodo-4-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 0.67 H$_2$O

\[
\begin{array}{c}
\text{(1) } n-\text{BuLi/THF} \\
\text{(2) } I_2 \\
\end{array}
\]

\[
\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3 \\
\end{array}
\]

\[
\begin{array}{c}
\text{CH}_3 \\
\text{CH}_3 \\
\end{array}
\]

n-Butyllithium (2.94 cm3 of a 1.43 M solution in n-hexane) was added dropwise to a stirred suspension of 6-(4-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (0.45 g) in tetrahydrofuran (THF) (25 cm3) at -70° under nitrogen. After 30 minutes iodine (0.51 g) was added and the mixture was stirred for a further 30 minutes at -70° before warming to room temperature. The mixture was quenched with saturated ammonium chloride solution (10 cm3), the THF evaporated in vacuo, and the residue partitioned between water (20 cm3) and dichloromethane (50 cm3). The aqueous phase was re-extracted with dichloromethane (2 x 50 cm3), and the combined and dried (MgSO$_4$) organic extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]). Elution with chloroform, followed by combination and evaporation of the appropriate fractions, gave a solid which was recrystallised from ethyl acetate to afford the title compound, decomposition point 260° (0.27 g).

Analysis:

<table>
<thead>
<tr>
<th>Found:</th>
<th>Calculated for C${14}$H${12}$N$_3$I.0.67 H$_2$O:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C, 44.7; H, 3.6; N, 10.8;</td>
<td>C, 44.6; H, 3.5; N, 11.1.</td>
</tr>
</tbody>
</table>
Preparation 2

6-(4-Cyano-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone

0.67 H₂O

A mixture of 6-(4-Iodo-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (0.55 g), cuprous cyanide (0.27 g) and palladium acetate (0.03 g) in 1-methyl-2-pyrrolidone (5 cm³) was heated and stirred at 175° for 2 hours. The cooled mixture was poured into aqueous ammonia solution (30 cm³; S.G. 0.880) and extracted with dichloromethane (3 x 100 cm³). The combined and dried (MgSO₄) organic extracts were filtered and evaporated in vacuo and the residue was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with chloroform. Combination and evaporation of the appropriate fractions afforded the title compound, m.p. >350°, (0.22 g).

Analysis:

Found: C, 65.3; H, 4.5; N, 20.1;
Calculated for C₁₅H₁₂N₄O, 0.67 H₂O: C, 65.2; H, 4.8; N, 20.3.
Preparation 3

6-(5-Cyano-2,4-dimethylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 0.25 H₂O, m.p. 334-337°, was prepared similarly to the previous Preparation using 6-(5-iodo-2,4-dimethylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, cuprous cyanide and palladium acetate as the starting materials:

Analysis %:

Found: C, 68.0; H, 5.1; N, 20.1;

Calculated for C₁₆H₁₄N₄O·0.25H₂O: C, 68.0; H, 5.3; N, 19.8.

Preparations 4-6

The following compounds were prepared similarly to Example 1, using the appropriately substituted trans-3-ethoxy propenamide and 98% w/w H₂SO₄ as the starting materials:
<table>
<thead>
<tr>
<th>Preparation No.</th>
<th>Het</th>
<th>Form Isolated and m.p. (°C)</th>
<th>Analysis % (Theoretical in brackets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>Free base, 0.33 H₂O, 285-7°</td>
<td>C: 45.3, H: 3.3, N: 11.3 (45.3, 3.4, 11.3)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Free base, 292-5°</td>
<td>C: 69.8, H: 5.5, N: 17.4 (70.3, 5.5, 17.6)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Free base, 322.5-325°</td>
<td>C: 71.4, H: 6.1, N: 16.7 (71.1, 6.0, 16.6)</td>
</tr>
</tbody>
</table>
Preparation 7

Trans-1-{4-[(3-ethoxypropenamido)N-(3-methylphenyl)]-3-methylphenyl}-4-iodo-2-methylimidazole

A solution of trans-3-ethoxypropenoyl chloride (1.52 g) in tetrahydrofuran (THF) (25 cm³) was added dropwise to a stirred solution of 1-(4-amino-3-methylphenyl)-4-iodo-2-methylimidazole (2.94 g) in anhydrous pyridine (25 cm³), cooled to -40°C, and the mixture was warmed to room temperature over 2 hours. The reaction mixture was quenched with 10% sodium carbonate solution (5 cm³) poured into water (50 cm³) and extracted with dichloromethane (3 x 100 cm³). The combined and dried (MgSO₄) organic extracts were evaporated in vacuo, and the residue chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:dichloromethane, 1:19 by volume. Combination and evaporation of the appropriate fractions gave a solid which was recrystallised from ethyl acetate to give the title compound, m.p. 172-4°C, (3.46 g).

