The Commissioner of Patents
PO Box 200
WODEN ACT 2606

F B RICE & CO
SYDNEY NSW
Speed Dial 511

PATENTS

Our Ref: 72473

AUSTRALIA
Patents Act 1990

PATENT REQUEST: STANDARD PATENT

We, CP8 TRANSAC being the person(s) identified below as the Applicant, request the grant of a standard patent to the person identified below as the Nominated Person, for an invention described in the accompanying complete specification.

Full application details follow.

Applicant and Nominated Person: CP8 TRANSAC

Address: BP 45, 68 route de Versailles, 78430 Louveciennes France

Invention Title: Cryptographic communication process

Name(s) of Actual Inventor(s): Jacques PATARIN

Address for Service in Australia: F B RICE & CO 28A Montague St BALMAIN NSW 2041

Attorney Code: RI

BASIC CONVENTION APPLICATION(S) DETAILS

<table>
<thead>
<tr>
<th>Application No</th>
<th>Country</th>
<th>Country Code</th>
<th>Date of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>9509179</td>
<td>France</td>
<td>FR</td>
<td>27 July 1995</td>
</tr>
</tbody>
</table>

Drawing number recommended to accompany the abstract: Fig 1.

Dated this twenty-fourth day of July 1996

CP8 TRANSAC

By: CHRIOS'USULIAN
Registered Patent Attorney

NEW/COS/11s/g24
AUSTRALIA
Patents Act 1990
NOTICE OF ENTITLEMENT

Michel Colombe

I (We) ...[signature]... Michel Colombe
authorised by ...[signature]... CP8 TRANSAC
of 68 route de Versailles, B P 45, 78430 Louveciennes, FRANCE

the applicant and nominated person in respect of an application for a patent for an invention
entitled "Cryptographic Communication Process", filed under Australian Application No...

state the following:

PART 1 - Must be completed for all applications.
The person(s) nominated for the grant of the patent
☐ is (are) the actual inventor(s)
☒ has, for the following reasons, gained entitlement from the actual inventor(s)
 ☐ by virtue of a contract of employment
 ☒ for the following reasons, gained entitlement from the actual inventor(s)

PART 2 - Must be completed if the application is a Convention application.
The person(s) nominated for the grant of the patent is (are):
☒ the applicant(s) of the basic application(s) listed on the patent request form
☒ entitled to rely on the basic application(s) listed on the patent request form by reason of the following:
 ☒ the basic application(s) listed on the request form is (are) the first application(s) made in a Convention country in respect of the invention.

PART 3 - Must be completed if the application was made under the PCT and claims priority.
The person(s) nominated for the grant of the patent is (are):
☐ the applicant(s) of the application(s) listed in the declaration under Article 8 of the PCT
☒ entitled to rely on the application(s) listed in the declaration under Article 8 of the PCT by reason of the following:
 ☒ the basic application(s) listed in the declaration made under Article 8 of the PCT is (are) the first application(s) made in a Convention country in respect of the invention.

Dated this 18th day of June...

Signed ...[signature]... Michel COLOMB

Signatory's Name ...[signature]... General Manager

F.B. RICE & CO PATENT ATTORNEYS
A novel asymmetrical cryptographic schema which can be used for enciphering, signature and authentication. The schema is based on low degree public polynomial equations with value in a finite ring K.

The mechanism is not necessarily bijective. The secret key makes it possible to hide polynomial equations with value in extensions of the ring K. The solving of these equations makes it possible, if one has the secret key, to execute operations which are not executable with the public key alone.

CLAIM

1. A cryptographic communication process which transforms a value (X) represented by (n) elements of a finite ring (K) into an image value (Y) represented by (n') elements of the ring (K), characterized in that:

 a) each element (n') of the image value (Y) is in the form of a public polynomial equation having a low degree (D) greater than or equal to 2 composed of the elements (n) of the value (X);

 b) the image value (Y) can also be obtained from the value (X) by means of a transformation comprising the following steps, at least some of which require the knowledge of a cryptographic secret:

 b1) applying to the value (X) a first secret polynomial transformation (s) having a degree 1 composed of the (n) elements of the value (X) in order to obtain a first image $(I1)$ with (n)
elements;

b2) which (n) elements of the first image (II) are considered to represent a variable or a small number (k) of variables (x, x', x'', ..., x^k) belonging to an extension (L_w) with the degree W of the ring (K) with W * k = n, applying to the first image (II) a transformation defined as follows:

\[f: L_w^k \rightarrow L_w^k \]

\[(x, x', x'', ..., x^k) \rightarrow (y, y', y'', ..., y^k) \]

noting that (y, y', y'', ..., y^k) is the image of (x, x', x'', ..., x^k) from the transformation f, knowing that f verifies the following two properties:

- **b2.1)** in a base (B) of the extension (L_w) of the ring, each component of the image (y, y', y'', ..., y^k) is expressed in the form of a polynomial composed of the components of (x, x', x'', ..., x^k) in this base, which polynomial has a total degree less than or equal to said degree (D) of the public polynomial equation;

- **b2.2)** expressed in the extension (L_w) of the ring, the transformation (f) is such that it is possible to calculate antecedents of (f) when they exist, except possibly for certain entries, the number or which is negligible relative to the total number of entries;

b3) the first image (II) thus transformed constitutes a second image (I2);

b4) applying to the second image (I2) a second secret polynomial transformation (t) having a degree of 1, composed of the elements of the second image (I2) in order to obtain a third image (I3) having a determined number of elements; and

b5) selecting (n') elements from the set of elements in the third image (I3) in order to form said image value (Y).
Cryptographic communication process

The following statement is a full description of this invention including the best method of performing it known to us:-
The invention relates to an asymmetrical cryptographic communication process for processing messages and protecting communications between interlocutors. It can be used to encipher messages asymmetrically or to sign them, also asymmetrically. It can also be used in asymmetric authentication.

