APPLICATION FOR A STANDARD PATENT
OR A STANDARD PATENT OF ADDITION

EMERSON ELECTRIC CO.

8100 W. Florissant, St. Louis, Missouri 63136, U.S.A.

(71) We hereby apply for the grant of a standard patent for an invention entitled

SAFETY VENTED COVER

FOR SEALED CONTAINER AND METHOD OF MANUFACTURING SAME.

which is described in the accompanying provisional specification.

(72) The actual inventor(s) of the said invention are

Benjamin Bowsky, Glenn Anthony

HONKOMP and Larry Gene Burrows.

(74) My/our address for service is SANDECOCK, SMITH & BEADLE, 207 Riverside Road,

(P.O. Box 410), Hawthorn, Victoria, 3122. Attorney Code SA

THIS FORM MUST BE ACCOMPANIED BY EITHER A PROVISIONAL SPECIFICATION (FORM 9 AND TRUE COPY) OR BY A COMPLETE SPECIFICATION (FORM 10 AND TRUE COPY).

Dated this

5 SEPTEMBER 1986

Melbourne

SANDERCOCK, SMITH & BEADLE

COMMONWEALTH OF AUSTRALIA

Patents Act 1952

Regulation 9

{FORMS 9 TO 15}

COLLECTOR OF PUBLIC MEASURES

COMMISSIONER OF PATENTS

This form must be accompanied by either a provisional specification (Form 9 and true copy) or by a complete specification (Form 10 and true copy).
PATENT DECLARATION FORM (CONVENTION OR NON-CONVENTION)

DECLARATION IN SUPPORT OF APPLICATION FOR A PATENT

In support of the application made by EMERSON ELECTRIC CO.

for a patent for an invention entitled: Safety vented cover for sealed container and method of manufacturing same.

We Charles Hansen of 8100 W. Florissant, St. Louis, Missouri 63136, United States of America.

I do solemnly and sincerely declare as follows:

1. (a) I am the applicant(s) for the patent.
 OR (b) I am authorized by the abovementioned applicant to make this declaration on its behalf.

2. (a) We are the actual inventor(s) of the invention.
 OR (b) Benjamin BOWSKY of 8379 Island Lane, Maineville, Ohio 45039, United States of America; Glenn Anthony HOMKOMP of 9700 Maineville Rd, Loveland, Ohio, 45140, United States of America; and Larry Gene BURROWS of 7075 Olentangy Lane, Cincinnati, Ohio, 45244, United States of America.

I/We are the actual inventor(s) of the invention and the facts upon which the applicant(s) is/are entitled to make the application are as follows:—

Applicant is assignee of inventor(s)

3. The basic application(s) as defined by Section 141 of the Act was/were made in the following country or countries on the following date(s) by the following applicant(s) in United States of America on 30 September, 1985 by Benjamin BOWSKY, Glenn Anthony HOMKOMP and Larry Gene BURROWS on 19
 by
 in on 19
 by
 in on 19
 by

4. The basic application(s) referred to in paragraph 3 of this declaration was/were the first application(s) made in a Convention country in respect of the invention the subject of the application.

Declared at St. Louis, Missouri this 21st day of January 1986 U.S.A.

Signature(s) of declarant(s).

NO ATTESTATION OR SEAL

Charles Hansen
Senior Vice President
Secretary and General Counsel

To: The Commissioner of Patents, Australia
1. A method of making safety vents in metallic covers for hermetically sealed battery containers comprising continuously feeding a metallic strip of steel alloy material from a coil in a supply zone through a printing zone; printing said strip while in said printing zone on at least one surface thereof with a chemical masking resist pattern which includes spaced uncovered channel areas in the form of circular arcs of less than 360° with the spaced arcs on at least one surface of said strip each surrounding an uncovered hole defining central area; feeding said masked printed strip to an etching zone; subjecting said strip while in said etching zone to a chemical etching process to etch said uncovered arc-like channel areas and surrounded holes to uniform preselected depths leaving said channel areas with a uniform metal thickness which serves as safety vent membranes capable of withstanding a preselected pressure in the range of from 0.34 to 3.10 MPa before rupture and said uncovered central hole defining
areas to at least half the depth of said channels, feeding said etched strip through a rinsing zone which includes a chemical neutralizing stage, a resist stripping stage and a washing stage; and then feeding said rinsed strip to a stamping zone to stamp said etched strip into a plurality of battery covers, each cover including an arc-like safety relief vent membrane surrounding a central aperture.

