Commonwealth of Australia

Patents Act 1952

CONVENTION APPLICATION FOR A STANDARD PATENT

We, N.V. PHILIPS' GLOEILAMPENFABRIEKEN, a limited liability company, organized under the laws of the Kingdom of The Netherlands and carrying on business at Groenewoudseweg 1, Eindhoven, The Netherlands and Philips and Du Pont Optical Company, a partnership, organized under the laws of the Kingdom of The Netherlands and carrying on business at Buizerdlaan 2, Nieuwegein, The Netherlands hereby apply for the grant of a Standard Patent for an invention entitled:

"Method and apparatus for recording signals on a record carrier, measurement method and measurement device for use in the recording method and the recording apparatus, and record carrier".

which is described in the accompanying complete specification. This application is made under the provisions of Part XVI of the Patents Act 1952 and is based on the following application or applications for a patent or patents or similar protection made in the following country or countries on the following date or dates:

Our address for service is:

Philips Industries Holdings Ltd,
Patent and Trade Mark Division
The Philips Building, Blue Street,
North Sydney, New South Wales 2060, Australia.

Dated this 22nd of March 1990

N.V. PHILIPS' GLOEILAMPENFABRIEKEN

F. J. SMIT

To: THE COMMISSIONER OF PATENTS.

Philips and Du Pont Optical Company

J.A. de VOS
(19) AUSTRALIAN PATENT OFFICE

(54) Title
METHOD AND APPARATUS FOR RECORDING SIGNALS ON A RECORD CARRIER,
MEASUREMENT METHOD AND MEASUREMENT DEVICE FOR USE IN THE
RECORDING METHOD AND THE RECORDING APPARATUS, AND RECORD CARRIER.

International Patent Classification(s)
G11B 013/04

(21) Application No.: 55931/90
(22) Application Date: 28.05.90

(30) Priority Data
(31) Number (32) Date (33) Country
8901345 29.05.89 NL NETHERLANDS

(43) Publication Date: 29.11.90

(71) Applicant(s)
N.V. PHILIPS' GLOEILAMPENFABRIEKEN; PHILIPS AND DU PONT OPTICAL COMPANY

(72) Inventor(s)
NAME NOT GIVEN

(74) Attorney or Agent
PHILIPS INDUSTRIES

(57) Claim
1. A method of recording signals on a record carrier of a rewritable type, information patterns of optically detectable marks being formed on the record carrier in substantially parallel tracks of a specific track pitch, the tracks being scanned by a radiation beam to form the marks, characterized in that the dimensions of the recorded marks in a direction perpendicular to the track direction substantially correspond to the track pitch.

2. A method as claimed in Claim 1, characterized in that the optically detectable marks are magnetic domains obtained by locally heating a recording layer of the record carrier with the aid of a radiation beam, said layer being suitable for magneto-optical recording, the heated portion of the recording layer being exposed to a magnetic field which is directed substantially perpendicularly to the recording layer.

14. A record carrier formed with substantially parallel adjacent tracks of substantially constant track pitch, which tracks exhibit an information pattern of optically detectable marks, characterized in that the dimensions of the marks in a direction perpendicular to the track direction are substantially equal to the track pitch.
COMPLETE SPECIFICATION FOR THE INVENTION ENTITLED:

"Method and apparatus for recording signals on a record carrier, measurement method and measurement device for use in the recording method and the recording apparatus, and record carrier".

The following statement is a full description of this invention, including the best method of performing it known to me:-
"Method and apparatus for recording signals on a record carrier, measurement method and measurement device for use in the recording method and the recording apparatus, and record carrier."

The invention relates to a method of recording signals on a record carrier of a rewritable type, information patterns of optically detectable marks being formed on the record carrier in substantially parallel tracks of a specific track pitch, the tracks being scanned by a radiation beam to form the marks.

The invention further relates to a recording apparatus for recording signals in parallel tracks of a specific track pitch on a record carrier of a rewritable type, which recording apparatus comprises scanning means for scanning the tracks by means of a radiation beam to form an information pattern of optically detectable marks in the tracks, which pattern corresponds to said signals.

