COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

CONVENTION APPLICATION FOR A STANDARD PATENT

We, ALUMINIUM PECHINEY, of 23, rue Balzac, 75008 Paris, France hereby apply for the grant of a standard patent for an invention entitled:

"PROCESS FOR THE CONTINUOUS PRODUCTION OF ALUMINA FROM BAUXITES CONTAINING MONOHYDRATES USING THE BAYER PROCESS"

which is described in the accompanying complete specification.

DETAILS OF BASIC APPLICATION

Number of Basic Application:- 85 08575
Name of Convention Country in which Basic Application was filed:- France
Date of Basic application:- 29 May, 1985
Our address for service is:-

C/- Spruson & Ferguson
Patent Attorneys
Level 33 St Martins Tower
31 Market Street
Sydney New South Wales Australia

DATED this TWENTY-SECOND day of MAY 1986

ALUMINIUM PECHINEY

By:

TO: THE COMMISSIONER OF PATENTS

AUSTRALIA

SBS/TGX/185T
COMMONWEALTH OF AUSTRALIA
THE PATENTS ACT 1952
DECLARATION IN SUPPORT OF A
CONVENTION APPLICATION FOR A PATENT

In support of the Convention Application made for a
patent for an invention entitled: "PROCESS FOR THE
CONTINUOUS PRODUCTION OF ALUMINA FROM BAUXITES
CONTAINING MONOHYDRATES USING THE BAYER PROCESS"

Title of Invention

I/we Claude Pascaud

Full name(s) and
address(es) of
Declarant(s)

Aluminium Pechiney
care of
23, rue Balzac,
75008 Paris, France

do solemnly and sincerely declare as follows:

Full name(s) of
Applicant(s)

I am/we are the applicant(s) for the patent

(or, in the case of an application by a body corporate)

1. I am/we are authorised by
 Aluminium Pechiney
 the applicant(s) for the patent to make this declaration on
 its/their behalf.

2. The basic application(s) as defined by Section 141 of the
 Act was/were made
 in France
 on 29 May, 1985
 by Aluminium Pechiney

Basic Country(ies)

Priority Date(s)

Basic Applicant(s)

Full name(s) and
address(es) of
inventor(s)

I am/we are the actual inventor(s) of the invention referred
 to in the basic application(s)
 (or where a person other than the inventor is the applicant)

3. JEAN LEPETIT
 of
 Residence Sainte Victoire
 13100 AIX-EN-PROVENCE, FRANCE

 - (respectively)
 is/are the actual inventor(s) of the invention and the facts upon
 which the applicant(s) is/are entitled to make the application are
 as follows:
 Aluminium Pechiney is entitled by Contract of Employment
 between the inventor as employee and Aluminium Pechiney
 as employer, as a person who would be entitled to have
 the patent assigned to it if a patent were granted upon
 an application made by the inventors,

4. The basic application(s) referred to in paragraph 2 of this
 Declaration was/were the first application(s) made in a Convention
 country in respect of the invention(s) the subject of the application.

Declared at Paris this 15th day of April, 1986

Signature of Declarant(s)

Claude PASCAUD - Inventeur en Propriété

To: The Commissioner of Patents
A process for the continuous production of alumina using the Bayer process by alkaline attack in reactors on bauxites primarily comprising aluminium monohydrates and containing silica which is in a free state or combined in the form of aluminium silicate characterised in that, in order to retard scaling of the reactors by deposits of sodium silico-aluminate on the walls of the reactors, the following operations are successively carried out:

1) The bauxite is put into suspension by crushing in a sodic liquor (aqueous solution of caustic soda),

2) The suspension is raised to a temperature of from 90 to 108°C and held at that temperature for a period of time sufficient to convert at least 75% of the aluminium silicate contained in the bauxite into insoluble sodium silico-aluminate,