Analysis %:-

Found: C,46.8; H,4.5; N,10.1;
Calculated for C₁₆H₁₈N₃O₂I: C,46.7; H,4.4; N,10.2.
Preparations 8-11

The following compounds were prepared similarly to Preparation 7 using the appropriately substituted aniline and trans-3-ethoxypropenoyl chloride as the starting materials:
<table>
<thead>
<tr>
<th>Preparation No.</th>
<th>Het</th>
<th>Form Isolated and m.p. (°C)</th>
<th>Analysis % (Theoretical in brackets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>Free base, 189-191°</td>
<td>65.9 6.2 12.7 (66.1 6.4 12.8)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Free base, 181-3°</td>
<td>67.3 6.8 14.6 (67.3 6.7 14.7)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Free base, 142.5-144.5</td>
<td>68.6 7.1 13.9 (68.2 7.1 14.0)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Free base, crude oil</td>
<td>Characterised by 1H N.M.R.</td>
</tr>
</tbody>
</table>
Preparation 12

6-(5-Iodo-2,4-dimethylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 0.5 H₂O

A solution of iodine monochloride (0.41 g) in acetic acid (5 cm³) was added dropwise to a stirred solution of 6-(2,4-dimethylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (0.51 g) and sodium acetate (0.33 g) in acetic acid (10 cm³), and the mixture was stirred for 16 hours. The acetic acid was evaporated in vacuo, 10% sodium carbonate solution (50 cm³) was added, and the mixture extracted with dichloromethane (3 x 50 cm³). The combined and dried (MgSO₄) organic extracts were evaporated in vacuo and the residue chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with ethyl acetate. Combination and evaporation of the appropriate fractions gave a solid which was recrystallised from methanol-ethyl acetate to afford the title compound, m.p. 242-5°C, (0.38 g).

Analysis %:

Found: C, 46.4; H, 3.7; N, 11.0;
Calculated for C₁₅H₁₄N₃O₁, 0.5 H₂O: C, 46.4; H, 3.9; N, 10.8.

Preparation 13

1-(4-Amino-3-methylphenyl)-4-iodo-2-methylimidazole
Stannous chloride dihydrate (9.04 g) was added portionwise to a stirred suspension of 4-Iodo-1-(3-methyl-4-nitrophenyl)-2-methylimidazole (2.75 g) in absolute ethanol (50 cm³) under nitrogen. After heating under reflux for 1 hour, the cooled mixture was basified to pH 8 with aqueous 2.5 M sodium hydroxide, and extracted with chloroform (3 x 100 cm³). The combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:dichloromethane, 1:25 by volume. Combination and evaporation of appropriate fractions afforded the title compound as a crude oil (2.41 g), which was used directly without further purification.

Preparations 14-16

The following compounds were prepared similarly to the previous Preparation using the appropriately substituted nitrobenzene derivative and stannous chloride dihydrate as the starting materials:

\[
\begin{align*}
\text{Het} & \quad \text{SNH} \\
& \quad \text{S} \\
& \quad \text{CH₃}
\end{align*}
\]
<table>
<thead>
<tr>
<th>Preparation No.</th>
<th>Het</th>
<th>Form Isolated and m.p. (°C)</th>
<th>Analysis % (Theoretical in brackets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td>Free base, 0.17 H₂O, 157-9°</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(67.2</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Free base, 109-111.5°</td>
<td>70.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(70.6</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Free base, 92-6°</td>
<td>Characterised by ¹H N.M.R.</td>
</tr>
</tbody>
</table>
Preparation 17