The invention further relates to a measurement method and measurement device for use in the recording method and the recording apparatus.

Finally the invention also relates to a record carrier provided with substantially parallel adjacent tracks of substantially constant track pitch, which tracks exhibit an information pattern of optically detectable marks.

Such a recording method, recording apparatus and record carrier are known inter alia from "Philips Technical Review", Vol. 42, No. 2, pp. 28-47. This magazine describes a magneto-optical recording apparatus. A problem in magneto-optical recording is that the read reliability of the recorded signal is susceptible to variations in the recording conditions, such as for example the recording velocity and the intensity of the scanning beam. It is an object of the invention to provide a recording method and recording apparatus of the type defined in the opening paragraphs, in which the read reliability of the recorded signal improved.

As regards the method this object is achieved by a method which is characterized in that the dimensions of the recorded marks in a direction perpendicular to the track direction substantially correspond to the track pitch.
With respect to the apparatus this object is achieved by an apparatus which is characterized in that the recording apparatus is adapted to record marks whose dimensions in a direction perpendicular to the track direction substantially correspond to the track pitch.

The invention is based on the recognition of the fact that the read reliability largely depends on the dimensions of the recorded marks, an optimum read reliability being obtained when the dimensions of the marks in a direction perpendicular to the track direction are equal to the track pitch. Preferably, the dimensions of the marks are adjusted by adjusting the write intensity because these dimensions greatly depend on the write intensity used in recording, so that the write intensity is very suitable for adjusting these dimensions.

An embodiment of the method, in which the write intensity can be optimized simply, is characterized in that the method comprises a measurement method in which in a specific track portion a first test signal is recorded with a maximum write intensity of the radiation beam and in track portions situated at opposite sides of said specific track portion a second test signal, which can be distinguished from the first test signal, is recorded with different write intensities between a minimum intensity and the maximum intensity, which second test signal, after it has been recorded, is read from the specific track portion to check whether the second test signal being read contains signal components corresponding to the first test signal, and in which on the basis of the results of said check an optimum write intensity is selected which is situated in the boundary region between the intensity range for which signal components corresponding to the first test signal are present in the second test signal being read and the intensity range for which said signal components are substantially absent in the test signal being read, the write intensity being adjusted to the optimum write-intensity value after the measurement method has been carried out.

An embodiment of the apparatus, in which the write intensity is optimized automatically, is characterized in that the apparatus comprises a measurement device comprising a read means for reading the recorded signals with the aid of a read beam, test-signal-generating means for generating a first test signal and a second test signal.
signal which can be distinguished from the first test signal, control
means for causing the first test signal to be recorded in a specific
track portion when a specific maximum value of the write intensity is
reached, for subsequently causing the second test signals to be
recorded in the specific track portion and in track portions situated
at opposite sides of said specific track portion, with a number of
different write-intensity values situated between a minimum intensity
and the maximum intensity and for causing the second test signals
recorded with different write-intensity values to be read from the
specific track portion, detection means for detecting signal components
corresponding to the first test signal in the second test signals being
read, selection means for deriving from the detected signal components
an optimum write intensity which is situated substantially at the
boundary between the intensity range for which signal components
corresponding to the first test signal appear in the second test
signals being read and the intensity range for which said signal
components are substantially absent in the second test signals being
read, the recording apparatus further comprising means for adjusting
the write intensity to said optimum value after the optimum write
intensity has been determined.

The above embodiments of the method and the apparatus
advantageously utilize the fact that at the instant at which the
dimensions of the marks correspond to the track pitch the signal
components of the first test signal disappear from the read signal.

The embodiments with automatic write-intensity
adjustment are particularly suitable for use in recording apparatuses
in which the dimensions of the marks strongly depend on the write
intensity, such as for example in magneto-optical recording
apparatuses. However, the invention is not limited to magneto-optical
recording but may also be applied to other recording principles, such
as for example recording on rewritable record carriers of the "phase-
change" type, employing a record carrier whose structure can be changed
from amorphous to crystalline and vice versa upon scanning with a
radiation beam, depending on the irradiation method.

