XX/We, NISSAN MOTOR COMPANY, LIMITED

of 2, Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa-ku, JAPAN.

hereby apply for the grant of a Patent for an invention entitled: "AUTOMATIC TRANSMISSION FOR TRANSVERSE ENGINE OF FRONT-DRIVE AUTOMOTIVE VEHICLE"

which is described in the accompanying complete specification. This application is a Convention application and is based on the application(s) numbered: 53-128351

for a patent or similar protection made in JAPAN on 18th September, 1978

Our address for service is care of GRIFFITH, HASSEL & FRAZER, Patent Attorneys, of 323 Castlereagh Street, Sydney 2000, in the State of New South Wales, Commonwealth of Australia.

DATED this 23rd day of August, 1979

NISSAN MOTOR COMPANY, LIMITED
By their Patent Attorneys:

[Stamp] PATENT OFFICE
[Stamp] PATENT OFFICE
[Stamp] COMMONWEALTH OF AUSTRALIA

[Stamp] AUSTRALIAN
24 AUG 1979
PATENT OFFICE OF GRIFFITH, HASSEL & FRAZER
DECLARATION IN SUPPORT OF A CONVENTION OR NON-CONVENTION APPLICATION FOR A PATENT OR PATENT OF ADDITION

In support of the application No. (a) made by (b) NISSAN MOTOR COMPANY, LIMITED

for a patent/patent of addition for an invention entitled (c) AUTOMATIC TRANSMISSION FOR TRANSVERSE ENGINE OF FRONT-DRIVE AUTOMOTIVE VEHICLE

I, (d) Ryoshi Nakagawa

of (e) 2, Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa-ken, Japan

do solemnly and sincerely declare as follows:

1. (f) I am authorised by the abovementioned applicant for the patent/patent of addition to make this declaration on its behalf.

2. The basic application(s) as defined by Section 141 of the Act was/were made in the following country or countries on the following date(s) by the following applicant(s) namely:

 in (i) Japan on (j) 18, September 1978
 by (k) NISSAN MOTOR COMPANY, LIMITED

 in (i) Japan on (j) 19
 by (k) 19

3. Of (n) 22-15, Midorigaoka, 2-chome, Meguro-ku, Tokyo, Japan
 1158-100, Tomioka-cho, Kanazawa-ku, Yokohama-shi, Kanagawa-ken, Japan
 and 35, Yamato-cho, Naka-ku, Yokohama-shi, Kanagawa-ken, Japan

 are the actual inventor(s) of the invention and the facts upon which the applicant(s) is/are entitled to make the application are as follows:

 as regards entitlement under Section 34 of the Act:—(o)
 The Applicant is the assignee of the said invention from the said inventors.

 as regards entitlement under Part XVI of the Act:—(q)

4. The basic application(s) referred to in paragraph 2 of this Declaration was/were the first application(s) made in a Convention country in respect of the invention the subject of the application.

Declared at Kanagawa-ken, JAPAN this 23rd day of August, 1979
NISSAN MOTOR COMPANY, LIMITED

Ryoichi Nakagawa
Executive Managing Director

To: The Commissioner of Patents,
Commonwealth of Australia.
7. An automatic transmission including a transmission case having a substantially vertical closed left end wall, said transmission case enclosing a fluid pressure pump located adjacent to the closed left end wall, said pump having a flat vertical end surface facing and spaced from the interior side of the left end wall, a control valve body affixed to a lower portion of the transmission case, walls in the transmission case forming a pump passageway extending from the pump and opening at the lower portion of the transmission case, walls in the control valve body forming a valve body passageway extending from the control valve and opening at the lower portion of the transmission case in communication with the pump passageway, and an oil pan affixed to a lower portion of the transmission case, the oil pan enclosing the control valve body, the improvement therein comprising:
(a) the location of the pump passageway opening being to the right of the vertical plane of the flat vertical end surface of the pump; and

(b) the location of the oil pan being entirely to the right of the vertical plane of the vertical closed left end wall of the transmission case.
TO BE COMPLETED BY APPLICANT

Name of Applicant: NISSAN MOTOR COMPANY, LIMITED

Address of Applicant: 2, Takara-cho, Kanagawa-ku,
 Yokohama-shi, Kanagawa-ken,
 JAPAN.

Actual Inventor: Takahiro Yamamori, Kazuyoshi Iwanaga and
 Kunio Ohtsuka.