4-Iodo-1-(3-methyl-4-nitrophenyl)-2-methylimidazole

A mixture of 5-fluoro-2-nitrotoluene (7.9 g), 4-iodo-2-methylimidazole (9.0 g) and sodium carbonate (4.5 g) was heated with stirring in dimethylformamide (50 cm³) at 120° for 16 hours under nitrogen. The mixture was poured into water (50 cm³) and extracted with chloroform (3 x 100 cm³). The combined and dried (MgSO₄) organic extracts were concentrated in vacuo to give a solid which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with ethyl acetate:toluene, 1:5 by volume. Combination and evaporation of appropriate fractions afforded a solid which was recrystallised from dichloromethane-hexane to give the title compound, m.p. 146-8°, (4.0 g).

Analysis Z:-

Found: C, 38.5; H, 3.1; N, 12.4;
Calculated for C₁₁H₁₀N₂O₂I: C, 38.5; H, 2.9; N, 12.2.

Preparations 18-20

The following compounds were prepared similarly to the previous Preparation using 5-fluoro-2-nitro-toluene, the appropriately substituted imidazole, and sodium carbonate as the starting materials:-
<table>
<thead>
<tr>
<th>Preparation No.</th>
<th>Het</th>
<th>Form Isolated and m.p. (°C)</th>
<th>Analysis % (Theoretical in brackets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
<td>Free base, 157-9°</td>
<td>59.7 5.1 16.3 (60.2 5.0 16.2)</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Free base, 144-7°</td>
<td>61.0 5.1 19.6 (60.8 5.1 19.3)</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Free base, 135.5-38°</td>
<td>62.3 5.7 18.2 (62.0 5.7 17.9)</td>
</tr>
</tbody>
</table>
Preparation 21

5-Acetyl-1-(4-amino-3-methylphenyl)-2,4-dimethylimidazole

Methyllithium (219 cm3 of a 1.5 M solution in ether) was added dropwise to a stirred suspension of 1-(4-amino-3-methylphenyl)-5-cyano-2,4-dimethylimidazole (9.3 g) in ether (100 cm3) at -70° under nitrogen. The mixture was allowed to warm to room temperature over 1 hour and then heated under reflux for 5 hours. The mixture was quenched by the dropwise addition of water (50 cm3), acidified with 2M hydrochloric acid (50 cm3), and warmed on a steam bath for 5 minutes. The mixture was basified with 10% sodium carbonate solution to pH9 and extracted with dichloromethane (3 x 200 cm3). The combined and dried (MgSO$_4$) organic extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]). Elution of the column with hexane:ethyl acetate, 1:1, gave firstly fractions containing recovered starting material (2.9 g). Further elution with hexane:ethyl acetate, 1:4, followed by combination and evaporation of the appropriate fractions, afforded the title compound as an oil (5.6 g), which was used (Preparation 11) without further purification.
Preparation 22

The following compound, m.p. 152-155.5°, was prepared similarly to Preparation 2, using 1-(4-amino-3-methylphenyl)-5-iodo-2,4-dimethylimidazole and cuprous cyanide as the starting materials but without the use of a palladium acetate catalyst.

![Chemical structure](attachment:image.png)

Analysis %:

Found: C, 67.1; H, 6.1; N, 24.0;
Calculated for C_{13}H_{14}N_{4}·0.33 H_{2}O: C, 67.2; H, 6.4; N, 24.1.

Preparation 23

1-(4-Amino-3-methylphenyl)-5-iodo-2,4-dimethylimidazole

![Reaction scheme](attachment:reaction_scheme.png)

Silver sulphate (21.8 g) and crushed iodine (35.5 g) were added portionwise to a stirred solution of 1-(4-amino-3-methylphenyl)-2,4-dimethylimidazole (25.4 g) in sulphuric acid (100 cm^3) cooled to -10°. After heating at 55°C for 2 hours, the cooled mixture was poured onto ice (500 g). The mixture was cautiously adjusted to pH8 by addition of concentrated ammonia solution (S.G. 0.880) and extracted with chloroform (2 x 500 cm^3). The organic extracts were combined, filtered through "Arbocel"
(sil.ca) [Trade Mark], and washed with saturated sodium thiosulphate solution (200 cm3). The organic solution was dried (MgSO_4) and evaporated \textit{in vacuo} to give a residue which, on trituration with ether, gave the title compound (32.25 g) as a crude solid which was used without further purification in Preparation 22.