3) The suspension is then subjected to steam heating by passing through a tube-type heat exchanger under pressure at a temperature which is at least equal to 160°C and preferably is from 160 to 230°C, with a speed of rise in temperature of from 2 to 12°C/minute and with a speed of...
flow in the tubular reactor of from 0.4 to 7 metres per second,

4) By heat exchange with a heat exchange fluid in a tubular reactor, the suspension is raised to a temperature of from 200 to 300°C and preferably from 230 to 290°C and maintained at that temperature so as to solubilise at least 90% of the extractible alumina, and

5). The suspension is returned to atmospheric pressure by successive expansion operations, with recovery of the steam.
Class 58008/86. Int. Class

Complete Specification Lodged:

Accepted:

Published:

Priority:

Related Art:

Name of Applicant: ALUMINIUM PECHINEY

Address of Applicant: 23, rue Balzac, 75008 Paris, France

Actual Inventor: JEAN LEPETIT

Address for Service: Spruson & Ferguson, Patent Attorneys, Level 33 St Martins Tower, 31 Market Street, Sydney, New South Wales, 2000, Australia

Complete Specification for the invention entitled:

"PROCESS FOR THE CONTINUOUS PRODUCTION OF ALUMINA FROM BAUXITES CONTAINING MONOHYDRATES USING THE BAYER PROCESS"

The following statement is a full description of this invention, including the best method of performing it known to us
ABSTRACT

PROCESS FOR THE CONTINUOUS PRODUCTION OF ALUMINA
FROM BAUXITES CONTAINING MONOHYDRATES USING THE BAYER PROCESS

The invention concerns a process for the continuous production of alumina by means of the Bayer process by alkaline attack in reactors on bauxites which primarily consist of aluminium monohydrates and contain silica in a free state or combined in the form of aluminium silicate, the essential aim of which is to delay scaling of the reactors by deposits of sodium silico-aluminate on the reactor walls. The process comprises the following stages:

1) The bauxite is put into suspension by crushing in a sodic liquor (aqueous solution of caustic soda),

2) The suspension is raised to a temperature of from 90 to 108°C and held at that temperature for a period of time sufficient to convert at least 75% of the aluminium silicate contained in the bauxite into insoluble sodium silico-aluminate,

3) The suspension is then subjected to steam heating by passing through a tube-type heat exchanger under pressure at a temperature which is at least equal to 160°C and preferably is from 160 to 230°C, with a speed of rise in temperature of from 2 to 12°C/minute and with a speed of flow in the tubular reactor of from 0.4 to 7 metres per second,

4) By heat exchange with a heat exchange fluid in a tubular reactor, the suspension is raised to a temperature of from 200 to 300°C and preferably from 230 to 290°C and maintained at that temperature so as to solubilise at least 90% of the extractible alumina, and

5) The suspension is returned to atmospheric pressure by successive expansion operations, with recovery of the steam.
SUBJECT OF THE INVENTION

The invention concerns a process for the continuous production of alumina by alkaline attack, using the Bayer process and in a tubular reactor, on bauxites primarily consisting of aluminium monohydrates and further containing silica in the form of aluminium silicates such as kaolin.

STATE OF THE ART

The Bayer process which is widely described in the specialist literature constitutes the essential procedure for producing alumina which is intended to be converted into aluminium by igneous electrolysis.

In accordance with that process, the bauxite ore is treated in a hot condition by means of an aqueous solution of sodium hydroxide at a suitable level of concentration, thus causing solubilisation of the alumina and the formation of a supersaturated solution of sodium aluminate.

After separation of the solid phase constituting the residue of the ore which has not been attacked (red mud), the supersaturated sodium aluminate solution is seeded with aluminium trihydroxide particles in order to cause precipitation of aluminium trihydroxide. The sodium aluminate liquor with its reduced alumina content is recycled to the attack stage after having been concentrated and recharged with sodium hydroxide in order to re-establish the appropriate degree of concentration for the operation of attacking the ore.
It is well known to the man skilled in the art that the conditions under which the treatment is carried out have to be adapted, in accordance with the degree of hydration and the mineralogical structure of the alumina on the one hand and the nature and the proportion of the impurities present in the bauxite on the other hand, in particular silica, and iron and titanium oxides.