A well-known first solution was developed in 1977. This solution was the subject of US patent 4,405,829 filed by the inventors Rivest, Shamir and Adleman on December 14, 1977. This solution, commonly called RSA from the names of the inventors, uses two types of keys. The first key (Kp) allows the enciphering of messages and the second (Ks) allows their deciphering. This process, which is known throughout the world, is the basis for asymmetric cryptography, so called because the keys for enciphering and deciphering are different. In the same network, each member (i) possesses a pair of keys. The first (Kp_i) is public and can therefore be known by anyone; the second (Ks_i) is secret and must never be communicated.

An enciphered communication between two interlocutors (1) and (2) in the same network is carried out in the following way: (1) and (2) communicate their public keys (Kp_1) and (Kp_2) to one another ahead of time; then, when (1) desires to send a message (M) to (2), he enciphers the message with the key (Kp_2), and once this message is received by (2) it can only be deciphered with the aid of the secret key (Ks_2) held by (2):

\[
\text{Enciphering: } M' = RSA (M, Kp_2) \\
\text{Deciphering: } M = RSA (M', Ks_2)
\]

When (2) desires to send a message to (1), he enciphers it using the public key belonging to (1): (Kp_1), and he deciphers with his own secret key (Ks_2).

The RSA process can also be used for signature: the message is then enciphered with an individual's secret key and the enciphered message, called a signature is then transmitted with the message in unenciphered form; the receiver of the message
requests an authority for the individual's public key and uses it to decipher the signature; if the deciphered text corresponds to the unenciphered message, the signature is authentic.

This cryptographic communication process has several drawbacks. The numbers to be manipulated are quite large (typically 512 bits at present), which requires numerous calculations to be performed and leads to signatures which are very long. Moreover, the security of RSA would be compromised if new breakthroughs in factorization were to be achieved.

Other asymmetrical cryptographic communication processes have been suggested for performing the functions of asymmetric enciphering or signature of messages, such as those which use "knapsack"-based algorithms or the MATSUMOTO-IMAI algorithm. However, these two examples have been shown to have a degree of security which is entirely insufficient.

The present invention proposes a solution which does not have the drawbacks of these two examples, but which retains a certain number of their advantages. The present invention uses a novel algorithm called a "Hidden Fields Algorithm" or HFE (Hidden Fields Equation) which, like RSA, can be used for the functions of authentication, enciphering and signature. Moreover, while RSA is chiefly based on the problem of factorizing large numbers, the HFE algorithm is based on a completely different problem: the solving of multivariable low degree equations (typically with a degree of 2 or 3). It must be noted that the MATSUMOTO-IMAI algorithm also had this property but, as already indicated, it has been shown to have a degree of security which is entirely insufficient, which renders it unsuitable for utilization in a cryptographic communication process. The author of the present invention is also the person who discovered that the MATSUMOTO-IMAI algorithm was not cryptographically solid.

Among the novel elements which can contribute to the solidity of the HFE algorithm are the fact that this algorithm is not necessarily bijective, and the fact that it can use very general polynomial equations.
Another advantage which arises from the invention is the ability of the HFE algorithm to calculate ultrashort signatures (less than 200 bits), whereas the shortest asymmetric signatures known at present are on the order of 220 or 320 bits (obtained with the aid of the SCHNORR algorithm or the DSS algorithm. These algorithms can be used for signature or authentication only, not for enciphering/deciphering). It is preferable to use at least 512 bits when using RSA.

Definitions:
1. An "extension" with a degree of N of a ring \(A \) is any isomorphic algebraic structure with \(A[X]/g(X) \) in which \(A[X] \) is the ring of the polynomials with an indeterminant on \(A \), and in which \(g(X) \) is a polynomial with a degree of \(n \).
 A particularly advantageous case is the one in which \(A \) is a finite field \(F_q \) and \(g \) is an irreducible polynomial with a degree of \(n \) on \(F_q \). In this case, \(A[X]/g(X) \) is a finite isomorphic field with \(F_{q^n} \).