\textbf{Preparation 24}

\textbf{4-Iodo-2-methylimidazole}

\[\text{CH}_3 \quad \begin{array}{c} \text{N} \quad \text{N} \quad \text{H} \\ \text{I} \quad \text{I} \end{array} \text{N} \quad \text{H} \quad \text{CH}_3 \]

n-Butyllithium (86 cm3 of a 1.43 M solution in n-hexane) was added dropwise to a stirred solution of 4,5-diiodo-2-methylimidazole (20.5 g) in tetrahydrofuran (THF) (300 cm3) at -70° under nitrogen. After 15 minutes water (20 cm3) was added, and the mixture warmed to room temperature over 1 hour. The mixture was evaporated \textit{in vacuo} to low bulk, water (100 cm3) was added, and the pH adjusted to 8 by addition of 2M hydrochloric acid. The aqueous phase was extracted with dichloromethane (3 x 150 cm3), and the combined and dried (MgSO_4) organic extracts were evaporated \textit{in vacuo} to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]). Elution with ethyl acetate followed by combination and evaporation of the appropriate fractions gave 4-iodo-2-methylimidazole as a solid (9.0 g) which was characterised spectroscopically and used without further purification (Preparation 17).
Preparation 25

4,5-Diiodo-2-methylimidazole

A solution of iodine monochloride (32.5 g) in dichloromethane (100 cm³) was added dropwise over 1.5 hours to a solution of 2-methylimidazole (8.2 g) and triethylamine (20.2 g) in dichloromethane (200 cm³) at -70° under nitrogen. The mixture was stirred for a further 30 minutes, warmed to -30°, and then poured into water (200 cm³). The resulting precipitate was filtered off, dried and recrystallised from ethyl acetate-hexane to afford 4,5-diiodo-2-methylimidazole (18.5 g) which was characterised spectroscopically and used directly without further purification (Preparation 24).

Preparation 26

2-Acetyl-4-methyl-imidazole
n-Butyllithium (7.7 cm3 of a 1.43 M solution in n-hexane) was added dropwise to a stirred solution of 1,1-diethoxymethyl-4-methylimidazole (1.84 g) in tetrahydrofuran THF (50 cm3) at -40° under nitrogen. After 30 minutes N,N-dimethylacetamide (1.11 cm3) was added, the solution was warmed to room temperature, and stirred for 16 hours. The mixture was poured into 2M hydrochloric acid (50 cm3) and washed with dichloromethane (2 x 50 cm3). The aqueous phase was basified with 10% sodium carbonate solution and extracted with dichloromethane (4 x 40 cm3). The combined and dried (MgSO$_4$) organic extracts were evaporated in vacuo and the residue was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]). Elution with ethyl acetate followed by combination and evaporation of the appropriate fractions gave 2-acetyl-4-methylimidazole, m.p. 113-5°, (0.47 g).

Analysis:

Found: C, 58.1; H, 6.5; N, 22.8;
Calculated for C$_6$H$_8$N$_2$O: C, 58.1; H, 6.5; N, 22.6.

Preparation 27

1-Diethoxymethyl-4-methylimidazole

4-Methylimidazole (16.4 g), triethylorthoformate (118.4 g), and p-toluene sulphonic acid (1 g) were mixed and heated at 130° until evolution of ethanol ceased (approximately 2 hours). Volatile material was removed in vacuo and the residue was distilled under vacuum from anhydrous sodium carbonate (1 g) to afford the title compound, b.p. 126-130°/5 mm (22.06 g). The product was characterised spectroscopically and used without further purification (Preparation 26).