Address for Service: Griffith, Hassel & Frazer,
 323 Castlereagh St.,
 SYDNEY N.S.W, 2000 AUSTRALIA

Complete Specification for the invention entitled: "AUTOMATIC TRANSMISSION FOR TRANSVERSE ENGINE OF FRONT-DRIVE AUTOMOTIVE VEHICLE"

The following statement is a full description of this invention, with the best method of performing it known to me/us:-
The present invention relates in general to an improvement in a front-drive automatic transmission for a transverse engine of an automotive vehicle, and more particularly to a transmission case of the same transmission which case is shorter in its axial direction.

It is the principal object of the present invention to provide an improved automatic transmission which is shorter in its axial direction so that the transmission can be easily mounted with an engine on the chassis of a motor vehicle without causing any trouble during assembly of the vehicle.

It is another object of the present invention to provide an automatic transmission having an improved transmission case which is not formed with a projection which causes difficulty in mounting the transmission on the chassis of a motor vehicle.

It is a further object of the present invention to provide an automatic transmission having an improved transmission case by which a hydraulic control valve body and an oil pan covering the control valve body are located withdrawn from the end portion of the transmission case, preventing the flange portion of the oil pan from projecting from the end portion of the transmission case.
It is a still further object of the present invention to provide an automatic transmission having an improved transmission case in which a fluid passage connecting a fluid pressure pump and a hydraulic control valve body is formed and located to allow the overall length of the transmission case to be reduced in its axial direction.

Other objects, features and advantages of the improved automatic transmission according to the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings, in which

Fig. 1 is a cross-sectional view of a portion of a prior art automatic transmission for a transverse engine in a front drive-system of a motor vehicle.

Fig. 2 is a cross-sectional view of an automatic transmission, in accordance with the present invention, for a transverse engine in a front-drive system of a motor vehicle;

Fig. 3 is a cross-sectional view of a differential in combination with the automatic transmission of Fig. 2;

Fig. 4 is a cross-sectional view of a portion of
another embodiment of an automatic transmission in accordance with the present invention.

In a front-drive system there are known two methods of mounting an engine. One of them is to mount an engine longitudinally and the other is to mount an engine transversely. A transverse engine is advantageous in a front-drive system of an automotive vehicle, particularly, a subcompact vehicle and a mini car, in terms of weight distribution between front and rear wheels and of space saving.

Fig. 1 shows a portion of the prior art Volkswagen 1600 transmission. This view was shown in ATZ Automobiltechnische Zeitschrift 69(1967) 9 on page 286. Fig. 1 shows an end portion of the prior art transmission case 1 of a transverse engine in a front-drive system, in which case a planetary gear system (no numeral) is disposed. An engine (not shown) is disposed at right-hand side of the transmission case in the drawing and is operatively connected to the planetary gear system (not shown). Additionally, a hydrokinetic unit (not shown) or a so-called torque converter is operatively interposed between the planetary gear system and the engine. As shown, a fluid pressure pump 2 is securely located adjacent the closed end la of the transmission case 1. The fluid pressure pump 2 is operatively connected through a pump
drive shaft P to the pump impeller of the torque converter
and arranged to supply fluid under pressure through an
upper fluid passage 3 and a lower fluid passage 4 to
hydraulic control valve body 5. The control valve body
5 is secured to a flat surface lb of the transmission
case 1 to controllably supply the pressurized fluid from
the pump 2 to the planetary gear system. The lower fluid
passage 4 is formed by casting or by machining after
casting so as to be located generally perpendicular to
the flat surface lb of the transmission case in which the
control valve body 5 is secured. Accordingly, the lower
end of lower fluid passage 4 necessarily lies outside or
at left-hand side of the plane of the flat side surface 2a
of the fluid pressure pump 2.

With such an arrangement, the left-most portion 5a
of the control valve body 5 necessarily lies adjacent
the closed end 1a of the transmission case 1 in order to
connect the fluid passage 5b of the control valve body 5
to the lower fluid passage 4 of the transmission case 1.
As a result, the closed end 1a of the transmission case
must be provided with a flange portion 1c to which an
oil pan 6 is secured with bolts 7. It is to be noted
that the flange portion 1c of the transmission case 1 is
therefore necessarily projected from an outer wall of
the lower fluid passage 4 of the transmission case 1 by
a length of l shown in Fig. 1. This increase the length
of the automatic transmission itself in its axial direction by the length of l.

