COMMONWEALTH OF AUSTRALIA
PATENTS ACT 1952
APPLICATION FOR A STANDARD PATENT

Shell Internationale Research Maatschappij B.V., a Netherlands Company, of Carel van Bylandtlaan 30, 2596 HR, The Hague, THE NETHERLANDS, hereby apply for the grant of a standard patent for an invention entitled:

Polyglycidyl Polyether Resins

which is described in the accompanying complete specification.

Details of basic application(s):

Basic Applic. No: Country: Application Date:
8907487.6 GB 3 April 1989

The address for service is:-

Spruson & Ferguson
Patent Attorneys
Level 33 St Martins Tower
31 Market Street
Sydney New South Wales Australia

DATED this SECOND day of APRIL 1990

Shell Internationale Research Maatschappij B.V.

By:

Registered Patent Attorney

TO: THE COMMISSIONER OF PATENTS
OUR REF: 125318
S&F CODE: 61750

REPRINT OF RECEIPT
S014017 02/04/90

5845/2
In support of the Convention Application made for a patent for an invention entitled:

Polyglycidyl polyether resins

I, Onno Aalbers, of Carel van Bylandtlaan 30, 2596 HR The Hague, the Netherlands, do solemnly and sincerely declare as follows:-

1. I am authorised by SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V., the applicant for the patent to make this declaration on its behalf.

2. The basic application(s) as defined by Section 141 of the Act was/were made in the United Kingdom on 3rd April, 1989 by SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.

3. Henricus Paulus Hubertus SCHOLTEN, a Netherlands national, and Olivier Louis Pierre ANDRE, a Belgium national, both of Avenue Jean Monnet 1, B-1348 Ottignies-Louvain-La-Neuve, Belgium

(respectively), is/are the actual inventor(s) of the invention and the facts upon which the applicant is entitled to make the application are as follows:

The Applicant is the assignee of the actual inventor(s).

4. The basic application(s) referred to in paragraph 2 of this Declaration was/were the first application(s) made in a Convention country in respect of the invention the subject of the application.

DECLARED at The Hague this 20th day of March 1990

TO: THE COMMISSIONER OF PATENTS
AUSTRALIA

Onno Aalbers
Title
POLYGLYCIDYL POLYETHER RESINS

International Patent Classification(s)
C08G 059/16 C08G 018/58 C09G 081/00 C09D 005/46
C09D 163/02 C25D 009/02

Application No. : 52521/90
Application Date : 02.04.90

Priority Data
Number (32) Date (33) Country
8907487 03.04.89 GB UNITED KINGDOM

Publication Date : 04.10.90

Applicant(s)
SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.

Inventor(s)
HENRICUS PAULUS HUBERTUS SCHOLTEN; OLIVIER LOUIS PIERRE ANDRE

Attorney or Agent
SPRUSON & FERGUSON

Claim
1. An aromatic polyglycidyl polyether resin having on average of from 1.5 to 4.5 epoxy groups and of from 0.1 to 18 primary or secondary -OR groups per molecule, wherein from 5 to 95 % of the -OR groups have the general formula -O-CH₂-CHOH-CH₂-O-C(O)-R', in which R' is a branched C₄-₁₇ alkyl group, the remainder of the -OR groups being hydroxyl groups.

7. A process for preparing a resin as claimed in any one of claims 1 to 6, wherein a glycidylester of a C₅-₁₈ branched aliphatic monocarboxylic acid is reacted with one or more hydroxyl groups contained in a polyglycidyl polyether of a polyhydric aromatic compound in the presence of a tin, zinc or iron compound etherification catalyst, in which the polyglycidyl polyether contains on average of from 1.5 to 4.5 epoxy groups and of from 0.1 to 18 primary or secondary hydroxyl groups per molecule.

8. A curable coating composition comprising a polyether resin as claimed in any one of claims 1 to 6 and a cross-linking resin.
9. An electrodeposition coating composition comprising an acid or base-modified polyether resin as claimed in any one of claims 1 to 7, a neutralizing agent and a cross-linking resin.
Complete Specification for the invention entitled:

Polyglycidyl Polyether Resins

The following statement is a full description of this invention, including the best method of performing it known to me/us.
The invention relates to aromatic polyglycidyl polyether resins, their process for preparing, their use in coating and electrodeposition compositions, a process for coating a surface by applying said compositions and the cured films obtained by use of these compositions.