Thus, bauxites containing monohydrates require an attack operation at relatively elevated temperature (higher than 200°C) in order rapidly and quantitatively to solubilise the aluminium monohydrate that they contain in the form of boehmite, diaspor or possibly substituted goethite.

The attack operation is generally carried out by means of heat exchangers which permit the bauxite which is put into suspension in a caustic soda liquor to be raised to the attack temperature required, and turbulent reactors in which the bauxite suspension is held at that temperature for the period of time required for solubilisation of the major part of the aluminium monohydrate that it contains.

The heat exchangers are generally agitated autoclaves which are provided with nests of tubes supplied with live steam or steam resulting from expansion of the bauxite suspension after the attack operation, or exchangers of single-tube or multi-tube type, formed by a tube or tubes in which the bauxite suspension flows, being disposed in an external tubular casing supplied with heat exchange fluid (live steam or expansion steam, molten salts, organic liquids or a suspension which is still hot after an attack operation). The turbulent reactors are generally either agitated autoclaves which may or may not be fitted with heating nests of tubes, or a tube of sufficient length to provide the required residence time, at the attack temperature, having regard to the speed of flow of the suspension in the tube.
The suspension after attack is cooled until reaching atmospheric pressure, either by successive expansion steps in expansion means which produce vapour intended to feed the heat exchangers, or by direct exchange relationship with the initial bauxite suspension to be heated, in exchangers of single-tube or multi-tube type.

PROBLEM SET BY THE PRIOR ART

Different important chemical reactions occur between the time at which the bauxite is brought into contact with the caustic soda liquor and the time at which it issues from the tubular reactor at the attack temperature.

Firstly, if the bauxite contains a certain proportion of aluminium trihydroxide (hydrargillite), it is solubilised in its entirety before the maximum attack temperature is reached (generally before the temperature reaches 160°C).

Secondly, aluminium silicate, generally in the form of kaolin Al₂O₃·2SiO₂·2H₂O, is dissolved and then re-precipitated in the form of sodium silico-aluminate (kaolinite) at a temperature which is generally lower than 180°C.

The latter reaction is troublesome in regard to proper operation of the heat exchangers as precipitation of the sodium silico-aluminate occurs in particular on the internal heat exchange surfaces of the exchangers (on the bauxite suspension side), with the formation of scale deposits which are poor conductors of heat, thereby giving rise to a drop in efficiency of the exchangers.

When the scale deposits have reached a certain thickness, the thermal losses and the difficulties in regard to the flow of suspension become such that it is necessary to stop the installation and to remove the scale chemically (acid dissolution), mechanically
(destruction by knocking it) or hydraulically (high-pressure jets).

STATE OF THE PRIOR ART

Various solutions have been proposed for limiting the scaling phenomenon.

German patent application (DE-A-1592194) filed on 6th May 1967 (equivalent to FR-B-1546418) discloses that it is possible to limit the rate at which scale is formed in single-tube or multi-tube exchangers by circulating the bauxite suspension within the tube or tubes at a high speed, preferably between 2 and 5 metres per second.

In the same fashion, Hungarian patent No 457 filed on 14th November 1960 (GB 939619 and DE 1202258) provides for a high speed of circulation of from 1.2 to 1.5 metres per second, and shows the improvement as regards the formation of scale in a desilication operation before the introduction of the bauxite suspension into the heat exchangers. The desilication operation consists of keeping the bauxite suspension in an agitated condition for a period of from 6 to 8 hours, at a temperature of from 70 to 100°C. That patent also points to a similar improvement when the desilication operation is carried out at a temperature of more than 120°C in a reactor which is not heated, but inserted into a series of autoclaves.

However, the applicants found that none of the above-indicated solutions was satisfactory, whether they were taken separately or in association.