2. A "base" of an extension \(L_n \) of \(A \) with a degree of \(n \) is a family of \(n \) elements of \(L_n \), \((e_1, e_2, \ldots, e_n) \), such that every element \(e \) of \(L_n \) is expressed in a unique way in the form
 \[
 e = \sum_{i=1}^{n} \alpha_i e_i \quad \text{with } \alpha_i \in A.
 \]

To this end, the invention relates to a cryptographic communication process which transforms a value \((X) \) represented by \((n) \) elements of a finite ring \((K) \) into an image value \((Y) \) represented by \((n') \) elements of the ring \((K) \), characterized in that:
 a) each element \((n') \) of the image value \((Y) \) is in the form of public polynomial equation with a low degree \((D) \) which is greater than or equal to 2 (typically \(D = 2 \) or \(3 \)) composed of the elements \((n) \) of the value \((X) \); b) the image value \((Y) \) can also be obtained from the value
(X) through a transformation comprising the following steps, at
least some of which require the knowledge of a cryptographic
secret:

b1) applying to the value (X) a first secret polynomial
transformation (s) having a degree 1 composed of the (n) elements
of the value (X) in order to obtain a first image (I1) with (n)
elements;

b2) forming one or more branches, each of which branches is
composed of elements of the first image (I1) (for example, the
first branch comprises the n₁ first elements of I1, the second
branch comprises the n₂ subsequent elements, etc., or the same
element could also be present in several branches), and

- in at least one (e) (or possibly all) of the branches, the
(nₑ) elements of the branch are considered to represent a
variable or a small number (k) of variables (x, x', x'', ..., xᵏ)
belonging to an extension (Lₑ) with a degree W of the ring (K)
with W*k = nₑ, and applying to at least this branch (e) a
transformation defined as follows:

\[fₑ: Lₑ \rightarrow Lₖ \]

\((x, x', x'', ..., xᵏ) \rightarrow (y, y', y'', ..., yᵏ) \)

noting that (y, y', y'', ..., yᵏ) is the image of (x, x', x'', ...,
xᵏ) from the transformation \(fₑ \), with \(fₑ \) verifying the following
two properties:

- b2.1) in a base (B) of the ring extension (Lₑ), each
component of the image (y, y', y'', ..., yᵏ) is expressed in the
form of a polynomial composed of the components of (x, x', x'',
..., xᵏ) in this base, which polynomial has a total degree less
than or equal to the degree (D) of the public polynomial
equation;

- b2.2) expressed in the ring extension (Lₑ), the
transformation (fₑ) is such that it is possible (except perhaps
for certain entries, the number of which is negligible relative
to the total number of entries) to calculate the antecedents of
(fₑ) when they exist (this calculation is carried out either by
means of an exhaustive search when nₑ is very small, or by using
a mathematical algorithm for solving this type of polynomial equation in finite rings);

- and of applying, to the other possible branches,
 polynomial transformations with a degree less than or equal to
 the degree (D) formed of the components with value in the ring
 (K);

b3) a (secret or public) polynomial with a degree less than
or equal to (D) is added at the output of the branch thus
transformed or the other branches, which polynomial depends only
on the variables of the branches situated immediately ahead of
this branch (this step is not mandatory; it is possible to add
the null polynomial).

b4) with the branch thus transformed, or the plurality of
branches thus transformed then concatenated (that is, grouped),
constituting a second image (I2);

b5) applying to the second image (I2) a second secret
polynomial transformation (t), having a degree 1 composed of the
elements of the second image (I2) in order to obtain a third
image (I3) having a determined number of elements; and

b6) selecting (n') elements from among the set of elements
in the third image (I3) to form the image value (Y) (for example
the first is; or in certain variants, selecting all the elements
of I3, in which case Y = I3).

The invention also relates to an asymmetric signature
verification process and an asymmetric authentication process
which use the above-mentioned communication process.

Other details and advantages of the invention [missing verb]
in the course of the following description of several preferred
but non-limiting embodiments, in reference to the appended
drawings, in which:

Fig. 1 shows the concatenation of the transformations used
to process a message;

Fig. 2 shows a communication device used to execute the
enciphering/deciphering of a message; and

Fig. 3 shows this same device, used to execute the signature
of a message and its verification.

First, before the invention is presented, a brief
mathematical review specifically related to the properties of
finite fields will be provided.

Description and properties of finite fields.

1) Function f:

Let K be a finite field with a cardinal q and a
characteristic p (typically, though not necessarily, q = p = 2).

let \(L_n \) be an extension of K with a degree of N, let \(\beta_{i,j}, \alpha_i \) and \(\mu_0 \)
be elements of \(L_n \), let \(\theta_{i,j}, \phi_{i,j} \) and \(\xi_i \) be integers, and let \(f \) be
the following application:

\[
f: L_n \rightarrow L_n
\]

\[
x \rightarrow \sum_{i,j} \beta_{i,j} x^{q^{i+j}} + \sum_i \alpha_i x^i + \mu_0
\]

in which \(Q = q^{\\theta_{i,j}}, P = q^{\\phi_{i,j}} \) and \(S = q^{\\xi_i} \)
in which \(f \) is a polynomial composed of \(x \) and \((\cdot)\) is the
multiplication function. It will be noted that \(Q, P \) and \(S \) may
possibly designate several values in this cryptograph, since
there can be several \(\theta_{i,j}, \phi_{i,j} \) and \(\xi_i \).

Moreover, for any integer \(\lambda, x \rightarrow x^{q^\lambda} \) is a linear
application of \(L_n \rightarrow L_n \). Therefore \(f \) is a quadratic
function.