The majority of aromatic polyglycidyl polyether resins that are currently available on the market are prepared by reacting a polyhydric aromatic compound, in particular 2,2-bis(4-hydroxyphenyl)propane (BPA), with epichlorohydrin. This glycidation reaction, in the event of employing BPA, normally proceeds to produce resins having the schematic formula I:

\[G\-O\-\left[\text{BA}-O\-\text{CH}_2\text{-CH}-\text{CH}_2\text{-O}\-\right]_n\text{BA}-O\-G \] (I)

in which G stands for glycidyl and BA stands for the group resulting from the removal of both hydroxyl groups from the polyhydric aromatic compound BPA. The average value of n can be varied in the range of from 0 to 18. For example, in the commercial epoxy resins EPIKOTE 828, 1001, 3003, 1007 and 1009 (EPIKOTE is a registered trade name) typical average values of n are 0.1, respectively 2, 4, and 12. It follows from the above formula that the number of BA units, respectively secondary hydroxyl groups in the resin molecule equals \(n + 1 \), respectively n.

The reactivity of the glycidyl group can be used to produce modified resins. For instance, by etherification with aliphatic diols such as hexanediol, or
with aliphatic triols such as trimethylolpropane, resins may be obtained of the schematic formulae II, III and IV:

- EP-HD-EP \hspace{1cm} \text{(II)}
- EP-TMP-EP \hspace{1cm} \text{(III)}
- TMP-EP \hspace{1cm} \text{(IV)}

in which HD stands for the hexanediol moiety, TMP for the trimethylolpropane moiety and EP for the resin moiety marked in formula (I) above, in which now one glycidyl group has been converted into a bridging group \(\text{"-O-CH}_2\text{-CHOH-CH}_2\text{-"}\). It will be clear that the etherification reactions yielding products (II) and (III) have led to the introduction of two additional secondary hydroxyl groups into the resin molecule, to a marked increase of the molecular weight whilst leaving the number of epoxy groups per molecule substantially unchanged, and (by definition) to a marked reduction of the epoxy group content (EGC). In product (IV) three additional secondary hydroxyl groups have been introduced. Furthermore, since in the product (III) only two of the three methylol groups of TMP have reacted with a glycidyl group, the third methylol group is left unchanged and it follows that in product (III) also a primary hydroxyl group has been introduced into the resin molecule.

An important outlet of polyglycidyl polyether resins is in the field of surface coatings, for example electrodeposition coatings. In cathodic electrodeposition improved flow and lower viscosities of resin or binder molecules are important issues for: Primo: a better flow allows a smoother surface in film coatings. Secundo: lower viscosity allows high solids contents in the final binders. The viscosity has to be low enough to allow the formulation of a paint, however, the organic solvent provides some of the flow during
stoving. A better inherent flow of the binder would therefore compensate for the lower solvent content. Low viscosity combined with improved flow could eventually lead to organic solvent-less binders and related paints.

Flow in cathodic electrodeposition binders may be provided by incorporation of long aliphatic chains, e.g. fatty acids, or aliphatic monoamines. Both ways lead to a strongly reduced number of glycidyl groups per molecule, which - as the molecular weight is increased - is accompanied by an even more marked reduction of the EGC.

The present invention aims at introducing flow improving moieties whilst avoiding substantial reduction of the number of glycidyl groups per molecule. In particular, the invention seeks to solve the problem of how to introduce glycidylester moieties of C_{5-18} branched aliphatic acids (such as CARDURA E10, registered trade name) by selective reaction with primary or secondary hydroxyl groups in the polyglycidyl polyether molecules.

To this end the invention provides a process for preparing a polyglycidyl polyether resin, wherein an epoxy compound (A) is reacted with one or more hydroxyl groups contained in a polyglycidyl polyether (B) of a polyhydric aromatic compound in the presence of an etherification catalyst (C), in which (A) is a glycidylester of a C_{5-18} branched aliphatic monocarboxylic acid, (B) is a polyglycidyl polyether having on average of from 1.5 to 4.5 epoxy groups and of from 0.1 to 18 primary or secondary hydroxyl groups per molecule, and (C) is a tin, zinc or iron compound.