The high speeds (> 1 metre per second) through the arrays of autoclaves are very difficult to attain and, above 2 metres per second in single-tube or multi-tube exchangers, very high levels of pressure drop are incurred, in particular in high-capacity installations which are those that are most widely used as they are more economical in terms of capital investment and operating costs.
For example, for an installation for carrying out an attack operation at a temperature of 260°C, which makes it possible to produce 300000 tonnes of Al₂O₃ per annum, the pressure drop in regard to the bauxite suspension to be heated to a temperature of 260°C goes from 10 to 70 bars when the speed of flow of the suspension goes from 2 to 5 metres per second, for the same heat exchange area.

Another example which is drawn from simultaneous industrial operation on the same quality of bauxite, using two attack installations of which one was provided with autoclaves heated by nests of tubes and the other was provided with single-tube reheaters showed that the speed of flow of the bauxite suspension is an important criterion in regard to ensuring a suitable hydraulic operating condition in the heat exchangers, but not in regard to the formation of scaling.

In fact, the period of time over which the attack operation using autoclaves could be satisfactorily carried out could reach 75 days between two descaling operations, whereas the attack operation using a single-tube exchanger could operate only for 24 days, although the speed of flow of the suspension (1.8 metres per second) was greater than the mean speed of flow through the nests of tubes of the autoclaves, such speed being achieved by virtue of radial agitation by means of a blade-type agitator.

In carrying out the above-indicated comparative tests, the applicants discovered that the important criterion in regard to scale formation was the speed of rise in temperature of the bauxite suspension in the exchangers.

The higher the speed of rise in temperature, the greater is the degree of scaling on the heating surfaces.

In the above-indicated comparative tests, the speeds of
temperature rise were 1°C/minute for the autoclaves and 7°C/minute for the single-tube exchangers.

Moreover, speaking generally, the increase in the speed of flow of the suspension in the single-tube or multi-tube exchangers contributes to increasing the rate of temperature rise.

It is only with very high rates of flow, which result in substantial abrasion of the walls of the tube, that it is possible to prevent the formation or growth of scale deposits. That solution is not to be used in the case of highly abrasive bauxites such as diaspore bauxites from Greece or China.

As regards the desilicatation operation before attack at a temperature of from 70 to 100°C in accordance with the claim of the Hungarian patent, the applicants found that the gain in regard to scaling permitted by that solution is very slight, or even zero insofar as the gain in regard to scaling is compensated by the following considerations:

- on the one hand, the fact that it is necessary to heat the bauxite suspension in the desilicatation operation before it passes into the attack reheaters, which is a disadvantage in regard to thermal recovery in the heat exchangers by virtue of the reduction in the temperature difference between the hot and cold sources, and
- on the other hand, the thermal losses involved in the desilicatation operation.

Continuing with their investigations, the applicants showed that the rate of conversion of aluminium silicate into sodium silico-aluminate under the conditions of the above-mentioned Hungarian patent is lower than 50% as is quoted in that patent, and that that rate of conversion is insufficient to guarantee a gain in regard to thermal recovery in the heat exchangers.
The above-quoted Hungarian patent also claims the possibility of carrying out the desilicatation operation at a temperature of higher than 120°C in reactors which are disposed between the heat exchangers.

That solution was the subject of experiment on an industrial scale by the present applicants with different types of bauxite, giving a residence time of 30 minutes at a temperature of 130 to 135°C in two autoclaves which were agitated but not heated. That solution made it possible to increase the period of operation of the single-tube exchangers only from 24 to 30 days.

The a posteriori explanation for the disappointing results indicated above was that on the one hand the residence time of 30 minutes was insufficient and on the other hand the temperature during the residence time was too high.

Optimising the conditions of such a desilicatation operation in order to arrive at results equivalent to carrying out an attack operation in an autoclave (operation over a period of 75 days) would have involved investing in at least 5 residence time autoclaves, that is to say, almost as many as in an attack operation in which the heat exchangers are made up of autoclaves and nests of tubes (6 thereof are required to increase the temperature to 160°C).