5. A circular steel alloy battery cover for a hermetically sealed container, said cover having a thickness in the range of 0.20 to 1.52 mm and having at least one chemically etched channel therein in the form of circular arcs of less than 360° spaced from the peripheral edge of said cover to provide a safety vent membrane of uniform preselected thickness in the range of 0.02 to 0.101 mm capable of uniformly responding to and withstanding a preselected pressure in the range of 0.34 to 3.10 MPa before rupture, said arcs surrounding an aperture therein sized to receive an assembly part to be fused therein.
TO BE COMPLETED BY APPLICANT

Name of Applicant: EMERSON ELECTRIC CO.

Address of Applicant: 8100 W. Florissant, St. Louis, Missouri 63136 United States of America

Actual Inventor: Benjamin BOWSKY
Glenn Anthony HONKOMP
Larry Gene BURROWS

Address for Service: SANDERCOCK, SMITH & BEADLE
207 Riverside Road, (P.O. Box 410)
hawthorn, Victoria, 3122

Complete Specification for the invention entitled: SAFETY VENTED COVER FOR SEALED CONTAINER AND METHOD OF MANUFACTURING SAME.

The following statement is a full description of this invention, including the best method of performing it known to me:—
The present invention relates to sealed container covers and, more particularly, to a method of making safety vents in covers for hermetically sealed containers and a novel cover for such a container including a safety vent membrane.

It is generally well known to provide hermetically sealed containers with a rupturable safety vent membrane in the container body so that if gas pressures develop within the container beyond a predetermined limit, the membrane ruptures to permit release of gas, avoiding uncontrollable container explosion or disintegration and possible personal and property damages occasionally associated therewith. Several such arrangements as taught by the prior art include: a pressure frangible safety device as disclosed in U.S. patent No. 3,617,386, issued to Robert J. Bosben on November 2, 1971; a reduced area of container wall thickness designed to rupture in response to predetermined circumferential stresses occurring within the container, as disclosed in U.S. patent No. 4,175,166, issued to M.G. Rosansky on November 20, 1979; a cruciform shaped incision in a sealed container of V-shaped cross-section as disclosed in U.S. patent No. 4,256,812, issued to K. Tamura, et al, on March 17, 1981; and, pressure relief safety membranes as disclosed in U.S. patent No. 4,476,200, issued to C. Markin, et al, on October 9, 1984. The formation of such safety vents in the past has generally been accomplished by mechanical means such as stamping. Such past forming means have caused stress corrosion and non-uniformity in metal thickness and metal grain structure which, in turn, has resulted in ununiform pressure sensivity and pressure responsivity characteristics.

The present invention recognizing the importance of such uniformity in thin safety membranes in potentially explosive sealed containers and further recognizing the importance of carefully controlling the dimensions
and pressure sensitive characteristics of such membranes so as to be uniformly responsive to predetermined pressures provides a unique and novel method of manufacturing safety vent membranes in covers for hermetically sealed containers in an efficient, straightforward and economical manner to permit mass production of a novel and inventive product without sacrifice of desired critical pressure responsive uniformity.

Although the broad use of producing tearing lines in containers by etching is old, as disclosed in U.S. Patent No. 3 723 269, issued to E. Hofling on March 27, 1973, the present invention, recognizing the desirability and importance of uniformity in pressure sensitivity, and responsivity of safety vent membranes for sealed containers, provides a new and novel method and a unique product which affords such pressure sensitivity and responsivity in a manner previously unknown in the art.