The products of this preparation process are novel resins. Thus, the invention is also concerned with novel aromatic polyglycidyl polyether resins having on
average from 1.5 to 4.5 epoxy groups and of from 0.1 to 18 primary or secondary -OR groups per molecule, wherein from 5 to 95 % of the -OR groups have the general formula -O-CH₂-CHOH-CH₂-O-C(O)-R', in which R' is a branched C₄-1₇ alkyl group, the remainder of the -OR groups being hydroxyl groups.

Surprisingly it was found that, by proper choice of the etherification catalyst, reaction was possible between the epoxy group of the glycidylester with one or more primary or secondary hydroxyl groups contained in the polyglycidyl polyether, without causing the unwanted side-reactions of the epoxy group of the polyglycidyl polyether with any of the hydroxyl groups present and of the epoxy group in reactant A with those in reactant B. As a result, resins were obtained showing a decrease in EGC, and increase in average molecular weight, in line with no more than the introduction of the glycidylester moiety per reacted primary or secondary hydroxyl group. The inherent flow capacity of the polyglycidyl polyethers is substantially enhanced. Moreover, when allowing for excess of primary or secondary hydroxyl groups relative to the glycidylester moiety and for substantially complete conversion of the latter, free glycidylester and products of side-reactions were not detected (gel permeation chromatography), clearly indicating the selective performance of the etherification catalyst. Lastly, the products had a viscosity (in Pa.s) lower than that of unmodified polyglycidyl polyethers of equal EGC, which favourably improves the applicability of these novel resins.

Preferred novel resins produced in this invention are resins wherein at most 75 % of the -OR groups are hydroxyl groups. Preferably the novel resin is a diglycidylether represented by the schematic formula V:
in which G stands for glycidyl and BA stands for the group resulting from the removal of both hydroxyl groups from a dihydric aromatic compound. The improvement in flow and viscosity is most striking in resins having an EGC of at most 2.5 meq/g, i.e., resins that would normally have been very viscous or solid, and these novel resins are consequently particularly preferred. Most preferred novel resins are resins schematic represented by formula V wherein n has an average value of from 1.5 to 4.5.

Alternatively, suitable novel resins are polyglycidyl polyethers having the schematic formulae II, III, or IV:

\[
\text{EP-HD-EP} \quad \text{(II)} \\
\text{EP-TMP-EP} \quad \text{(III)} \\
\text{TMP-(EP)_3} \quad \text{(IV)}
\]

in which HD stands for an aliphatic dihydric moiety, preferably a hexanediol moiety, TMP for an aliphatic trihydric moiety, preferably a trimethylolpropane moiety and EP for the resin moiety marked in formula V, in which now one glycidyl group has been converted into a bridging group -O-CH-CHOH-CH2-. The aliphatic di- or trihydric moieties are preferably derived from aliphatic di- or triols having 3 to 18 carbon atoms per molecule. Most preferred novel resins stem from a branched di- or triol, the latter being most preferred.

Examples of some preferred diols are 1,2-ethanediol, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 4-propyl-1,7-heptanediol, or 3,9-dimethylol-undecane. Examples of some preferred triols are 1,1,1-trimethylolpropane, 1,1,1-trimethylolnonane, 3,4-dimethylol-1-heptanol. Suitable di- or triols are also the ethylene oxide modified derivatives of the
compounds above, however with the proviso that the amount of carbon atoms per molecule does not exceed 18.

The utmost preferred class of novel resins, are any of the above resins wherein the parent polyhydric aromatic compound is a bis(hydroxyphenyl)propane, preferably 2,2-bis(4-hydroxyphenyl)propane.

The glycidylester of the monocarboxylic acid R'-COOH may suitably be any or a mixture of the glycidylesters of C_{5-18} branched aliphatic acids. Preferably R' represents the alkyl groups present in a mixture of glycidylesters of C_{9-11} branched aliphatic acids commercially known as CARDURA E10.

Suitable etherification catalysts include halides, and salts of alkanoic and naphtenic acids, particularly of those having in the range of from 2 to 30 carbon atoms per molecule. Very suitable catalysts are tin, zinc or iron chlorides, tin or zinc alkanoates, dibutyltin dialkanoates, and iron salts of naphtenic acids. Preferred catalysts are tin dioctoate, tin dichloride, dibutyltin dilaurate and tin tetrachloride, the former being most preferred.