Further embodiments and advantages thereof will now be
described in more detail with reference to Figs. 1 to 11, in which
Fig. 1 shows a record carrier,
Fig. 2 shows a magneto-optical apparatus,
Fig. 3 shows a write signal and the corresponding
information pattern,
Fig. 4 shows a number of information patterns in
adjacent track portions,
Fig. 5 gives the read reliability as a function of the
write intensity,
Fig. 6 gives the domain width as a function of the write
intensity in the case of magneto-optical recording,
Fig. 7 shows a number of information patterns to
illustrate the invention,
Fig. 8 shows a number of measurement results to
illustrate the invention,
Fig. 9 shows an example of a control circuit for use in
the recording apparatus in accordance with the invention,
Fig. 10 is a flow chart of a program for the
microcomputer which forms part of the circuit, and
Fig. 11, in order to illustrate the invention, shows an
area on the record carrier which is suitable for recording the test
signals.

Fig. 1 shows an embodiment of a record carrier 1 of a
rewritable type, Fig. 1a being a plan view and Fig. 1b showing a small
part in a sectional view taken on the line b-b. The record carrier has
a pattern of tracks, which define substantially concentric information
areas intended for recording information in the form of information
patterns of optically detectable marks. The track pattern may comprise,
for example, a continuous spiral servo track 4 defining the centres of
the information areas. However, these concentric information areas may
also be defined by, for example, a structure of servo patterns as
For the purpose of recording the record carrier 1 comprises a recording
layer 6 provided on a transparent substrate 5 and coated with a
protective layer 7. The information layer 6 is composed of a material
suitable for magneto-optical recording. However, it is to be noted that
the information layer 6 may alternatively consist of other materials
such as, for example, a "phase-change" material, whose structure can be
changed from amorphous to crystalline and vice versa by suitable
irradiation methods.

Fig. 2 shows an embodiment of a magneto-optical recording apparatus 10 for recording information on the record carrier 1. The recording apparatus 10 comprises a turntable 11 and a drive motor 12 to rotate the record carrier 1 about an axis 13. An optical write/read head 14 of a customary type suitably for magneto-optical recording and reading is arranged opposite the rotating record carrier 1 and directs a radiation beam 15 towards the recording layer 6. The recording apparatus 10 comprises customary tracking means, not shown, for keeping the beam 15 directed at the servo track 4, focusing means for keeping the radiation beam 15 in focus on the recording layer 6, and customary addressing means for locating a specific address, for example as described in European Patent Application EP-A 0265904 and Netherlands Patent Application NL-A 8800151 (PHN 12.063 and PHN 12.398). Opposite the read/write head 14, at the other side of the record carrier 1, a magnetic field modulator 16 is arranged to generate a magnetic-field H which is oriented substantially perpendicularly to the recording layer 6 in the area of the recording layer 6 which is exposed to the radiation beam 15. The magnetic-field modulator 16 is rigidly connected to the read/write head 14 via a member 17. The write/read head 14 and the magnetic-field modulator 16 are radially movable relative to the record carrier by means of an actuating system 18, the member 17 ensuring that the magnetic-field modulator 16 remains always positioned directly opposite the read/write head. The magnetic-field modulator 16 is of a type for which the direction of the generated magnetic field can be modulated in conformity with a bivalent write signal Vm. Such a magnetic field modulator is described comprehensively in inter alia Netherlands Patent Application no. 8702451 (PHN 12.294), herewith incorporated by reference.

The apparatus 10 further comprises a control circuit 19 for controlling the write/read head 14 and the actuating system 18 and for controlling the generation of the write signal Vm. When information is recorded the servo track 4 is scanned with the radiation beam 15 whose intensity is set to a write intensity which is adequate to heat the part of the recording layer 6 which is scanned by the radiation beam to a temperature near the Curie temperature of the material of the recording layer 16. At the same time the write signal Vm, and hence the
generated magnetic field \(H \), is modulated in conformity with the information to be recorded, so that a pattern of marks in the form of magnetic domains in conformity with the write signal \(V_m \) is obtained in the part of the servo track 4 being scanned. The domains thus formed can be detected optically, as will be described in detail hereinafter.