Such a long transmission in its axial direction is troublesome during the transverse mounting of the engine with the transmission on the chassis of a vehicle body. This is because the transverse dimension of the engine compartment of a vehicle is relatively small. Therefore, it is difficult to mount a transverse engine with such a long transmission on the vehicle body.

In view of the above, the present invention contemplates to overcome the problems encountered in the prior art automatic transmission for a transverse engine by improving the location of the lower fluid passage through which fluid under pressure from a fluid pressure pump is admitted to a hydraulic control valve body.

Referring now to Figs. 2 and 3 of the accompanying drawings, there is shown a preferred embodiment of an automatic transmission for a transverse engine in a front-drive system of an automotive vehicle. Meant by the term "transverse engine" is an engine whose longitudinal axis is generally perpendicular to the longitudinal axis of a vehicle body (not shown). The automatic transmission comprises a generally cup-shaped transmission case 10 or a housing for a planetary gear system.
The gear system includes two planetary gear units 12 and 14 which establish the power flow paths as subsequently will be explained.

A hydrokinetic torque converter unit is designated generally by reference numeral 16. It is enclosed within a housing 18 including an end flange 20 which may be secured to one end of transmission case by bolts 22 or any other suitable technique.

Although not shown, a crankshaft for the internal combustion engine may be bolted to a drive plate which is secured to an impeller shell part 24. The engine may be located at right-hand side of the housing 18, though not shown.

Impeller shell part 24 is generally toroidal in form and welded at its inner periphery to a pilot element 26.

The outer periphery of impeller shell part 24 is secured at 28 by welding or by any other suitable fastening technique to a second shell part 30. This shell part also is formed with a generally toroidal shape and its hub 32 is secured to a pilot sleeve shaft 34.

Sleeve shaft 34 is journaled by means of a bushing 36 upon a stationary sleeve shaft extension 38 of an
adaptor 40. The adaptor is secured by means of bolts 42
to a housing portion 44 which forms a part of the torque
converter housing 18. A suitable fluid seal 46 is situ-
ated between the sleeve shaft 34 and a surrounding opening
of a ring 48 secured to the adaptor 40.

The impeller is identified in Fig. 2 by the symbol
I. It includes blades 50 which are secured at their
outer margins to the interior of the shell part 30. An
inner shroud 52 is secured to the inner margins of the
blades 50 thereby completing radial outflow passages.
The flow exit region of the impeller is situated directly
adjacent the flow entrance region of a turbine that is
generally identified in Fig. 2 by the symbol T. The
turbine includes an outer shroud 54, an inner shroud 56
and turbine blades 58 situated between the shrouds.
Blades cooperate with the shrouds to define radial inflow
passages.

The inner periphery 60 of the shroud 54 is secured
to a hub 62. This hub in turn is internally splined at
64 to a power input shaft 66. Turbine shaft 66 is sup-
ported by means of a bushing 68 upon stationary sleeve
shaft extension 38.

A bladed stator 5 is disposed between the flow exit
region of the turbine and the flow entrance region of the
impeller. It includes stator blades 70 carried by a stator shroud 72.

A one-way clutch designated by reference numeral 74 has its outer race secured within an opening of stator shroud 72 and its inner race splined at 76 to the stationary sleeve shaft 38. With the one-way clutch, rotation of the stator in a direction opposite to the direction of rotation of the impeller is prohibited although freewheeling motion in the other direction is accommodated.

Housing portion 44 includes an end wall 78 having a bearing opening 80 within which is situated a tapered roller bearing 82. The housing portion also includes a wall 84 having an opening 86 to receive a bearing retainer portion 88 of the adaptor 40. Another tapered roller bearing 100 is disposed within the retainer portion 88.

The inner races of the bearings 82 and 100 support a power output sleeve shaft 102. This shaft has a power output pinion or an output gear 104.

The left hand end of housing 10, as viewed in Fig. 2 has an end closure wall or generally circular closed end 106. Secured to the inner surface of the end wall 106 is an adaptor 108 having an axially extending sleeve shaft portion 109. The connection between adaptor 108
and end wall 106 can be made by bolts 110.