The gain in terms of capital investment, which is linked to the substitution of autoclave type exchangers for single-tube or multi-tube type exchangers would thus have been lost.

That solution is really only an attractive proposition in regard to attacking hydrargillite-type bauxites at a temperature of less than 170°C. Under those conditions, the capital investment cost of the autoclave which provides a temperature residence time is substantially lower by virtue of a lower operation pressure.
TECHNICAL PROBLEM TO BE SOLVED

After having thus analysed and carefully experimented with the prior-art processes, the applicants carried out research into the conditions under which single-tube or multi-tube exchangers which are less expensive in terms of capital investment than autoclaves fitted with nests of tubes could be operated without stoppages for descaling over periods of greater than at least 1 month.

SUBJECT OF THE INVENTION

The subject of the present invention is a process for treating bauxites primarily formed of aluminium monohydrates and also containing a certain amount of silica, in particular in the form of kaolin Al₂O₃·2SiO₂·H₂O, which process makes it possible very substantially to reduce the rate of scaling of the heat exchangers and the tubular reactors, said process comprising the following stages:

1. Crushing the bauxite and putting it into suspension in an aqueous solution of sodium hydroxide (basic operation of the Bayer process) at a rate of about 1 tonne of bauxite (from 0.14 to 1.8 tonne) per cubic metre of sodium hydroxide solution at a concentration of about 150 to 300 grams of caustic Na₂O per litre. Depending on its origin, that solution may also contain a certain proportion of solubilised alumina. In the sodium hydroxide solution, dissolution of the aluminium monohydrate cannot occur at low temperature.

2. Desilicatation of the suspension at atmospheric pressure by maintaining it at a temperature of from 90 to 105°C and for a sufficient period of time to convert at least 75% of the aluminium silicate contained in the bauxite into insoluble sodium silico-aluminate.

3. Optional addition of sodium hydroxide solution, at a
concentration equal to or close to that used in the first stage, so as to have from 0.14 to 0.25 tonne of Lauxite per m3 of solution.

4. Reheating the suspension with steam in a tubular heat exchanger, under pressure, to a temperature which is at least equal to 140°C and which is preferably between 160 and 230°C, with a speed of rise in temperature of the bauxite suspension of between 2 and 12°C/minute, and preferably between 2 and 10°C/minute, and a speed of flow of the suspension of between 0.4 and 7 metres per second and preferably between 1 and 4 metres per second.

5. Then, by exchange with a heat exchange fluid, the bauxite suspension is raised to a temperature of between 200 and 300°C and preferably between 230 and 290°C, and maintained at that temperature for the period of time required to solubilise at least 90% of the extractible alumina, that is to say, the alumina which is not combined with the silica.

6. Finally, and in accordance with the Bayer process, the suspension is cooled by successive expansion steps in order to return it to atmospheric pressure, such expansion steps producing steam which is intended for reheating the suspension that has not been attacked, in the single-tube or multi-tube exchangers.

The sodium hydroxide solution which is used in the first bauxite crushing and suspension stage may at least in part result from recycling of the liquors which are referred to as being "partially exhausted in respect of alumina" at the end of the Bayer cycle and which may still contain from 150 to 250 g/litre of caustic Na$_2$O and from 80 to 160 grams/litre of solubilised alumina in the form of sodium aluminate.

Likewise, after the desilicatation step, the bauxite suspension is diluted by the addition of the same sodium hydroxide solution so as to have about 0.14 to 0.25 tonne of bauxite per m3 of sodium hydroxide solution.
The desilication stage is particularly important in the process in accordance with this invention. The time required for converting the aluminium silicate into sodium silico-aluminate varies and depends in particular on the proportion of aluminium silicate in the bauxite and the amount of sodium hydroxide solution which is brought into the presence of the bauxite during the desilication operation. That period of time is reduced in particular when the proportion of aluminium silicate in the bauxite increases or when the amount of solution per tonne of bauxite which is brought into the presence thereof falls.