If \(B \) is a base of \(L_n \), then the expression of \(f \) in the base \(B \)
is:

\[
f(x_1, \ldots, x_n) = (P_1(x_1, \ldots, x_n), \ldots, P_n(x_1, \ldots, x_n))
\]
in which \(P_1, \ldots, P_n \) are polynomials with a total degree of 2
composed of \(N \) variables \(x_1, \ldots, x_n \).

The polynomials \(P_1, \ldots, P_n \) are calculated by using a
representation of \(L_n \). A representation of \(L_n \) is typically the
datum of an irreducible polynomial \(\iota_n(X) \) on \(K \), with the degree
\(N \), which makes it possible to identify \(L_n \) with \(K[X]/(\iota_n(X)) \). It
is then easy to calculate the polynomials \(P_1, \ldots, P_n \).
2) Inversion of f.

Let μ be the degree in x of the polynomial f. f is not necessarily a bijection of $L_\mu \rightarrow L_n$; however:

1) With "a" being an element of L_μ, there are known algorithms which make it relatively easy to find all the values of x in L_μ (if any exist) such that $f(x) = a$, when μ is not too large (for example for $\mu \geq 1,000$).

2) Furthermore, for each "a" of L_μ, there are at most μ solutions in x of $f(x) = a$.

3) In some cases, f can be bijective.

Basic HFE algorithm for the enciphering/deciphering system.

A first version of the novel HFE algorithm will now be described. This version is not limiting, and more general versions are presented in subsequent sections.

A field K, comprising $q = p^m$ elements, is public. Each message is composed of n elements of K. For example, if $p = 2$, each message has $n \times m$ bits. n is also public. n is separated into d integers: $n = n_1 + \cdots + n_d$.

Each of these integers $n_e (1 \leq e \leq d)$ is associated with an extension L_{n_e} of the field K with the degree n_e (the symbol \leq means "less than or equal to").

Let "word" be a value represented by components of K. For example, an element of $L_{n_e} (1 \leq e \leq d)$, can be represented as a word with a length n_e. In the enciphering mechanism to be described here, quadratic functions f_1, \ldots, f_d, which are analogous to the function f described above will be used, with $N = n_1$ for f_1, $N = n_2$ for f_2, etc. These functions will generate d words. These d words will then be combined into one word with a length n.

- The secret objects are:
 1) two affine bijective transformations s and t of $K^n \rightarrow K^n$. These affine bijections can be represented in a base by polynomials with a degree equal to 1 and with
coefficients in K.

2) the separation of n into d integers: $n = n_1 + \ldots + n_d$.

3) The representation of the fields L_{n_1}, \ldots, L_{n_d}. These "representations" are the result of a choice of d irreducible polynomials. \mathcal{V}_{n_ϵ} is noted as the isomorphism from $K^{\epsilon e}$ to L_{n_ϵ} described by this representation, with ϵ such that $1 \leq \epsilon \leq d$.

4) The quadratic functions f_1, \ldots, f_d are of the same type as the function f described in the paragraph entitled "function f" (using $N = n_\epsilon$ and $1 \leq \epsilon \leq d$).

First note: all these objects are secret a priori, but in fact the objects in points 2), 3), and 4) above can also be public a priori. In effect, the security of the algorithm resides chiefly in the secret transformations s and t.

Second note: s and t are bijective applications, but they can also be "quasi bijective", meaning that they can be applications which have no more than a few antecedents.

The enciphering mechanism is described in Fig. 1. The sequence of operations runs from top to bottom. The affine bijective transformation s of $K^n \rightarrow K^e$ occurs first.

The functions μ_1, \ldots, μ_d are projection functions of $K^e \rightarrow K^{\epsilon e}$ (in which $1 \leq \epsilon \leq d$), and μ is the inverse concatenation function. In a way, the functions μ_1, \ldots, μ_d separate the n elements into d "branches".

The isomorphism \mathcal{V}_{n_ϵ} is applied from the various fields $K^{\epsilon e}$ to the various field representations L_{n_1}, \ldots, L_{n_d}, then the quadratic functions f_1, \ldots, f_d are respectively applied from L_{n_1}, \ldots, L_{n_d} to L_{n_1}, \ldots, L_{n_d}. Next, the inverse isomorphism $(\mathcal{V}_{n_\epsilon})^{-1}$ is applied from the various field representations L_{n_1}, \ldots, L_{n_d} to the various fields $K^{\epsilon e}$.

Next, the inverse concatenation function μ is applied from $K^{\epsilon e}$ to K^n. Finally, the affine bijective transformation t of
$K^n \longrightarrow K^n$, which has a general form similar to the
transformation s, occurs.

F_2 is a function with a degree less than or equal to (D)
which depends on the variables of the block furthest to the left.
More generally, F_i ($2 \leq i \leq d$) is a function with a degree less
than or equal to (D) which depends on the variables of the blocks
1, 2, ..., i-1.

NOTE: These functions $F_2, ..., F_d$ produce a Feistel diagram
in blocks. Often they are not used in the HFE algorithm, in
which case $F_2 = ... = F_d = 0$.

It must be noted, and this is an important point, that the
composition of all these operations generates a quadratic
function when this function is expressed by means of its
components in a base. Therefore, this function can be given by n
polynomials ($P_1, ..., P_n$) with coefficients in K, which
polynomials make it possible to calculate the enciphered text (y)
as a function of the unenciphered text x.