Various other features of the present invention will become obvious to one skilled in the art upon reading the disclosure set forth herein.

More particularly, the present invention provides a method of making safety vents in metallic covers for hermetically sealed battery containers comprising continuously feeding a metallic strip of steel alloy material from a coil in a supply zone through a printing zone; printing said strip while in said printing zone on at least one surface thereof with a chemical masking resist pattern which includes spaced uncovered channel areas in the form of circular arcs of less than 360° with the spaced arcs on at least one surface of said strip each surrounding an uncovered hole defining central area; feeding said masked printed strip to an etching zone; subjecting said strip while in said etching zone to a chemical etching process to etch said uncovered arc-like channel areas and
surrounded holes to uniform preselected depths leaving said channel areas with a uniform metal thickness which serves as safety vent membranes capable of withstanding a preselected pressure in the range of from 0.34 to 3.10 MPa before rupture and said uncovered central hole defining areas to at least half the depth of said channels, feeding said etched strip through a rinsing zone which includes a chemical neutralizing stage, a resist stripping stage and a washing stage; and then feeding said rinsed strip to a stamping zone to stamp said etched strip into a plurality of battery covers, each cover including an arc-like safety relief vent membrane surrounding a central aperture.

Referring to the drawings which disclose one advantageous embodiment of the present invention and several modifications thereof:

Figure 1 is a flow diagram setting forth schematically the several steps involved in carrying out the inventive process;

Figure 2 is an enlarged plan view of a portion of a strip of material which has been subjected to the inventive process of Figure 1;

Figure 3 is a further enlarged cross-sectional view of the material of Figure 2 taken in a plane passing through line 3-3 of Figure 2;

Figure 4 is a perspective view of an inventive cover for a hermetically sealed container, further disclosing a central aperture therein;

Figure 5 is a plan view of a sheet of material disclosing two possible positions in which a plurality of modified safety vent members can be formed on a single sheet of material in accordance with the present invention;
Figure 6 is an enlarged plan view of a portion of the sheet of material of Figure 5;
Figure 7 is a cross-sectional view taken in a plane through line 7-7 of Figure 6, disclosing a safety vent membrane formed by treating the sheet in mirror image fashion on opposed surfaces thereof;
Figure 8 is a perspective view of one face of a cover for a hermetically sealed container in accordance with Figures 5-7;
Figure 9 is an enlarged plan view of a further modified safety vent membrane, disclosing a piercing point on one face thereof;
Figure 10 is a cross-sectional view of the membrane of Figure 9 taken in a plane through line 10-10 of Figure 9;
Figure 11 is a perspective view of one face of a cover for a hermetically sealed container, in accordance with Figures 9 and 10; and
Figure 12 is a perspective view of the other face of a cover for a hermetically sealed container, in accordance with Figures 9 and 10.

Referring to Figure 1 of the drawings, a strip 2 of material is fed from a supply zone 3 where it can be stored in the form of a coil to a printing zone 4. The strip 2 of coiled material can be any one of a number of known materials used in the manufacture of covers for hermetically sealed containers, which is responsive to the hereinafter described controlled etching processes and, in the manufacture of battery covers such as those utilized for hermetically sealed batteries of the button type, a suitable metallic alloy such as cold rolled alloyed carbon steel (for example "C1010") having a thickness in the range of 0.20 to 1.52 mm (0.008 to 0.06 inches), and, advantageously, approximately 0.50 mm (0.020 inches) plus or minus 0.05 mm (0.002 inches) can be used. It is to be
understood that prior to carrying out the etching process, an appropriate cleaning and degreasing of the metallic alloy can be accomplished in a satisfactory cleaning and degreasing bath (not shown).

In the event a metallic steel alloy strip is used, as in the example hereinafter described, a suitable bath using a caustic cleansing agent would suffice.

In printing zone 4, opposed printing rolls 6, frequently or continuously treated with a suitable masking resist agent or etching ground which can be selected from appropriate chemical materials in accordance with the material to be etched and the subsequent chemicals to be used in the etching process, mask all surfaces of the strip of material not to be etched with an appropriate etching resist coating, for example, a synthetic resin capable of resisting the particular etching step to be employed.