In addition, the applicants discovered that the above-indicated period of time was further reduced if the desilication operation was carried out in a succession of agitated tanks disposed in series rather than in a single agitated tank.

Scaling of single-tube or multi-tube reheaters, due to sodium silico-aluminate scale, up to a temperature of 170°C, decreases considerably when the rate of conversion of aluminium silicate into sodium silico-aluminate rises above 75%. Thus, the period of time for which the attack exchangers can operate properly between two descaling operations may be doubled when the above-mentioned conversion rate goes from 75% to 95%.

The speed of flow in the exchanger tubes must preferably be higher than 1 metre per second in order to prevent the deposit of large particles of bauxite at the bottom of the horizontally disposed tubes in which the bauxite suspension flows. Above a speed of 4 metres per second and in particular 7 metres per second, the rate of abrasion of the exchanger tubes is no longer negligible.

The optimum speed depends on the capacity of the attack reactors. In fact, the greater the capacity of the attack reactors, the lower is the rate of temperature rise for the same number of tubes.
carrying the flowing suspension. In order not to have excessively high rates of temperature rise (not more than 10°C/minute), which encourage the formation of scale, it will not be an attractive proposition to have tubes of excessively small diameter (< 80 mm) in a single-tube reactor and a fortiori in a multi-tube reactor. On the other hand, with tubes of substantial diameter (> 250 mm), it will be possible to operate with speeds of the order of 2 metres per second and higher. The residence time of the bauxite suspension at the attack temperature will be sufficient for more than 90% of the alumina in monohydrate or trihydrate form to be solubilised.

EMBODIMENTS OF THE INVENTION

Example 1

This Example comprises attaching a bauxite containing monohydrate (boehmite) and also containing trihydrate (hydrargillite), of the following composition:

<table>
<thead>
<tr>
<th>element</th>
<th>% by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firing loss</td>
<td>25.8%</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>54.9</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>7.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.9</td>
</tr>
<tr>
<td>Total SiO₂</td>
<td>5.8</td>
</tr>
<tr>
<td>SiO₂ as aluminium silicate</td>
<td>3.0</td>
</tr>
</tbody>
</table>

The desilication operation was carried out over a period of 5 hours in 3 tanks in a series arrangement, which were agitated and maintained at a temperature of 100°C, in the presence of 1 tonne of finely crushed bauxite in suspension in 1 m³ of aqueous sodium hydroxide solution containing 220 grams of caustic Na₂O per litre of solution and 135 g of Al₂O₃ per litre of solution, thereby to convert 82% of the aluminium silicate into sodium silico-aluminate. The
procedure then involved reheating the bauxite suspension issuing from the desilication operation, mixed with 6 m3 of sodium hydroxide solution containing 220 g of Na$_2$O per litre and 135 g of soluble Al$_2$O$_3$ per litre, in the form of sodium aluminate, in single-tube exchangers through which the suspension passes at a speed of 2 metres per second, and with a rise in temperature at 6°C/minute to a temperature of 175°C. The temperature was then raised to and held at 235°C in order to put the aluminium monohydrate into solution. The solution was then cooled, after attack, by successive expansion operations, until reaching atmospheric temperature, with recovery of the expansion steam which is used for heating the suspension.

The average time between two successive stoppages for the purposes of removing the sodium silico-aluminate scale deposits was 55 days.

Example 2

This Example involved attacking a bauxite containing monohydrate ("diaspore" type) of the following composition:

<table>
<thead>
<tr>
<th>Element</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firing loss</td>
<td>15.2</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>68.0</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>1.3</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>4.2</td>
</tr>
<tr>
<td>Total SiO$_2$</td>
<td>11.1</td>
</tr>
</tbody>
</table>

The desilication operation was carried out over a period of 5 hours at 100°C in 3 tanks in series, with agitation, using 1.8 tonne of bauxite in suspension in 8 m3 of recycled aqueous sodium hydroxide solution containing 230 g of caustic Na$_2$O and 140 g of soluble Al$_2$O$_3$ (in the form of Na aluminate) per litre of solution, so as to convert 88% of the aluminium silicate into sodium silico-
aluminate. The suspension after the desilicatation operation was then reheated to a temperature of 220°C in single-tube reheaters, with the temperature being increased at a rate of 4°C per minute and with the speed of the suspension being controlled at 2.0 metres per second.