Preferably the relative amount of starting material is such that the final resin contains essentially no free glycidylester. Hence, the preferred relative amount, as expressed by the equivalent ratio of glycidylester versus hydroxyl group preferably is less or equal to 1:1.

The catalyst may be employed at relatively low amounts and low reaction temperatures. Thus, addition of 0.01 to 0.4% m/m of catalyst while heating the reaction mixture to a temperature in the range of from 100 to 200 °C is adequate. Particularly suitable amounts of catalyst range from 0.03 to 1.0% m/m, most preferred amounts range from 0.05 to 0.25% m/m. The reaction may be carried out at a temperature in the
range of from 115 to 225 °C, and is preferably effected at temperatures of from 130 to 175 °C.

If desired, the process according to the invention may be carried out in the presence of a suitable non-reactive solvent, for example hydrocarbons such as octane, nonane, decane, toluene, the three xylenes, ethylbenzene or isopropylbenzene; ethers such as 1,4-dioxane, diethylether of ethylene glycol, diethylether of diethylene glycol; and chlorinated hydrocarbons such as monochlorobenzene. Alcohols, aldehydes, ketones and the like are considered less suitable since they may form undesired by-products.

The favourable properties of the resins according to the invention offer good possibilities for application of said resins in powder coatings, ambient cure paints, stoving enamels, and either anionic or cathodic electrodeposition coatings. For the latter coatings the novel resins of the present invention are first modified with an acid or a base (such as an amine), neutralized, and then applied together with a suitable cross-linking agent.

Attractive cross-linking resins for curable coating systems are for example those disclosed in European patent application Nos. 244,897 and 281,213. Particularly suitable cross-linking agents are the ambient curing amines, reactive isocyanates and thiols, as well as the high temperature curing aminoplast-type resins, such as alkoxylated reaction products of formaldehyde with melamine or benzoguanamide. Other suitable cross-linking agents include urea-aldehyde resins, phenolaldehyde resins, bisphenolic or anhydride curing agents, polycarboxylic compounds, dicyandiamide and blocked polyisocyanates. Suitable catalysts which may be employed in the curable coating compositions are acids such as orthophosphoric acid or p-toluene-
sulphonic acid. These catalysts may be used in an amount in the range of from, for example, 0.05 to 2% by weight, calculated on polyether and cross-linking resin.

The relative proportions of polyether resin and curing agent are those generally employed in the curable binders, typically of from 5 to 50% by weight, calculated on the total of polyether resin and cross-linking resin.

The curable coating composition can be applied by a variety of methods as known in the art, for example by spraying, dipping or roller coating. Other applications such as in laminates, or castings are also possible. The resins may be blended with conventional solvents such as aliphatic or aromatic hydrocarbons, however, since the low viscosity of the novel resins and the improved flow capacity, the solvent content may be very low. Thus a lowering of at least 23% w/w of solvent in the curable coating compositions can be achieved with coating and deposition characteristics similar to or better than the standard coating compositions. Even solvent free formulations are envisaged by use of the novel resins of the present invention. Pigments, fillers, dispersing agents and other components known for coating formulations may be added to the curable binder system comprising the polyethers made in accordance with the process of this invention. The invention will be further understood from the following examples.

Example 1

(A) EPIKOTE 828 ("E828") and TMP were charged at an epoxy group/primary hydroxyl group ratio of 4/3 (eq./eq.) to a suitable glass reactor equipped with anchor stirrer, reflux condenser and thermocouple. The ingredients are heated to 100 °C
and catalyst tin dioctoate (0.25 % m/m) is added. The etherification was carried out at 170 °C, in the absence of a solvent. The course of reaction was followed by taking samples at regular intervals and determining the EGC value. The reaction was stopped by rapid cooling at the moment when 2 of the 3 hydroxyl groups of TMP had been converted leaving an EGC of 2.15 meq.g⁻¹. The resin so obtained is marked EP-TMP-EP in table 1 below.