A fluid pressure pump 112 includes a housing 113. A pump inner gear 114 is disposed in the housing 113 and splined at 116 to a pump drive shaft 118. This shaft 118 extends through the center of sleeve shaft 66 and is keyed or splined at its right hand end, as viewed in Fig. 2, to a hub 120 secured to the inner periphery of the impeller shell part 24.

A pump outer gear 122 also received within the housing 113 meshes with pump inner gear 114 and cooperates with suitable ports to provide a control pressure source that is utilized by a control valve assembly or body designated generally by reference numeral 124. The reference numeral 125 indicates a crescent portion to which the teeth of gears 114 and 122 are in close proximity.

The power input shaft 66 is splined at 126 to a clutch member 128. This member includes a portion that surrounds the end of the axially extending sleeve shaft portion 109, a wall portion 129 radially extending from that surrounding portion and a radially extending portion that defines a drum 130 axially extending and joining to the wall portion. A portion of the inner periphery of the drum joining to the wall portion forms a cylinder 132,
and it receives an annular piston 134. The drum 130 is splined to permit a splined connection with one or more externally splined clutch plates 136. Cooperating internally splined plates 138 are carried drivably by an externally splined clutch member 140. A clutch back-up plate 141 is also externally splined to the drum 130 and held axially fast by a snap ring 142.

Fluid pressure may be admitted to the working chamber defined by the piston 134 and the cylinder 132.

Member 128 carries a spring back-up element 144 and piston return springs 146 are situated between element 144 and the piston 134.

Clutch member 140 is integral with a ring gear 148 of the planetary gear unit 14. Ring gear 148 meshes with planet pinions 150 which are carried by pinion shafts 152. These shafts in turn are supported by a planetary carrier 154.

Pinions 150 mesh also with a sun gear 156. The sun gear is common to the planetary gear units 12 and 14.

Planetary carrier 154 is splined at 158 to the power output shaft 102.
A suitable torque transfer member 160 provides a drive connection between the power output shaft 102 and a ring gear 162 for the planetary gear unit 12. The torque transfer member has a splined central opening 164 within which the power output shaft 102 is splined. Ring gear 162 meshes with planetary pinions 166 which are rotatably supported by pinion shafts 168. A carrier 170 carries the pinion shafts 168 and is integral with a drum 172 which is splined to permit a splined connection with one or more internally splined plates 174 for a low and reverse brake designated generally by reference numeral 176. Cooperating externally splined plates 178 are splined to the housing 10. A brake back-up plate 180 is also externally splined to the housing 10 and held axially fast by a snap ring 182. The brake 176 may be applied and released by means of a piston 184 within a cylinder 186 formed in the adaptor 108. A motion transfer member 188 is provided to establish drive connection between the piston 184 and a pressure plate 190 externally splined to the housing 10.

Fluid pressure may be admitted to the working chamber defined by the piston 184 and the cylinder 186.

Adaptor 108 carries a spring back-up element 192 and piston return springs 194 and are situated between element 192 and the piston 184.
The common sun gear 156 is journaled upon the power output shaft 102 by means of two bushings 196. Carrier 170 carries an inner one-way clutch race 198 which is surrounded by a stationary outer race 200 splined to the housing 10. Spring loaded rollers (no numerals) are disposed between the inner and outer races 198 and 200. With one-way clutch races 198 and 200 and rollers, a one-way braking action for the drum 172 is provided free-wheeling one-way motion of the drum 172 relative to the housing 10 can be accommodated, however.

A brake drum assembly 202 having an outer drum 201 and an inner drum 203 fixed to the outer drum is rotatably supported upon the extension 109. The inner drum 203 defines an annular cylinder 204 within which is positioned an annular piston 206. Piston return springs 208 are situated between piston 206 and a spring seat member 210 which is held axially fast upon the hub of drum 202.

Drum assembly 202 is surrounded by an intermediate speed ratio brake band 212. This brake band can be applied and released by means of a suitable fluid pressure operated servo of conventional construction. A portion of the inner drum is splined as shown at 214 to permit a driving connection with externally splined clutch plates 216. Cooperating internally splined plates 218 are carried by an splined clutch member 220. The clutch member 220 is
secured to the clutch member 128 for rotation in unison. A clutch pressure back-up plate 222 is externally splined to the inner drum 203 and held axially fast by a snap ring 224.