- The public objects are:
 1) The field K of $1 = p^n$ elements, and the length n of the
 messages.
 2) The n polynomials ($P_1, ..., P_n$) composed of n variables
 of K. Thus, anyone can encipher a message (the enciphering
 algorithm is quite public, in conformity with the characteristics
 of the invention claimed).

Moreover, deciphering is possible if the secret objects are
known. In effect, it is then possible to invert all the
operations described in Fig. 1. Thus, the inversion of the
functions f_e consists of solving a polynomial equation with an
unknown in the field L_{n_e}, as indicated for f in the paragraph
above entitled "inversion of f". It must be noted, however, that
f_e is not necessarily bijective. It is then possible to obtain
several antecedents. In this case, the choice of the
unenciphered text will be determined with the aid of a redundancy
inserted into the unenciphered text, and the deciphered text will
be the one which contains this redundancy. If the functions are
not bijective, it will be necessary to consider inserting this
redundancy into the unenciphered message systematically.

Example of utilization of the algorithm in signature.

Two cases must be considered:

- The functions are bijective.

 If \(H \) is the result of the "hash" function applied to a
 message to be signed (for example, \(H \) has a format of 128 bits),
 then the signature \(S \) is \(S = HFE^{-1}(H) \).

 Thus, due to the fact that the HFE enciphering function is
 public, anyone can verify the signature by executing: \(H' = HFE \)
 \((S)\) and by verifying that \(H' = H \). The sender of the signature
 must obviously know the secret in order to calculate \(S \).

- The functions are not bijective.

 In this case, it is possible to choose a number of bits at
 the input of HFE which is greater than the number of bits at the
 output, in order to be almost certainly able to calculate
 antecedents using the HFE algorithm.

 For example, \(H \) could be expressed in 128 bits and \(S \) in
 \(128 + 20 = 148 \) bits.

Specific cases of implementation.

There are several ways to execute the HFE algorithm, all of
which offer great advantages related to its practical execution
and implementation.

- The case of algorithm with only one branch (that is: with \(d = 1 \)).

 This version has only one (large) branch and therefore, in
each equation, all the variables -- that is, all the bits of the
message -- are involved. Taking into account the large size of
this branch, this form of execution does not have the potential
weaknesses of branches of small size.

- The case of small branches with the same function f.

This particular case involves small branches, for example
with values of 12 bits, and the same function f. This version is
particularly advantageous because it can easily be implemented in
small central processors contained, for example, in chip cards,
and its implementation is possible with the aid of a program or a
mathematical coprocessor.

First variant of the HFE algorithm

The function f used in each branch, as already described in
this document, is a polynomial equation with a single variable x
in a finite field. Expressed in a base, this function f is
expressed as an equation with a total degree equal to two.

In fact, another type of function f can be used which
differs slightly from the general model defined previously. This
novel type consists of choosing for f a function which depends on
several finite field variables, for example two variables x_1 and
x_2 such that, in a base, the expression as a function of
coordinates retains a total degree equal to two and that it is
always possible to recalculate the antecedents of a given value
of f when they exist.

This variant will be better understood through the numeric
example below. Consider a branch of the algorithm with values of
64 bits and with $p = 2$. In the variant, let f depend on two
variables x and x' of 32 bits each, with $f(x, x') = (y, y')$ such
that:

\[\begin{align*}
 y &= x^4 = x \cdot x' = x' \\
 y' &= x^{17} + x^4 \cdot x' + x'^3
\end{align*} \]
(noting that the use of this exact function is not necessarily recommended, and is given only as an example).

In order to determine the pair \((x, x')\) from \((y, y')\), it is possible, for example, to proceed in the following way:

From the equation (1), extract: \(x' = (y-x^4)/(x + 1)\) \hspace{1cm} (3)

Hence, from the equation (2), extract:

\[y'(x + 1)^3 = x^7(x + 1)^3 + x^4(y - x^4)(x + 1)^2 + (y - x^4)^3 \hspace{1cm} (4) \]

Note that (4) is a polynomial equation with a single variable \(x\). As indicated above, mathematicians already know some general methods for solving this type of equation, and thus it is possible to solve (4), which makes it possible to define the values of \(x\) which solve the equation; then, by substituting these values for \(x\) in the equation (3), the value of \(x'\) may be deduced.

NOTE: The currently known techniques for solving equations with several variables in finite fields make it possible to correctly solve other types of equations than the one illustrated in this example. In particular, equations in which it is not necessary to express a variable as a function of the others and replace it.

Second variant of the HFE algorithm

Of course, the description of the HFE algorithm and its variants does not limit the invention claimed to the utilization of polynomial equations with only one degree: the degree 2. It is entirely possible to use the degree 3; in this case there is a public form with the degree 3.