The experiments were carried out in a 1 litre glass reactor equipped with a stainless steel stirrer, nitrogen inlet, heating mantle, a thermometer and a reflux condenser. The resins marked in the first column of table 1 were charged into the reactor and heated to a temperature of 145-160 °C. The catalyst was added to a glycidyl-ester (CARDURA E10; hereinafter "CE10") and this solution was introduced into the reactor. Then, the reactor was heated to the desired reaction temperature. The reaction was stopped by cooling when EGC had decreased to 1.94. Experimental data are summarized in table 1.

Modified EPIKOTE 1001 was further evaluated and compared with unmodified EPIKOTE 1001. Thereto, lacquer formulations were made comprising in a stochiometric ratio of one epoxy group per active amino hydrogen atom the epoxy resin in a 75% m/m solids solution in xylene, and an amine curing agent. The amine curing agent was a 55% m/m solids solution of an E1001/diamine adduct (1 epoxy equivalent per mole amine) in 1:1 Methyl-PROXITOL/xylene (MethylPROXITOL is a registered trade name).
The clear lacquer was applied onto a bare steel panel in a dry film thickness of approximately 35 μm. The panel was cured at ambient temperature (23 °C) for 7 days, after which relevant lacquer properties were assessed (table 2). It was remarked that the film formation of the modified resin was better than that of the unmodified resin.

Example 2, Cathodic electrodeposition evaluation

(A) In a 3-litre reactor equipped with stirrer, reflux condenser and thermocouple, a binder was prepared. Thereto 237.5 g (0.5 eq) of E1001, 591.4 g (1.0 eq) of E1001-CE10 and 296.4 g of ButylOXITOL (registered trade name) were heated to 120 °C until a homogeneous solution was formed. After cooling to 60 °C 52.6 g (0.504 eq) of diethanol amine (DEOLA) was added. The solution was then stirred at 60 ± 2 °C (exotherm, cooling is required) until the combined epoxy and amine content is 1.49 meq/g solution, indicating complete addition of the amine to the epoxy groups. This required between 30 and 60 minutes at 60 °C. Immediately thereafter a mixture of 25.5 g (0.504 eq) of 3-dimethylaminopropylamine (DMAP), 15.3 g (0.504 eq) of ethanolamine (EOLA), and 98.8 g of ButylOXITOL were added. The temperature was brought to 80 °C and the mass was allowed to react at a temperature between 80 °C and 90 °C for one hour. Finally, the mass was heated to 120 °C for another hour. The clear resin solution had a solids content of 70.0% and a combined epoxy and amine content of 1.34 meq/g solution.

(B) The above procedure was repeated for comparison, however using 708.9 g (1.5 eq) of E1001, 53.7 g (0.510 eq) of DEOLA, 26.1 g (0.510 eq) of DMAP,
15.6 g (0.510 eq) of EOLA, and 258.5 g plus 86.2 g of ButyloXITOL.

(C) A polyester crosslinker was prepared, charging 768 g (4 mole) trimellitic anhydride and 2000 g (8 mole) CE10 to a 5-litre reactor equipped with stirrer, thermocouple, reflux condenser and cooling facilities (air blowing was sufficient). The mass was slowly heated to 90-100 °C when an exotherm reaction started. The heating source was removed and the temperature was allowed to rise to 190-195 °C exothermically (air cooling applied). The mass was kept at 190-195 °C for about 15 minutes, the clear product was allowed to cool to 140 °C, and 2.73 g (3 ml) N,N-dimethylbenzylamine was added. The mass was stirred at 140-145 °C until the acid value is less 3 mg KOH/g. If the acid value was still too high after a reaction time of one hour, and if the epoxy content was then already below 0.05 meq/g, an extra amount of CE10, equivalent to the remaining acid content was added. The reaction was then continued until the acid value was below 3 mg KOH/g. The product was then thinned with ButyloXITOL and cooled to room temperature at once. The solids content was 70%.

(D) Paint formulations were prepared by blending 163.7 g of either binder (A) or (B), with 60.9 g of the polyester crosslinker, and 3.1 g lead siccatol (33% Pb) at room temperature. 8.2 g of lactic acid (90% in H₂O) was added to the mixture and mixed homogeneously. The hazy-milky mixtures were diluted with 392.9 g demineralized water until milky solutions with a solids content of approximately 25% were obtained. To prevent phase separation, these solutions were stirred during storage.
The paint formulations were applied to a panel using different application voltages, and curing the paint formulations for 30 minutes at 160 °C. The CE10-modified paint formulation showed an improved flow, whereas the film had a lower roughness. Film characteristics are summarized in table 3.