PLC 421
Preparation 28 (Alternative to Preparation 2)

6-(4-Cyano-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone

\[
\text{CH}_3
\]

\[
\text{N}
\]

\[
\text{CN} \quad \text{Cl}
\]

\[
\text{CH}_3 \quad \text{H}
\]

\[
\text{I}
\]

\[
\text{Cl}
\]

\[
\text{N}
\]

\[
\text{CN} \quad \text{Cl}
\]

\[
\text{CH}_3 \quad \text{H}
\]

\[
\text{CH}_3
\]

\[
\text{N}
\]

\[
\text{CN} \quad \text{Cl}
\]

\[
\text{CH}_3 \quad \text{H}
\]

\[
\text{O}
\]

n-Butyllithium (17.5 cm\(^3\) of a 1.5 M solution in n-hexane) was added dropwise to a stirred solution of 6-(5-chloro-4-cyano-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (3.57 g) in tetrahydrofuran (THF) (100 cm\(^3\)) at -70\(^\circ\) under nitrogen. After 15 minutes saturated aqueous ammonium chloride solution (20 cm\(^3\)) was added and the mixture was warmed to room temperature over 1 hour. The mixture was then poured into water (50 cm\(^3\)), extracted with ethyl acetate (4 x 150 cm\(^3\)), and the combined and dried (MgSO\(_4\)) organic extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]). Elution with methanol:dichloromethane, 1:19 by volume, followed by combination and evaporation of the appropriate fractions, gave a solid which was boiled with ethyl acetate/methanol, then filtered and dried to afford the title compound, (0.71 g), which was shown spectroscopically to be identical to the product of Preparation 2.

Preparation 29

6-(5-Chloro-4-cyano-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone

\[
\text{CuCN,}
\]

\[
Pd(OAc)_2
\]

1-methyl-2-pyrrolidone.
A mixture of 6-(5-chloro-4-iodo-2-methylimidazol-1-yl)-8-methyl-2-(1H)quinolone (1.0 g), cuprous cyanide (0.45 g) and palladium acetate (0.09 g) in 1-methyl-2-pyrrolidone (5 cm³) was stirred and heated at 160° for 4 hours. The cooled mixture was poured into aqueous ammonia solution (30 cm³; S.G. 0.880) and extracted with ethyl acetate (3 x 150 cm³). The combined and dried (MgSO₄) organic extracts were filtered and evaporated in vacuo and the residue was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:dichloromethane, 1:200 by volume. Combination and evaporation of the appropriate fractions afforded the title compound as a solid (0.54 g) which was characterised spectroscopically and used directly without further purification.

Preparation 30

6-(5-Chloro-4-iodo-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, m.p. 288-90°; was prepared similarly to Preparation 12 using 6-(5-chloro-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, iodine monochloride, sodium acetate and acetic acid as the starting materials:

Analysis %:-

Found: C, 42.4; H, 2.9; N, 10.8;
Calculated for C₁₄H₁₁ClIN₃: C, 42.1; H, 2.8; N, 10.5.
A mixture of 6-(2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (0.24 g) and N-chlorosuccinimide (0.14 g) in dichloromethane (10 cm³) was stirred at room temperature for 2 hours. The mixture was then chromatographed directly on silica (Merck "H.K 60.9585" [Trade Mark]) eluting with methanol: dichloromethane, 1:20 by volume. Combination and evaporation of the appropriate fractions afforded the title compound, m.p. 258-61°C, (0.18 g).

Analysis:

Found: C, 60.4; H, 4.4; N, 15.1;
Calculated for C₁₄H₁₂ClN₃O, 0.25 H₂O: C, 60.4; H, 4.5; N, 15.1.
A mixture of 6-bromo-8-methyl-2-(1H)-quinolone (23.8 g), (see Preparation 67 of European patent application publication no. 0148623), 2-methylimidazole (16.4 g), copper bronze (6.4 g), potassium carbonate (13.8 g), and a few crystals of iodine was stirred and heated in 1-methyl-2-pyrrolidone (60 cm3) at 180° for 24 hours under nitrogen. The cooled mixture was poured into methanol:dichloromethane (500 cm3, 1:1 by volume), stirred and filtered through "Solkafloc" (Trademark for a cellulose-based filtering aid). The filtrate was poured into water (200 cm3), the organic phase separated, and the aqueous phase extracted with dichloromethane (6 x 250 cm3). The combined and dried (MgSO$_4$) organic extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]) eluting with methanol:dichloromethane, 1:11 by volume. Combination and evaporation of the appropriate fractions gave a residue which was recrystallised from methanol/ethyl acetate to afford a solid (14.9 g) which was confirmed spectroscopically to be identical to the product of Example 4 of European patent application publication no. 0166533. This solid was used directly without further purification.