Likewise, the degree 4 or even 5 is possible. However, it is necessary for the degree to be low enough so that the public equations resulting from them remain easy for a computer to store and to calculate.
13

The choice of parameters is also important in order to ensure maximum security and to elude, as much as possible, any attack of cryptanalysis. Thus, for security reasons, it is preferable that:

1) in each branch, there is at least one variable of 32 bits, and preferably at least 64 bits,

2) there are no equations with the form: \(\Sigma y_{ij}x_iy_j + \Sigma a_i x_i \Sigma b_j y_j + \delta_0 = 0 \) in which at least one of the coefficients \(y_{ij}, a_i, b_j \) or \(\delta_0 \) are non null and, which are always verified if the \(y_j \) coefficients are the components of the enciphered text and the \(x_i \) coefficients are the components of the unenciphered text. NOTE: among other things, it was because such a condition was not verified that the Matsumoto-Imai algorithm cited above was revealed to be not entirely secure.

3) there is no equation with the form:

\[
\Sigma y_{ijk} x_i y_j y_k + \Sigma a_{ij} x_i y_j + \Sigma b_{ij} y_j y_k + \Sigma u_i x_i + \Sigma v_j y_j + \delta_0 = 0
\]

that is, with a total degree of 3 and with a degree of 1 in \(x \), that there be no equation with a "low" degree which is always verified between the coordinates of the unenciphered and enciphered messages, except for the linear combinations of the products of the public equations in small polynomials). Third variant of the HFE algorithm

It has been indicated that in order to use the HFE algorithm when the function is not bijective, it is possible to introduce redundancy into the unenciphered text.

There is another possibility: in effect, it is possible for the size of the enciphered value \(Y \) to be greater than the size of the unenciphered value \(X \) if new elements of \(K \) are inserted into the enciphered value. These new elements are also the ones which result from equations with a degree of two formed of the components of \(X \). More generally, using the notations in Fig. 1, the same element of \(s(x) \) could be transmitted to several
branches. It is also possible to add one or more branches composed of arbitrary equations with a degree of two into a base, in which case these additional branches are used to distinguish the correct antecedent of the other branches.

Fourth variant of the HFE algorithm

Instead of making public all the equations which result in the final function in Fig. 1, one or more of them can be kept secret. This means that, instead of making \((P_1, ..., P_n)\) public, it is possible to make only part of these equations public, in which case the enciphering is carried out by calculating only the public \((P_1, ..., P_n)\) polynomials.

In deciphering, all the possible values for the non-public polynomials \(P_i\) are tried, which provides several possible deciphered messages a priori, and the correct message is marked as before: either by the introduction of redundancy into the unenciphered message, or by means of the method indicated in the third variant.

NOTE: the fact that one or more public equations are thus eliminated can in some cases make it even more difficult to discover the structure of the fields hidden by the HFE algorithm.

Explanation of Fig. 2

Fig. 2 schematically illustrates an example of the enciphering/deciphering system using the cryptographic algorithm described above.

Suppose there are two individuals A and B belonging to the same communications network, each of whom has a respective message sending/receiving device 1, 2. This device includes calculation means, for example a computer, designed to carry out the enciphering/deciphering of messages, and storage means. At least part of these calculation or storage means can be located in a portable object which incorporates a microprocessor or micro-wired logic circuits which define areas to which access is
controlled, and can therefore contain secret information such as cryptographic keys (see, for example, the portable object described in French patent No. 2,401,459).

Each device incorporates the HFE algorithm as described above, particularly in the form of a program, as well as the inverse algorithm HFE⁻¹.

The two devices are linked to one another by means of a communication line 3.

Both individuals A and B possess a pair of keys, respectively: a public key C_{pA} and C_{pB} and a secret key C_{sA} and C_{sB} correlated with the corresponding public key C_{pA} or C_{pB}. If A and B do not have the means to calculate the pairs of keys, this calculation could be done by the network, giving it a certain authority with regard to each member of the network. If these two individuals want to dialogue with one another in a protected mode, that is, without anyone’s being able to understand the data exchanged, then they will implement the following procedure:

The individual A sends B his public key C_{pA}, and B sends A his public key C_{pB}. In a variant, the network can hold the public keys of all the members in primary storage and communicate them to the members on request. Once A has received the public key C_{pB}, A will use it to encipher, with the aid of the cryptographic algorithm HFE, a message M which he desires to send to B, and a message M'. This message, once it is received by B, is deciphered with the aid of the cryptographic algorithm HFE⁻¹ and the secret key C_{sB}. Only B can decipher the message, since he is the only member of the network to possess this key. For the transmission of messages from B to A, the procedure is completely analogous.

Explanation of Fig. 3

Fig. 3 schematically illustrates an example of the
utilization of the system in Fig. 2 to implement a calculation
and signature verification procedure which uses the cryptographic
algorithm described above.

In this case, it is necessary that the transmission of
messages be carried out with authentication, that is, that the
receiver of the message M be able to ascertain that the message
comes from a certain person. For example, suppose that A wants
to send B an authenticated message. The two interlocutors will
implement the following procedure:

First, the individual A will send B his public key CpA or,
in a variant, B can also request this key from the network.
Then, A will encipher the message with his own secret key CsA and
the cryptographic algorithm HFE⁻¹. The result obtained is called
the signature S of the message. Then, the message (which in this
case travels unencrypted) and its signature are sent to B. B
deciphers the signature with the aid of the cryptographic
algorithm HFE and the public key CpA, which he received
previously. The result obtained, notated M⁰, must be the same as
the received message M. If this is in fact the case, it proves
that the signature was calculated with the aid of the secret key
CsA and therefore that the message does in fact come from A, the
only member of the network to possess this key.