Example 3, Cathodic electrodeposition evaluation

(A) A hexanediamine-CARDURA E10 adduct ("HD-2CE10") was prepared in a one-litre reactor equipped with stirrer, thermocouple, dropping funnel and nitrogen blanketing. 116 g (1 mole) of 1,6-hexanediamine was melted and heated to 100-110 °C, and 500 g (2 eq) of CE10 was gradually added (30-60 minutes) while the temperature was maintained. After addition had been completed heating was continued at 110 °C until the combined epoxy and amine content was below 3.30 meq/g. This took about one hour.

(B) A binder (i) was prepared in accordance with the procedure as described in example 2(A), however using 310.5 g (0.504 eq) of HD-2CE10 instead of EOLA, and using an amount of ButylOXITOL in % w/w as indicated in table 4. In addition, a binder (ii) was prepared using the above procedure and 887.1 g (1.5 eq) of E1001-CE10, instead of 237.5 g (0.5 eq) of E1001 and 591.4 g (1.0 eq) of E1001-CE10. Paint formulations were prepared analogous to the procedure set out in 2(D), and were thereafter applied according to the procedure set out in 2(E). Film characteristics using these paint formulations are summarized in table 4 below.
<table>
<thead>
<tr>
<th>mol ratio</th>
<th>E</th>
<th>CE10</th>
<th>Sn(2)</th>
<th>temp</th>
<th>time of</th>
<th>EGC</th>
<th>visc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPIKOTE</td>
<td>CE10/E</td>
<td>g</td>
<td>q</td>
<td>q</td>
<td>°C</td>
<td>reaction</td>
<td>meg/g</td>
</tr>
<tr>
<td>EP-TMP-EP</td>
<td>2.15</td>
<td>0.230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75/1</td>
<td>306</td>
<td>61</td>
<td>0.76</td>
<td>145</td>
<td>7.0</td>
<td>1.94</td>
<td>0.170</td>
</tr>
<tr>
<td>E834</td>
<td>4.04</td>
<td>0.043</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.38/1</td>
<td>1000</td>
<td>190</td>
<td>2.82</td>
<td>170</td>
<td>2.0</td>
<td>3.36</td>
<td>0.047</td>
</tr>
<tr>
<td>E1001</td>
<td>2.13</td>
<td>0.230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00/1</td>
<td>1132</td>
<td>301</td>
<td>2.36</td>
<td>170</td>
<td>3.0</td>
<td>1.69</td>
<td>0.163</td>
</tr>
<tr>
<td>1.50/1</td>
<td>250</td>
<td>106</td>
<td>0.70</td>
<td>160</td>
<td>5.3</td>
<td>1.51</td>
<td>0.148</td>
</tr>
<tr>
<td>E3003</td>
<td>1.29</td>
<td>1.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50/1</td>
<td>1500</td>
<td>122</td>
<td>2.60</td>
<td>170</td>
<td>1.5</td>
<td>1.21</td>
<td>1.120</td>
</tr>
<tr>
<td>1.00/1</td>
<td>400</td>
<td>65</td>
<td>0.70</td>
<td>170</td>
<td>3.0</td>
<td>1.12</td>
<td>0.820</td>
</tr>
</tbody>
</table>