Preparation 33 (Alternative to Preparation 4)
6-(4-Iodo-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone

\[
\text{CH}_3
\]

\[
\text{CH}_3
\]

\[
\text{I}
\]

\[
\text{I}
\]

\[
\text{CH}_3
\]

\[
\text{H}
\]

\[
\text{N}
\]

\[
\text{O}
\]

\[
\text{I}
\]

\[
\text{CH}_3
\]

\[
\text{CH}_3
\]

n-Butyllithium (16.42 cm3 of a 1.55 M solution in n-hexane) was added dropwise to a stirred solution of 6-(4,5-di-iodo-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (5.0 g) in
tetrahydrofuran (100 cm³) at -30° under nitrogen. After 30 minutes saturated aqueous ammonium chloride solution (20 cm³) was added, and the mixture was warmed to room temperature. The mixture was then basified with saturated sodium carbonate solution to pH 10 (approximately) and extracted with methanol:ethyl acetate (1:19 by volume, 100 cm³) and then methanol:dichloromethane (1:19 by volume, 2 x 200 cm³). The combined and dried (MgSO₄) organic extracts were evaporated in vacuo to give a residue which was chromatographed on silica (Merck "MK 60.9385" [Trade Mark]). Elution with methanol:dichloromethane, 1:19 by volume, followed by combination and evaporation of the appropriate fractions gave a solid which was recrystallised from methanol/ethyl acetate to afford the title compound, (0.87 g), which was shown spectroscopically to be identical to the product of Preparation 4. Also eluted were fractions which when combined and evaporated afforded a solid, (2.28 g), which was shown to be a mixture of the title compound, 6-(5-iodo-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, and 6-(2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone.

Preparation 34

6-(4,5-Di-iodo-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, m.p. 274-6°, was prepared similarly to Preparation 12 using 6-(2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone (see Preparation 32), iodine monochloride, sodium acetate and acetic acid as the starting materials:

Analysis %:

Found: C, 33.1; H, 2.4; N, 8.5;
Calculated for C_{14}H_{12}I_{2}N_{3}O, H₂O: C, 33.0; H, 2.8; N, 8.3.
Preparation 35 (Alternative to Preparation 5)

6-(4-Methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone was prepared similarly to Preparation 32 using 6-bromo-8-methyl-2-(1H)-quinolone (see Preparation 67 of European patent application publication no. 0148623), 4-methylimidazole, copper bronze, potassium carbonate and iodine as the starting materials. The product was confirmed spectroscopically to be identical to the product of Preparation 5.
The claims defining the invention are as follows:

CLAIMS

1. A substituted 2-(1H)-quinolone of the formula:

```
          R
          +---
          |   
          H-1-2-----3
          |     
          N   4
          |     
          |   
          C   5
          |     
          |   
          |   
          |   
          O
```

--- (I)

or a pharmaceutically acceptable salt thereof, wherein "Het" is a 5-membered monocyclic aromatic heterocyclic group containing at least one nitrogen atom in the aromatic ring and attached by a nitrogen atom to the 5-, 6-, 7- or 8- position of the quinolone;