By way of illustration Fig. 3 shows the write signal \(V_m \), the corresponding magnetic field \(H \) and the resulting pattern of magnetic domains having different directions of magnetization as a function of time. The domains of different directions of magnetization bear different reference numerals, namely 30 and 31. The centre of the servo track in which the pattern is recorded is represented diagrammatically by a line \(4' \). The pattern of magnetic domains 30, 31 can be read with the read/write head 14, which for this purpose scans the pattern with a beam of linearly polarized light. Upon reflection of the radiation beam the direction of polarization of the beam is rotated in a direction which is dictated by the direction of magnetization of the part of the recording layer 6 being scanned. This results in a modulation pattern of variations of the direction of polarization corresponding to the pattern of magnetic domains 30, 31 being scanned.

This modulation is detected in a customary manner in the read/write head 14, for example by means of a Wollaston prism, photodetector transducers, and an amplifier which converts the output signals of the photodetector transducers into a read signal \(V_l \) which is representative of the pattern being read, as is described inter alia in Netherlands Patent Application NL-A 8602304 (PHQ 86.017).

One of the principal aspects of recording is the reliability with which the recorded information can be read. A known parameter to express the read reliability for recorded CD signals is referred to as the "block error rate" (BLER). The parameter BLER specifies the number of EFM blocks per unit of time in which one or more errors have been detected during reading.

Fig. 4 shows patterns of domains 30 and 31 formed in a plurality of adjacent track portions of the servo track 4. Again the centres of the servo tracks bear the reference numeral \(4' \). The track pitch, i.e. the distance between the centres \(4' \) of the servo tracks, bears the reference letter \(q \). The dimensions of the domains in a direction perpendicular to the track direction is indicated by means of
the letter p. Hereinafter the domain dimensions in this direction will be referred to briefly as the "domain width".

Fig. 5 gives the BLER value as a function of the domain width p. It is found that within a range from \(p_{\text{min}} \) to \(p_{\text{max}} \) the BLER value substantially assumes a constant minimum value, while outside this range the BLER value increases rapidly. The domain width \(p \), which is equal to the track pitch \(q \), is found to be situated in the centre of the range between \(p_{\text{min}} \) and \(p_{\text{max}} \). In accordance with the invention the domain width \(p \) during recording is selected to be equal to the track pitch \(q \). In that case the read reliability is least susceptible to domain-width variations, which are inevitable on account of the various tolerances in the recording system. Hereinafter the domain width \(p \) corresponding to the track pitch \(q \) will be referred to as the optimum domain width \(p_{\text{o}} \). The domain width can be adjusted simply by adapting the write-energy intensity of the radiation beam.

Fig. 6 gives the domain width \(p \) as a function of the write intensity \(E \) when the track 4 is scanned with a specific scanning velocity during recording. The write-intensity values corresponding to the domain width \(p_{\text{min}} \), \(p_{\text{o}} \) and \(p_{\text{max}} \) are \(E_{\text{min}} \), \(E_{\text{o}} \) and \(E_{\text{max}} \) respectively. Thus, the optimum domain width can be adjusted by adjusting the write intensity to the corresponding value \(E_{\text{o}} \). For a specific record carrier it is possible, for example, to determine the value of the optimum write intensity in advance. Before the information is recorded on this record carrier it is then possible, in principle, to adjust the write intensity of the recording apparatus to this value.

However, this presents the following problems:

1) There is a substantial spread in radiation sensity of recording layers, even if they are made of the same magneto-optical material. This is caused by the generally adopted method of depositing the recording layer, such as for example sputtering.