Upon introduction of pressure to the cylinder 204, a driving connection between drum assembly 202 and clutch member 220 will be established. Similarly, when fluid pressure is admitted to the cylinder 132, a driving connection is established between drum 130 and clutch member 140. Drum assembly 202 is drivably connected to the common sun gear 156 by means of a drive shell 226. The outer periphery of the drive shell 226 is welded to the end of the outer drum 201 of the drum assembly 202. The inner margin of the shell 226 is splined to the common sun gear 156 as indicated.

The transmission mechanism thus far described in connection with Fig. 2 is adapted to establish three forward driving speed ratios and a single reverse speed ratio.

The impeller of the hydrokinetic torque converter unit 16 is coupled directly to the engine so that a toroidal fluid flow in the torus circuit of the convertet unit is established. Turbine torque then is delivered to shaft 66 and hence to clutch member 128. To establish a
low speed drive ratio in automatic forward drive range (D), the forward clutch shown in part at 136 and 138 is engaged and the turbine torque is then transferred to the ring gear 148. The sun gear 156 tends to rotate in a backward direction relative to the direction of rotation of ring gear 148. This backward motion, however, causes a forward driving motion of ring gear 162 by reason of the fact that the carrier 170 forms a reaction element transmitting the torque reaction exerted by the one-way clutch shown in part at 198 and 200. The forward motion thus imparted to ring gear 162 is transferred directly to the power output shaft 102 through torque transfer member 160 and and splined connection at 164.

The forward driving torque applied to the carrier 154 is transferred to the power output shaft 102 through splined connection 158. Thus the low speed ratio is characterized by a compounding of the two planetary gear units 12 and 14.

In manual low speed drive range (I), brake 176 is applied in addition to the engagement of the forward clutch, thereby anchoring carrier 170. By this anchoring, reverse torque reaction is provided during a hill braking or coasting condition.

To establish intermediate speed ratio, it merely is
necessary to engage intermediate speed ratio brake band 212 in addition to the engagement of the forward clutch, thereby anchoring sun gear 156. The sun gear 156 therefore acts as a reaction member and a forward driving torque then is delivered to carrier 154 as the turbine drives the ring gear 148. The forward motion of the carrier 154, of course, is transferred as before to the power output shaft 102. Gear unit 12 is inoperative under these conditions and the one-way clutch shown in part at 198 and 200 will freewheel.

To establish direct drive high speed ratio, it merely is necessary to release brake band 212 and apply both clutches (high and reverse clutches, 136, 218, forward drive clutches 136, 138) simultaneously. This locks together the planetary gear units 12 and 14 so that they rotate in unison at one to one speed ratio.

Reverse drive is established by applying brake 176 and applying the high-and-reverse clutch (216 and 218). The forward clutch (136, 138) is released and brake band 212 is released. Turbine torque then is delivered to clutch member 220 and transferred directly to the sun gear 156 through drive shell 226. This causes the sun gear 156 to rotate in the direction of rotation of the impeller. Carrier 170, of course, is anchored by the brake 176 and acts as a reaction member. Ring gear 162 is then driven
in a reverse direction and its reverse motion is transferred directly to the power output shaft 102 at a reduced speed ratio.

In addition to the above-discussed arrangement, the housing includes the transmission case 10 having an attachment flat surface M to which a valve cover 232 and the control valve assembly 124 are secured by means of bolts 234 (see Fig. 2). The attachment surface extends longitudinally from a location adjacent to end closure wall 106 to a location adjacent to that end of housing 10 to which housing 18 is secured.

The oil pan 236 is attached to transmission case 10 as shown in Fig. 2.

A final drive unit including differential is illustrated in Fig. 3. Housing 18 includes a housing portion 238 including a bearing opening 240 within which is situated a ball bearing 241. Housing or transmission case 10 includes a housing portion or wall 242 strengthened by one or more ribs (not shown). Wall 242 includes an opening 246 to receive a bearing retainer 248. This bearing retainer has at its outer periphery a flange 250 which is secured to wall 242 by means of bolts 252. It includes a bearing opening 254 within which situated is a ball bearing 256.
The inner races 258 and 260 of the bearings 241 and 256 support a differential case 262. Case 262 includes a flange 264 to which an externally toothed final reduction ring gear 266 is secured by means of bolts 268.