The unmasked portion of the strip of material to which no resist coating has been applied in printing zone 4 by rolls 6 can be in any one of several geometric pattern forms in accordance with the present invention. In the embodiment of Figures 2 and 3, the geometric pattern includes spaced uncovered channel areas in the form of circular arcs 7 of less than 360 degrees, with a portion of each otherwise complete circle being masked to provide a retention portion. In the embodiment of Figures 4-12, each of the circular arcs 7 surrounds an uncovered hole defining central area 8 on at least one surface thereof and in the embodiments of Figure 5-8, the arcs 7 are on opposite surfaces of material strips 2 in opposed mirror image relationship. In Figures 9-12, the geometric pattern of unmasked mirror image circular arcs 7 on opposite surfaces of the strip of material 2, each include an enlarged unmasked chord section 9 located at the base of the arc. It is to be noted that one surface of the strip of material 2 in
the Figures 9-12 also includes a triangular resist mask area that extends into chord section 9 of each channel 7 so that upon etching each channel 7 on one side, incorporates a sharp piercing point 11 therein. Piercing point 11 is geometrically disposed opposite to the masked covered retention portion of the otherwise circle defining circular arc 7 so as to facilitate tearing and retention of the torn portion when preselected pressure on the etched portion of the cover is exceeded.

Referring to Figure 5, it can be seen that a plurality of unmasked channels 7 can be positioned on strip 2 in any one of a number of different geometric orientations, depending upon material grains and the results desired. In the embodiment of Figure 5, each of the horse-shoe shaped channels 7 in the lower half of strip 2 are shown as oriented in a position which is at 90 degrees to the horse-shoe shaped channels 7 in the upper half of the strip 2 for purposes of illustration. It is to be understood that other positions can also be utilized and that, generally, all channels on a strip are oriented in a similarly selected position. As also will be noted in Figure 5, strip 2 can be in the form of individual sheets rather than a continuous coil as disclosed in Figure 1.

In accordance with the inventive process and again referring to Figure 1, after strip 2 has been suitably masked with a resist coating in the manner above discussed, strip 2 is fed along spaced idle rollers 10 through an etching zone 12, a rinsing zone 13, a lubricating zone 14 and finally a stamping or forming zone 16 where individual container covers 17, such as disclosed in Figures 4, 8, 11 and 12, are formed. It is to be understood that strip 2, after passing through rinsing zone 13, could be again coiled for subsequent treatment elsewhere. It, also, is to be noted that various types
of rims 20 can be formed on covers 17 or rims can be eliminated, if so desired.

In passing through zones 12, 13 and 14 strip 2 is fed along suitable idle rollers 10, as above noted. In etching zone 12, strip 2 can be fed through a suitable acid etching bath, such as ferric chloride if the material to be etched is a steel alloy. The density and temperature of the etching bath and even the number of baths can be controlled to avoid gas bubbling. Also, such parameters as the rate of feed or residence time of the strip within the bath or baths, the acidity concentrations of the bath and bath temperatures are all carefully controlled so that the etching depth and thus the thickness of the material is carefully predetermined and maintained uniform along the unmasked surfaces. For example, when a steel alloy of 0.50 mm (0.020 inches) is used, the etching is controlled to provide a uniform membrane thickness in the range of 0.02 to 0.101 mm (0.001 to 0.004 inches) plus or minus 0.005 mm (0.0002 inches) throughout the uncovered area. It is to be understood that advantageously, when battery covers for hermetically sealed containers are being processed, the depth of etching is so controlled as to leave safety membranes of metal thickness capable of withstanding a preselected pressure within the sealed containers of which such covers form a part in the range of approximately 0.34 to approximately 3.10 MPa (approximately 50 to approximately 450 pounds per square inch) before the safety membranes rupture.