* Viscosity analysed in 50% m/m ButylOXITOL solutions.
Table 2

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>CE10-modified EPIKOTE 1001</th>
<th>unmodified EPIKOTE 1001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution viscosity, (Pa.s)</td>
<td>4.9</td>
<td>13.2</td>
</tr>
<tr>
<td>Film appearance</td>
<td>slight ciss</td>
<td>excellent</td>
</tr>
<tr>
<td>MEK resistance (50 double rubs)</td>
<td>slightly soft</td>
<td>very slightly soft</td>
</tr>
<tr>
<td>Adhesion</td>
<td>cross hatch (ASTM D2197-86)</td>
<td>pass</td>
</tr>
<tr>
<td></td>
<td>Gitterschnitt (DIN 53 151)</td>
<td>Gt 0</td>
</tr>
<tr>
<td>Impact strength (cm.kg)</td>
<td>direct</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>reversed</td>
<td>81-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>92</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Layer thickness in μm</th>
<th>(A) CE10-modified EPIKOTE 1001</th>
<th>(B) unmodified EPIKOTE 1001</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>good</td>
<td>very poor</td>
</tr>
<tr>
<td>22</td>
<td>fair</td>
<td>very poor</td>
</tr>
<tr>
<td>28</td>
<td>fair-poor</td>
<td>very poor</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Layer</th>
<th>Binder thickness in μm</th>
<th>application voltage</th>
<th>ButylOXITOL % w/w</th>
<th>Film appearance smoothness</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>20</td>
<td>138</td>
<td>6.4</td>
<td>very good</td>
</tr>
<tr>
<td>(ii)</td>
<td>20</td>
<td>81</td>
<td>6.4</td>
<td>very good</td>
</tr>
<tr>
<td>(iii)</td>
<td>20</td>
<td>108</td>
<td>4.9</td>
<td>very good</td>
</tr>
</tbody>
</table>
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An aromatic polyglycidyl polyether resin having on average of from 1.5 to 4.5 epoxy groups and of from 0.1 to 18 primary or secondary -OR groups per molecule, wherein from 5 to 95 % of the -OR groups have the general formula -O-CH₂-CHOH-CH₂-O-C(O)-R', in which R' is a branched C₄₋₁₇ alkyl group, the remainder of the -OR groups being hydroxyl groups.

2. A resin as claimed in claim 1, wherein at most 50 % of the -OR groups are hydroxyl groups.

3. A resin as claimed in claim 1 or 2, wherein the resin is a diglycidylether represented by the schematic formula V:

\[
\text{G-O-[-BA-O-CH₂-CH-CH₂-O-]}_{\text{OR}}\text{-BA-O-G} \quad (V)
\]

in which G stands for glycidyl and BA stands for the group resulting from the removal of both hydroxyl groups from a dihydric aromatic compound.

4. A resin as claimed in claim 2 or 3, wherein the aromatic polyglycidylether resin has an epoxy group content of at most 2.5 meq/g.

5. A resin as claimed in claims 3 or 4, wherein n has an average value of from 1.5 to 4.5.

6. A resin as claimed in any one of claims 1 to 5, wherein the resin is a polyglycidyl polyether having the schematic formulae II, III, or IV:

\[
\text{EP-HD-EP} \quad \text{(II)}
\]
\[
\text{EP-TMP-EP} \quad \text{(III)}
\]
\[
\text{TMP-(EP)}_3 \quad \text{(IV)}
\]

in which HD stands for a hexanediol moiety, TMP for a trimethylolpropano moiety and EP for the resin moiety.
marked in formula V in any one of claims 3 to 5, in which now one glycidyl group has been converted into a bridging group \(-O-\text{CH}_2\text{-CHOH-CH}_2\).

7. A process for preparing a resin as claimed in any one of claims 1 to 6, wherein a glycidylester of a C\(_{5-18}\) branched aliphatic monocarboxylic acid is reacted with one or more hydroxyl groups contained in a polyglycidyl polyether of a polyhydric aromatic compound in the presence of a tin, zinc or iron compound etherification catalyst, in which the polyglycidyl polyether contains on average of from 1.5 to 4.5 epoxy groups and of from 0.1 to 18 primary or secondary hydroxyl groups per molecule.

8. A curable coating composition comprising a polyether resin as claimed in any one of claims 1 to 6 and a cross-linking resin.

9. An electrodeposition coating composition comprising an acid or base-modified polyether resin as claimed in any one of claims 1 to 7, a neutralizing agent and a cross-linking resin.

10. An aromatic polyglycidyl polyether resin having on average of from 1.5 to 4.5 epoxy groups and of from 0.1 to 18 primary or secondary -OR groups per molecule substantially as hereinbefore described with reference to any one of the Examples.

11. A process for preparing an aromatic polyglycidyl polyether resin having on average of from 1.5 to 4.5 epoxy groups and of from 0.1 to 18 primary or secondary -OR groups per molecule substantially as hereinbefore described with reference to any one of the Examples.

DATED this TWENTY-EIGHTH day of MARCH 1990
Shell Internationale Research Maatschappij B.V.

Patent Attorneys for the Applicant
SPRUSON & FERGUSON