2) The influence of the scanning velocity on the optimum write intensity \(E_{\text{o}} \) is considerable. This poses a problem in particular if the recording velocity for different recording apparatus may vary substantially, as for example in recording apparatuses for CD signals, in which the permissible recording velocity is between 1.2 m/s and 1.4 m/s.

3) In practice, accurately determining a absolute radiation power is
very problematic. The spread between power meters is of the order of magnitude of 10%. Moreover, different adjustment conditions may give rise to additional errors.

4) Finally, the shape of the scanning spot formed on the recording layer 6 by the radiation beam and the wavelength of the radiation also influence the optimum write intensity.

The above means that the variation of the optimum write intensity is so large that it is impossible to guarantee that when the write power has been adjusted to the predetermined power the domain width will be situated within the write-intensity range given in Fig. 5, in which the BLER value is small.

A method and a recording apparatus in accordance with the invention, enabling the optimum write intensity to be adjusted reliably and simply, will now be described below. First of all the method in accordance with the invention will be described with reference to Fig. 7, in which the reference numerals 4a', 4b' and 4c' denote the centres of three adjacent track portions of the track 4. In the first step of the method a predetermined first Pattern of magnetic domains 30 and 31, for example a periodic pattern of the frequency \(f_1 \), is recorded with a maximum write intensity \(E_1 \) in the centre track, as is illustrated in Fig. 7a. The write intensity \(E_1 \) is selected so as to ensure that the corresponding domain width \(p_1 \) is larger than the track pitch. Subsequently, a second pattern of magnetic domains 30 and 31, which can be distinguished from the first pattern, is recorded in all the three track portions with a minimum write intensity \(E_2 \) for which the associated domain width \(p_2 \) is bound to be smaller than the track pitch. Fig. 7b shows the result of this recording, in which the second pattern is a periodic pattern of a frequency \(f_2 \) lower than the frequency \(f_1 \) of the first pattern. In the recording thus obtained the first pattern, which was originally recorded in the centre track, is partly overwritten by the second pattern.

After recording of the second pattern in the three tracks the centre track is read. Since the originally recorded first pattern is still partly present (as is indicated by the reference numeral 70) the read signal, will contain signal components corresponding to the first pattern in addition to the signal components
corresponding to the second pattern. The presence of the signal components corresponding to the first pattern is detected. Subsequently, the write intensity is increased and the second pattern is recorded again in the three tracks with this increased write intensity. Since as a result of the increased write intensity the width of the recorded domains is larger than in the preceding recording of the second pattern, the originally recorded first pattern will be overwritten to a larger extent. When the centre track is read the signal component in the read signal corresponding to the first pattern will have decreased. The method of increasing the write intensity, of recording the second pattern with the increased write intensity, and of reading the centre track is repeated continually. The read-signal component corresponding to the first pattern will then decrease continually until the write intensity reaches a value for which the corresponding domain width has become so large that the originally recorded first pattern is overwritten completely. This is the case when the domain width p is equal to the track pitch q. In that case the spacing between the two patterns recorded in the adjacent tracks has decreased to zero. By way of illustration Fig. 7c shows the second patterns for the situation in which the domain width p is equal to the track pitch q. As is shown in Fig. 7c, the originally recorded first pattern has disappeared completely for this track width. Thus, the optimum write intensity E_o can be obtained by recording the second pattern with increasing intensity and at the same time detecting the write intensity for which the signal component produced by the originally recorded first pattern disappears from the read signal produced by the centre track.

By way of illustration the curve 80 in Fig. 8 gives the variation of the read-signal component U_{lf} corresponding to the originally recorded first pattern as a function of the write intensity E. Moreover, this Figure gives the BLER values determined for the various write intensities. The curve 81 represents the variation of the BLER values. As is apparent from Fig. 8 the write intensity E for which the signal component U_{lf} disappears is situated substantially in the centre of the write-intensity range in which the BLER value is minimal.