The temperature was then raised to and held at 260°C to effect dissolution of the aluminium monohydrate, then the suspension was cooled by successive expansion operations until reaching atmospheric pressure, with recovery of the expansion steam that was used for reheating the suspension.

A period of more than 60 days between two successive stoppages of the installation for the purposes of removing the sodium silico-aluminate scale deposits was found.
CLAIMS
The claims defining the invention are as follows:

1. A process for the continuous production of alumina using the Bayer process by alkaline attack in reactors on bauxites primarily comprising aluminium monohydrates and containing silica which is in a free state or combined in the form of aluminium silicate characterised in that, in order to retard scaling of the reactors by deposits of sodium silico-aluminate on the walls of the reactors, the following operations are successively carried out:

1) The bauxite is put into suspension by crushing in a sodic liquor (aqueous solution of caustic soda),

2) The suspension is raised to a temperature of from 90 to 100°C and held at that temperature for a period of time sufficient to convert at least 75% of the aluminium silicate contained in the bauxite into insoluble sodium silico-aluminate,

3) The suspension is then subjected to steam heating by passing through a tube-type heat exchanger under pressure at a temperature which is at least equal to 160°C and preferably is from 160 to 230°C, with a speed of rise in temperature of from 2 to 12°C/minute and with a speed of flow in the tubular reactor of from 0.4 to 7 metres per second,

4) By heat exchange with a heat exchange fluid in a tubular reactor, the suspension is raised to a temperature of from 200 to 300°C and preferably from 230 to 290°C and maintained at that temperature so as to solubilise at least 90% of the extractible alumina, and

5) The suspension is returned to atmospheric pressure by successive expansion operations, with recovery of the steam.
2. A process according to claim 1 characterised in that the first stage comprises putting into suspension 0.14 to 1.8 tonne of bauxite per m3 of an aqueous sodium hydroxide solution containing from 150 to 300 grams per litre of caustic Na$_2$O.

3. A process according to claim 1 characterised in that, in the second stage, the residence time at the temperature of from 90 to 180°C is from 2 to 10 hours so as to convert at least 85% of the aluminium silicate into insoluble sodium silico-aluminate.

4. A process according to claim 1 characterised in that, after the second stage, aqueous sodium hydroxide solution is added so as to have a ratio by mass of desilicated bauxite (in tonnes) per m3 of aqueous sodium hydroxide solution of from 0.14 to 0.25.

5. A process according to claim 1 or claim 4 characterised in that the aqueous sodium hydroxide solution originates at least in part from recycling of the liquors which are partially exhausted in respect of soluble alumina at the end of a Bayer cycle and which may contain from 80 to 160 grams per litre of soluble alumina and from 150 to 250 grams per litre of caustic Na$_2$O.

6. A process according to claim 1 characterised in that, in the third stage, the speed of rise in temperature is from 3 to 8°C/minute.

7. A process according to claim 1 characterised in that in the third stage, the speed of flow in the tubular reactor is from 1 to 4 metres per second.

8. A process according to claim 1 characterised in that the fourth stage is carried out in a single-tube reactor.

9. A process according to claim 5 characterised in that the fourth stage is carried out at a temperature of higher than 230°C if the bauxite is a boehmite-based bauxite and at a temperature of higher than 255°C if the bauxite is a diaspore-based bauxite.

10. A process according to claim 1 characterised in that the fourth stage is carried out in a reactor formed by a multi-tube nest.
DATED this TWENTY-SECOND day of MAY, 1986

ALUMINIUM PECHINEY

Patent Attorneys for the Applicant
SPRUSON & FERGUSON