A known improvement of this system consists of calculating
not only the signature of the message, but the signature of a
concentration of the message. Thus, using a "hash" function, a
relatively large message can be compressed into a datum H which
is characteristic of the message. This "hash" function can be
implemented using standard hash functions (such as MD5 or SHA).

In summary, the invention results in the following
discoveries:

1. The inventor has shown (cf document Crypto '95, pages
248 through 261) that the initial algorithm by Matsumoto and Imai
1 was not cryptographically solid. This algorithm consisted of
2 "hiding" a bijection \(f \) with the form \(f(b) = a^{1^a} \) in which \(Q = q^6 \)
3 by means of two affine transformations \(s \) and \(t \).
4
5 2. The inventor has shown that it is possible to use much
6 more general functions for \(f \). In effect, the inventor has shown,
7 on the one hand, that it was possible to use non bijective
8 functions \(f \), and on the other hand that it was possible to use
9 the fact that it was known how to calculate antecedents for very
10 diverse families of polynomials, for example by using PGCD
11 calculations of polynomials or resultants of polynomials, or by
12 using GRÖBNER bases.
13
14 3. It is necessary for at least one of the branches not to
15 be too small. In effect, the inventor discovered that small
16 branches lead to weak HFE algorithms.
17
18 4. Moreover, the inventor noted that it is sometimes
19 possible to select only some of the elements which constitute the
20 third image (I3) resulting from the transformation of the second
21 image (I2) by means of the second secret polynomial
22 transformation.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. A cryptographic communication process which transforms a value \((X) \) represented by \((n) \) elements of a finite ring \((K) \) into an image value \((Y) \) represented by \((n') \) elements of the ring \((K) \), characterized in that:

 a) each element \((n') \) of the image value \((Y) \) is in the form of a public polynomial equation having a low degree \((D) \) greater than or equal to 2 composed of the elements \((n) \) of the value \((X) \);

 b) the image value \((Y) \) can also be obtained from the value \((X) \) by means of a transformation comprising the following steps, at least some of which require the knowledge of a cryptographic secret:

 b1) applying to the value \((X) \) a first secret polynomial transformation \((s) \) having a degree \(1 \) composed of the \((n) \) elements of the value \((X) \) in order to obtain a first image \((II) \) with \((n) \) elements;

 b2) which \((n) \) elements of the first image \((II) \) are considered to represent a variable or a small number \((k) \) of variables \((x, x', x'', ..., x^k) \) belonging to an extension \((L_w) \) with the degree \(W \) of the ring \((K) \) with \(W \times k = n \), applying to the first image \((II) \) a transformation defined as follows:

\[
f: L^k_w \rightarrow L^k_w
\]

\[
(x, x', x'', ..., x^k) \rightarrow (y, y', y'', ..., y^k)
\]

noting that \((y, y', y'', ..., y^k) \) is the image of \((x, x', x'', ..., x^k) \) from the transformation \(f \), knowing that \(f \) verifies the following two properties:

 -b2.1) in a base \((B) \) of the extension \((L_w) \) of the ring, each component of the image \((y, y', y'', ..., y^k) \) is expressed in the form of a polynomial composed of the components of \((x, x', x'', ..., x^k) \) in this base, which polynomial has a total degree less than or equal to said degree \((D) \) of the public polynomial equation;

 -b2.2) expressed in the extension \((L_w) \) of the ring, the
transformation (f) is such that it is possible to calculate
antecedents of (f) when they exist, except possibly for certain
entries, the number of which is negligible relative to the total
number of entries;

b3) the first image (I1) thus transformed constitutes a
second image (I2);

b4) applying to the second image (I2) a second secret
polynomial transformation (t) having a degree of 1, composed of
the elements of the second image (I2) in order to obtain a third
image (I3) having a determined number of elements; and

b5) selecting (n') elements from the set of elements in the
third image (I3) in order to form said image value (Y).

2. The process according to claim 1, in which said low
degree (D) of the public polynomial equation is equal to 2.

3. The process according to claim 1, in which the number k
of variables is equal to 1.

4. The process according to claim 3, in which said low
degree (D) of the public polynomial equation is equal to 2, (K)
is a finite field, and said transformation (F) has the following
form:

\[f : L^w \rightarrow \{L^w \}
\]

\[x \rightarrow \sum_{i,j} \beta_{i,j} \cdot x^{q_i \cdot p} + \sum \alpha_i \cdot x^s + \mu_0 \]

in which q is the cardinal of the field (K); \(Q = q^{q_i,j} \), \(P = q^{q_i,j} \),
and \(S = q^{q_i,j} \), \(\beta_{i,j} \), \(\alpha_i \) and \(\mu_0 \) are elements of \(L^w \), and \(q^{q_i,j} \), \(\varphi^{q_i,j} \) and \(\xi^i \)
are integers, and in which the degree in \(x \) of the polynomial \(f \) is
less than or equal to 1,000.