"Het" being substituted by a group selected from

```
-C-(C₁-C₄ alkyl), -R₁, -C-R₁ and -C-R₂ wherein R₁ is a phenyl group optionally substituted by 1 to 3 substituents each independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy, halo, trifluoromethyl, -CONR₃R₄, -SO₂NR₃R₄, -N(R³)SO₂(C₁-C₄ alkyl) and -S(O)ₙ(C₁-C₄ alkyl) where R³ and R⁴ are each H or C₁-C₄ alkyl and n is 0, 1 or 2, and R² is a heterocyclic group selected from thienyl, furyl, imidazolyl, triazolyl and tetrazolyl, said heterocyclic group being attached to the adjacent carbonyl group by a ring carbon atom and being optionally substituted by up to two substituents each independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy and halo;

"Het" also being optionally substituted by up to two C₁-C₄ alkyl groups;

and R, which is attached to the 5-, 6-, 7- or 8- position of the quinolone, is H, C₁-C₄ alkyl, C₁-C₄ alkoxy, hydroxy, CF₃, halo, cyano or hydroxymethyl.

2. A compound as claimed in claim 1 wherein "Het" is a pyrrolyl, imidazolyl, pyrazolyl, triazolyl or tetrazolyl group substituted as defined in claim 1.
3. A compound as claimed in claim 2 wherein "Het" is an imidazol-1-yl group substituted as defined in claim 1.

4. A compound as claimed in claim 3 wherein "Het" is an imidazol-1-yl group substituted by (a) one or two methyl groups and (b) a group of the formula \(-\text{CO}(\text{C}_1-\text{C}_4 \text{ alkyl}), -\text{R}^1, -\text{COR}^1\) or \(-\text{COR}^2\) where \(\text{R}^1\) is a phenyl group optionally substituted by 1 or 2 substituents each selected from \(\text{C}_1-\text{C}_4 \text{ alkyl}, \text{C}_1-\text{C}_4 \text{ alkoxy}, \text{hydroxy}, \text{halo}, \text{CF}_3, \text{C}_1-\text{C}_4 \text{ alkylthio}, \text{C}_1-\text{C}_4 \text{ alkylsulphinyl}, \text{C}_1-\text{C}_4 \text{ alkylsulphonyl}, \text{and} -\text{NHSO}_2(\text{C}_1-\text{C}_4 \text{ alkyl})\), and \(\text{R}^2\) is a triazolyl group optionally substituted by a \(\text{C}_1-\text{C}_4 \text{ alkyl}\) group.

5. A compound as claimed in claim 4 wherein "Het" is an imidazol-1-yl group substituted by an acetyl group and by 1 or 2 methyl groups.

6. A compound as claimed in any one of the preceding claims wherein "Het" is attached to the 6-position of the quinolone.

7. A compound as claimed in any one of the preceding claims wherein \(\text{R}\) is in the 8-position and is \(\text{H}, \text{C}_1-\text{C}_4 \text{ alkyl}, \text{CF}_3\) or halo.

8. A compound as claimed in claim 7 wherein \(\text{R}\) is \(\text{CH}_3\).

9. A compound as claimed in claim 1 having the formula:

\[
\text{Het} \quad \begin{array}{c}
\text{N} \\
\text{CH}_3
\end{array} \\
\text{O}
\]

wherein "Het" is as defined in any one of claims 1 to 5.

10. 6-(4-Acetyl-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone.

11. A pharmaceutical composition comprising a compound of the formula (I) as claimed in any one of the preceding claims, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable diluent or carrier.

12. A compound of the formula (I) as claimed in any one of claims 1 to 10, or a pharmaceutically acceptable salt thereof, for use as a medicament.
13. The use of a compound of the formula (I) as claimed in any one of claims 1 to 10, or of a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for use as a cardiac stimulant.

14. A compound of the formula:-

![Chemical structure](image)

or an acid addition salt thereof,
wherein "Het" is a 5-membered monocyclic aromatic heterocyclic group containing at least one nitrogen atom in the aromatic ring and attached by a nitrogen atom to the 3-, 4-, 5- or 6-position of the benzene ring, "Het" being substituted by a group selected from \(-\text{CO}(\text{C}_1\text{C}_4 \text{ alkyl}), \text{-R}^1, \text{-COR}^1\) and \(-\text{COR}^2\) where \(\text{R}^1\) and \(\text{R}^2\) are as defined in claim 1, "Het" also being optionally substituted by up to two \(\text{C}_1\text{C}_4\) alkyl groups;

\(\text{R}\), which is attached to the 3-, 4-, 5- or 6-position of the benzene ring, is \(\text{H}, \text{C}_1\text{C}_4\) alkyl, \(\text{C}_1\text{C}_4\) alkoxy, hydroxy, \(\text{CF}_3\) halo, cyano or hydroxymethyl;

and \(\text{Q}\) is a leaving group.

15. A compound as claimed in claim 14, wherein \(\text{Q}\) is a \(\text{C}_1\text{C}_4\) alkoxy group.

16. A quinolone of formula I substantially as hereinbefore described with reference to any one of the Examples.

DATED this TWENTY SIXTH day of NOVEMBER, 1986

PFIZER LIMITED

Patent Attorneys for the Applicant
SPRUSÓN & FERGUSON