Fig. 9 shows an example of the control circuit 19 of the recording apparatus 10, by means of which the optimum write intensity
can be determined. The control circuit comprises a frequency-dividing circuit 90, which in a customary manner derives two periodic signals Vt1 and Vt2 of different frequency fcl and fc2 from a periodic signal of a frequency fosc. The two periodic signals Vt1 and Vt2 supplied by the dividing circuit 90 are applied respectively to a first input and a second input of a selection circuit 91 having three inputs. The signal Vi to be recorded is applied to the third input of the selection circuit 91. The selection circuit 91 is of a type which depending upon a control signal Vsel selects one of the three input signals and transfers the selected input signal to its output. The signal on the output of the selection circuit is applied to the magnetic-field modulator 16 as the write signal Vm. The control circuit 19 further comprises a selective band-pass filter 92, which is tuned to the frequency fcl of the signal Vt1. An input 98 of a selective band-pass filter 92 is coupled to the write/read head 14 for recording the read signal Vi. An output signal of the selective filter 92 is applied to a peak detector 93 to determine the peak value of the applied signal, which has been filtered by means of the filter 92. A signal Ucl which is representative of said peak value is digitized by means of an analog-to-digital converter 94. The digitized peak value is applied to a microcomputer 95. Furthermore, the microcomputer 95 is coupled to the selection circuit 91 via a signal line 96 to supply the control signal Vsel to the selection circuit 96.

Moreover, the microcomputer 95 is coupled to the read/write head 14 to apply a control signal VE for adjusting the intensity of the beam 15. The microcomputer 95 further comprises control outputs and inputs (not shown) for controlling the search for location of addressed track portions, as is described, for example, in Netherlands Patent Application NL-A 880015 (PHN 12.398), which is incorporated herewith by reference. The microcomputer 95 is loaded with a program for determining the optimum write intensity Eo.

A suitable program will be described in detail with reference to Figs. 10 and 11. Fig. 10 shows the flow chart of the program and Fig. 11 shows the track portion of the servo track 4 in which the patterns for determining the optimum write intensity Eo can be recorded. This track portion comprises three contiguous turns of the spiral servo track 4. The address information is recorded in the turns,
for example as a preformed modulation of the servo track 4, as is
described in for example, the afore-mentioned Netherlands Patent
Application NL-A 8800151 (PHN 12.399). The start addresses of the three
turns are designated TR1, TR2 and TR3 respectively. Halfway the turn
having the start address TR2 an address TR2' is recorded. The end of
the third turn is indicated by the address TR4. The program, whose flow
chart is given in Fig. 10 begins with a first step in which the
intensity of the write beam E is set to a read intensity E1, which is
low enough to preclude variations of the magnetization in the recording
layer 6. Subsequently, the track portion indicated by the address TR2
is located in the step S2. In the step S3 the selection circuit 92 is
controlled in such a way that the test signal Vt1 of the frequency fc1
is selected as the write signal Vm. In the step S4 the beam intensity
is set to the maximum write intensity E1, after which recording of the
signal Vt1 in the form of a pattern of wide domains in the track
portion indicated by the address TR2 begins. During recording the
addresses are read from the track being scanned in the step S5. In the
step S6 it is ascertained by means of the information being read
whether the beginning of the track portion indicated by the address TR3
is reached. If this is not the case the step S5 is repeated. If said
track portion is reached the intensity of the beam 15 is again set to
the read intensity E1 during the step S7. Subsequently, in the step S8,
a value ES which is representative of the write intensity is equalized
to the value which is representative of the minimum write intensity
E2. After this, in the step S9, the track portion indicated by the
start address TR1 is located. In the step S10 the selection circuit 91
is controlled in such a way that the test signal Vt2 of the frequency
fc2 is applied to the magnetic-field modulator 16 as the write signal
Vs. Subsequently, the intensity of the beam 15 is adjusted to the
intensity specified by the value Es, after which recording of the test
signal Vt2 in the form of narrow domains begins. During recording,
while the steps S12 and S13 are carried out, it is checked whether the
track portion having the start address TR4 is reached. If this is not
the case, recording is continued. If said track portion is reached the
step S14 is carried out, in which the intensity of the radiation beam
is again set to the read intensity E1. Subsequently, in the step S15,
the track portion indicated by the start address TR2' is located and
this track portion is read for a specific time interval. At the end of the interval AT the digitized value of Ucl is read while the step S17 is performed. In the step S18 the value of Ucl thus read is compared with a very small reference value Umin, which is for example 40 dB below the signal value corresponding to a non-overwritten test signal Vt1. If the value of Ucl exceeds said value Umin the value of Es is incremented by an adaptation value ΔE in the step S19 and subsequently the program proceeds with the step S9. However, if the value of Ucl is smaller than the reference value Umin this means that the first test signal has been overwritten completely and consequently the intensity value Es corresponds to the optimum value Eo. After this the intensity of the beam 15 is again set to the read intensity E1 (S20) and the program is terminated. If subsequently the signal V1 is to be recorded the microcomputer 75 controls the selection circuit 91 n such a way that the signal Vc is applied to the magnetic-field modulator 16 as the write signal and the write intensity of the beam 15 is adjusted to the optimum value Eo equal to the most recently corrected value of Es.