5. The process according to claim 1, such that there are
no polynomial equations with a low total degree composed of the
components of (x, x', x'', ..., x^k) and (y, y', y'', ..., y^k) other
than linear combinations of the products of the public equations
6. The process according to claim 1, such that there are no polynomial equations with the form: \(\sum y_{ij}x_iy_j + \sum a_ix_i \sum b_jy_j + \delta_0 = 0 \), with at least one of the coefficients \(y_{ij}, a_i, b_j \) or \(\delta_0 \) being non null, which are always verified if the coefficients \(y_j \) are the components of the enciphered message, and the coefficients \(x_i \) are the components of the unenciphered message.

7. The process according to claim 1, in which the ring \((K)\) is a finite field and the extension \((L_w)\) of the ring is an extension with a degree of \(W\) of the ring \((K)\), which means that \((L_w)\) is isomorphic with \(K[X]/g(X)\), in which \(g\) is an irreducible polynomial with a degree of \(W\) on \(K\).

8. A process for the asymmetric authentication, by a first person called the verifier, of another person called the prover, characterized in that:
 - the verifier sends the prover a first value \((Y)\);
 - the prover returns to the verifier a second value \((X)\) obtained by applying to the first value \((Y)\) a transformation which corresponds to the inverse transformation of that which was the subject of claim 1;
 - the verifier applies to the second value \((X)\) the transformation from claim 1 and verifies that the result conforms to a predetermined relation linked to the first value \((Y)\).

9. A cryptographic communication process which transforms a value \((X)\) represented by \((n)\) elements of a finite ring \((K)\) into an image value \((Y)\) represented by \((n')\) elements of the ring \((K)\), characterized in that:
 a) each element \((n')\) of the image value \((Y)\) is in the form of a public polynomial equation having a low degree \((D)\) greater than or equal to 2 composed of the elements \((n)\) of the value \((X)\);
b) the image value \((Y)\) can also be obtained from the value \((X)\) by means of a transformation comprising the following steps, some of which require the knowledge of a cryptographic secret:

b1) applying to the value \((X)\) a first secret polynomial transformation \((s)\) having a degree 1 composed of the \((n)\) elements of the value \((X)\) in order to obtain a first image \((II)\) with \((n)\) elements;

b2) forming one or more branches, each of which branches is composed of elements of the first image \((II)\) and,

- in at least one \((e)\) of the branches, the \((n_e)\) elements of the branch are considered to represent a variable or a small number \((k)\) of variables \((x, x', x'', ..., x^k)\) belonging to an extension \((L_w)\) with a degree \(W\) of the ring \((K)\) with \(W \times k = n_e\), and applying to at least this branch \((e)\) a transformation defined as follows:

\[
f_e : L_w^k \rightarrow L_w^k
\]

\[
(x, x', x'', ..., x^k) \rightarrow (y, y', y'', ..., y^k)
\]

noting that \((y, y', y'', ..., y^k)\) is the image of \((x, x', x'', ..., x^k)\) from the transformation \(f_e\), with \(f_e\) verifying the following two properties:

- b2.1) in a base \((B)\) of the extension \((L_w)\) of the ring, each component of the image \((y, y', y'', ..., y^k)\) is expressed in the form of a polynomial composed of the components of \((x, x', x'', ..., x^k)\) in this base, which polynomial has a total degree less than or equal to said degree \((D)\) of the public polynomial equation;

- b2.2) expressed in the extension \((L_w)\) of the ring, the transformation \((f_e)\) is such that it is possible to calculate the antecedents of \((f_e)\) when they exist, except perhaps for certain entries, the number of which is negligible relative to the total number of entries.

- and applying to the other potential branches polynomial transformations with a degree less than or equal to said degree \((D)\) composed of the components with value in the ring \((K)\);
b3) which branch thus transformed, or the plurality of branches thus transformed, then concatenated, constitutes a second image (I2);

b4) applying to the second image (I2) a second secret polynomial transformation (t), having a degree 1 composed of the elements of the second image (I2) in order to obtain a third image (I3) having a determined number of elements; and

b5) selecting (n') elements from among the set of elements in the third image (I3) to form said image value (Y).

10. The process according to claim 9, in which a polynomial with a degree less than or equal to (D) is added at the output of the branch thus transformed or other branches, which polynomial depends only on the variables of the branches situated immediately ahead of this branch.

11. The process according to claim 9, in which the first image (I1) has several branches, one of which branches manipulates values of at least 32 bits.

12. A process for the asymmetric signature of a message (X) and for the verification of this signature, characterized in that the signature is obtained by applying to the message, or to a public transformation of the message, a transformation which corresponds to the inverse transformation of that which is the subject of the process in claim 1 or claim 9, and in that the verification consists of checking that a result (Y) is obtained which conforms to predetermined relations linked to the message to be signed.

DATED THIS 24 day of July 1996

CP8 TRANSAC

Patent Attorneys for the Applicant:-

F B RICE & CO
ABSTRACT:

A novel asymmetrical cryptographic schema which can be used for enciphering, signature and authentication. The schema is based on low degree public polynomial equations with value in a finite ring K.

The mechanism is not necessarily bijective. The secret key makes it possible to hide polynomial equations with value in extensions of the ring K. The solving of these equations makes it possible, if one has the secret key, to execute operations which are not executable with the public key alone.

Fig. 1 to be published.
Fig. 2

Fig. 3