Once strip 2 has been properly etched in etching zone 12, it is then fed through rinsing zone 13. In the inventive embodiment of Figure 1, rinsing zone 13 can include three stages, namely, a neutralizing stage 18, a resist stripping stage 19 and a washing stage 21. The neutralizing stage 18 can include a bath of suitable caustic or alkaline solution such as sodium hydroxide.
The stripping stage can include an appropriate acidic bath depending upon the chemistry of the mask resist coating applied to printing rolls 6 in printing zone 4 and the washing stage 21 can be a plain tap water bath. From the last stage of rinsing zone 13, strip 2 can be fed to a suitable oil lubricating zone 14 before it is fed into a forming or stamping zone 16 to form covers 17 from strip 2. As in etching zone 12, the residence times and bath concentrations in the rinsing zone 13, stages 18, 19 and 21 can be controlled in accordance with the results desired.

As aforenoted, it is to be understood that various changes can be made in the several steps of the method and product disclosed without departing from the invention. For example, other covers besides those for hermetically sealed containers can be so manufactured and other container materials besides steel alloys can be used in the inventive process and the etching treatments and channel geometrics can be varied to provide safety membranes which will accommodate other predetermined pressures for containers.

The claims form part of the disclosure of this specification.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. A method of making safety vents in metallic covers for hermetically sealed battery containers comprising continuously feeding a metallic strip of steel alloy material from a coil in a supply zone through a printing zone; printing said strip while in said printing zone on at least one surface thereof with a chemical masking resist pattern which includes spaced uncovered channel areas in the form of circular arcs of less than 360° with the spaced arcs on at least one surface of said strip each surrounding an uncovered hole defining central area; feeding said masked printed strip to an etching zone; subjecting said strip while in said etching zone to a chemical etching process to etch said uncovered arc-like channel areas and surrounded holes to uniform preselected depths leaving said channel areas with a uniform metal thickness which serves as safety vent membranes capable of withstanding a preselected pressure in the range of from 0.34 to 3.10 MPa before rupture and said uncovered central hole defining areas to at least half the depth of said channels, feeding said etched strip through a rinsing zone which includes a chemical neutralizing stage, a resist stripping stage and a washing stage; and then feeding said rinsed strip to a stamping zone to stamp said etched strip into a plurality of battery covers, each cover including an arc-like safety relief vent membrane surrounding a central aperture.

2. The method according to claim 1, characterised by said printing of said metallic strip including masking resist patterns with uncovered channel areas in opposed mirror image relation on both faces of said metallic strip.
3. The method according to claim 1, characterised by said printing of said metallic strip including a masking resist pattern having an uncovered channel area to provide a tear initiation point therein.

4. The method according to claim 1, characterised by said metallic strip comprising a steel alloy in the range of from 0.20 to 1.52 mm thickness with the etching of said uncovered channel area being controlled to provide a uniform membrane thickness in the range of from 0.02 to 0.101 mm.

5. A circular steel alloy battery cover for a hermetically sealed container, said cover having a thickness in the range of 0.20 to 1.52 mm and having at least one chemically etched channel therein in the form of circular arcs of less than 360° spaced from the peripheral edge of said cover to provide a safety vent membrane of uniform preselected thickness in the range of 0.02 to 0.101 mm capable of uniformly responding to and withstanding a preselected pressure in the range of 0.34 to 3.10 MPa before rupture, said arcs surrounding an aperture therein sized to receive an assembly part to be fused therein.

6. The battery cover according to claim 5, characterised by said cover including opposed channels etched therein on opposite surfaces of said cover to provide said safety vent membrane of uniform thickness.

7. The battery cover according to claim 5, characterised by said etched channel including a triangular etched portion adjacent said etched channel and opposed to said
full thickness portion to provide a cover tear initiation point when the preselected pressure is exceeded.

Dated this twenty-second day of May 1989.

EMERSON ELECTRIC CO.

Attorney: ROBERT G. SHELSTON
Yellow Institute of Patent Attorneys of Australia
of SMITH SHELSTON BEADLE