In the present embodiment the second signal Vt2 is each time recorded over the whole length of the three turns of the track 4, designated by the start addresses TR1, TR2 and TR3, after an increase in write intensity. However, it is alternatively possible to divide the three turns into a number of addressable sectors. Subsequently, the test signal Vt2 is recorded within a sector in each of the three track portions for which the write intensity of the various sectors can be different, and, moreover, the write intensities used for the various sectors are stored in a memory. After this, the sectors of the centre turn can be read the read-signal components corresponding to the test signal Vt1 can be determined and for the various sectors. The value of the optimum write intensity Eo can then be derived from these measurement results and the stored write intensities.

In the present magneto-optical recording apparatus a constant-intensity beam is directed towards the record carrier during recording. However, it is to be noted that the invention may also be utilized in magneto-optical recording apparatuses in which the radiation energy is applied in the form of periodic radiation pulses of constant intensity, as is described for example in Netherlands Patent Application NL-A 8703011 or NL-A 8801205 (PHQ 87.044 or PHN 12.550).
Neither is the invention limited to magneto-optical recording apparatuses in which the information is recorded by means of a modulated magnet field. The invention can also be applied to magneto-optical recording systems in which the information is recorded by first scanning the recording layer with a radiation beam of constant intensity during which, the scanned portion of the recording layer is exposed to a constant magnetic field, so that a track of uniform magnetization is obtained (erasing), and by subsequently reversing the direction of the magnetic-field and scanning the track of uniform magnetization with a radiation beam whose intensity is modulated in conformity with the signal to be recorded, as is described for example in the above-mentioned "Philips' Technical Review". In this case the test signal V_{t2} is suitably not a periodic signal but a d.c. signal and the test signal V_{t1} is a periodic signal.

Moreover, it is to be noted that although the invention is very suitable for use in magneto-optical recording it is not limited to this recording method. For example, the invention may also be applied to what is referred to as "erasable phase-change recording", in which by exposure of the recording layer to a radiation beam the structure of the recording layer can be changed from amorphous to crystalline or from crystalline to amorphous depending on the scanning method used. It is then possible to first record a periodic test signal V_{t1}, which is subsequently overwritten by a d.c. test signal V_{t2} with a number of different write intensities.

Finally, it is to be noted that the invention is not limited to the use in conjunction with disc-shaped record carriers having a concentric track pattern. The invention may also be used in conjunction with record carriers on which the information is recorded in straight tracks.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of recording signals on a record carrier of a rewritable type, information patterns of optically detectable marks being formed on the record carrier in substantially parallel tracks of a specific track pitch, the tracks being scanned by a radiation beam to form the marks, characterized in that the dimensions of the recorded marks in a direction perpendicular to the track direction substantially correspond to the track pitch.

2. A method as claimed in Claim 1, characterized in that the optically detectable marks are magnetic domains obtained by locally heating a recording layer of the record carrier with the aid of a radiation beam, said layer being suitable for magneto-optical recording, the heated portion of the recording layer being exposed to a magnetic field which is directed substantially perpendicularly to the recording layer.

3. A method as claimed in Claim 2, characterized in that the magnetic field is modulated in conformity with a signal to be recorded.

4. A method as claimed in Claim 2 or 3, characterized in that the dimensions of the optically detectable marks are adjusted to obtain dimensions corresponding to the track pitch by adjusting the intensity of the radiation beam.

5. A method as claimed in Claim 4, characterized in that the method comprises a measurement method in which in a specific track portion a first test signal is recorded with a maximum write intensity of the radiation beam and in track portions situated at opposite sides of said specific track portion a second test signal, which can be distinguished from the first test signal, is recorded with different write intensities between a minimum intensity and the maximum intensity, upon which second test signal, after it has been recorded, is read from the specific track portion to check whether the second test signal being read contains signal components corresponding to the first test signal, and in which on the basis of the results of said
check an optimum write intensity is selected which is situated in the boundary region between the intensity range for which signal components corresponding to the first test signal are present in the second test signal being read and the intensity range for which said signal components are substantially absent in the test signal being read, the write intensity being adjusted to the optimum write-intensity value after the measurement method has been carried out.

6. A method as claimed in Claim 5, characterized in that the first and the second test signal are periodic signals.

7. A measurement method for use in the method as claimed in Claim 4, 5 or 6.

8. A recording apparatus for recording signals in parallel tracks of a specific track pitch on a record carrier of a rewritable type, which recording apparatus comprises scanning means for scanning the tracks by means of a radiation beam to form an information pattern of optically detectable marks in the tracks, which patterns correspond to the signals, characterized in that the recording apparatus is adapted to form marks whose dimensions in a direction perpendicular to the track direction substantially correspond to the track pitch.

9. A recording apparatus as claimed in Claim 8, characterized in that the apparatus comprises adjustment means for adjusting the write intensity to a value for which said dimensions of the marks correspond to the track pitch.

10. A recording apparatus as claimed in Claim 9, characterized in that the apparatus comprises a measurement device comprising read means for reading the recorded signals with the aid of a read beam, test-signal-generating means for generating a first test signal and a second test signal which can be distinguished from the first test signal, control means for causing the first test signal to be recorded in a specific track portion when a specific maximum value of the write intensity is reached, for subsequently causing the second test signals to be recorded in the specific track portion and in track portions situated at opposite sides of said specific track portion with a number of different write-intensity values situated between a minimum intensity and the maximum intensity, and for causing the second test signals recorded with different write-intensity values to be read from the specific track portion, detection means for detecting signal
components corresponding to the first test signal in the second test signals being read, selection means for deriving from the detected signal components an optimum write intensity which is situated substantially at the boundary between the intensity range for which signal components corresponding to the first test signal appear in the second test signals being read and the intensity range for which said signal components are substantially absent in the second test signals being read, the recording apparatus further comprising means for adjusting the write intensity to said optimum value after the optimum write intensity has been determined.

11. A recording apparatus as claimed in Claim 10, characterized in that the first and the second test signal are periodic signals of different frequency.

12. A recording apparatus as claimed in any one of the Claims 8 to 11, characterized in that the recording apparatus is a magneto-optical apparatus comprising a coil for generating a magnetic field in the portion of the track being scanned by the write beam.

13. A measurement device for use in a recording apparatus as claimed in Claim 10, 11 or 12.

14. A record carrier formed with substantially parallel adjacent tracks of substantially constant track pitch, which tracks exhibit an information pattern of optically detectable marks, characterized in that the dimensions of the marks in a direction perpendicular to the track direction are substantially equal to the track pitch.

15. A record carrier as claimed in Claim 5, characterized in that the record carrier is of a magneto-optical type, the marks comprising magnetic domains having a direction of magnetization substantially perpendicular to a recording plane of the record carrier.

Dated this twenty eighth day of May, 1990.

N.V.PHILIPS GLOEILAMPENFABRIEKEN