A pinion shaft 270 has one and opposite ends 272 and 274 fixed to case 262. A pair of pinions 276 and 278 are rotatably supported by pinion shaft 270. Each pinion meshes with side gears 280 and 282 for axle shafts 284 and 286, respectively. Side gear 280 includes a splined opening 288 within which axle shaft 284 is splined. Side gear 282 also includes a splined opening 290 within which axle shaft 286 is splined.

An oil seal 292 is situated between a reduced diameter section 294 of axle shaft 284 and an opening 296, formed in housing portion 238, surrounding the reduced diameter section. An oil seal 298 is situated between a reduced diameter section 300 and an opening 302, formed in bearing retainer 248, surrounding the reduced diameter section.

Torque is delivered from output gear 104 to ring gear 266 by means of a pinion or idler gear 304 meshing with the output gear and with the ring gear.

Referring to Fig. 2, idler gear 304 is supported by
outer races 306 and 308 of tapered roller bearings 310 and 312. A bearing shaft 314 for supporting the bearings 310 and 312 has one end received in a bline bore 316 formed in adaptor 40 and an opposite end received in an opening 318 formed in end wall 78 of housing 18. Bearing shaft 314 is axially fast by a suitable means indicated at 320.

As will be readily understood from Figs. 2 and 3, torque converter housing 18 and transmission case 10 are connected to each other to define an interface which lies on a plane, indicated by reference numeral 322, which is disposed outboard of the inboard face 324 of output gear 104 with respect to planetary gear units 12 and 14. A packing may be interposed between end flange 20 and the adjacent end of transmission case 10.

The attachment surface on housing portion 238 is extended up to a plane where the outboard face 326 of output gear 104 lies since this surface may be allowed to be extended, in design, to the end of transmission case 10 secured to flange 20 of torque converter housing 18 and, in this embodiment, the plane 322 where the interface lies is disposed adjacent the outboard face 326.

As will be understood from Fig. 3, housing portion 238 of torque converter housing 18 and wall 242 of trans-
mission case 10 are connected to each other to define an interface which lies in the same plane 322. A packing may be interposed at the interface defined by the housing portion 238 and the wall 242.

The relationship between the fluid pressure pump 112 and the pressure control valve body 124 will be explained in detail hereinafter with reference to Fig. 2.

The fluid pressure pump 112 communicates through a fluid passageway 330 with the control valve body 124 in order to supply the control valve body 124 with fluid under pressure. The fluid under pressure is controllably supplied to the planetary gear system disposed in the transmission case 10 to control the operation of the planetary gear system. The fluid passageway 330 includes first, second, third and fourth portions 330a, 330b, 330c and 330d. The first portion 330a is defined between a generally flat surface 112a of the fluid pressure pump 112 and the inner surface of the closed end 106 of the transmission case 10. The second portion 330b is formed through the wall of the transmission case 10 so that one end thereof directly opens to the first portion 330a and the other end thereof opens to ambient air, which other end is closed with a plug member 332. The second portion 330b is generally perpendicular to the surface M to which the control valve body 124 and the flange portion 236a of
the oil pan 236 are secured. The third portion 330c is formed in the wall of the case 10 and generally perpendicularly to the second portion 330b so that one end thereof opens to ambient air, which one end is closed with a plug 334. The third portion 330c crosses the second portion 330b. The fourth portion 330d or an end fluid passage is formed in the casing 10 and perpendicularly to the third portion 330c so that one end thereof connects to the third portion 330c and the other end opens to ambient air through the flat surface M. After assembled, the fourth portion 330d opens to a portion of the flat surface M lying to the right-hand side of the flat surface 112a of the fluid pressure pump 112 in the drawing. The fourth portion 330d is produced upon casting of the transmission case 10 or by machining after casting of the same. The fourth portion 330d is communication with a fluid receiving portion (not identified) of the control valve body 124, through which the fluid under pressure from the fluid pressure pump 112 is supplied to the interior of the control valve body 124.

With the thus arranged fluid passageway 330, the end fluid passage 330d is located inside of the extension (not shown) of the flat surface 112a of the fluid pressure pump 112 or opposite to the closed end 106 of the case 10 with respect to the extension of the flat surface 112a. Accordingly, the control valve body 124 can be laid inside
of the flat surface 112a or at right hand side in the drawing. As a result, the oil pan 236 can be installed to the case 10 with bolts (not shown) so that the outer periphery of the flange portion 236a thereof lies on or withdrawn from an extension (not shown) of an outer wall 106a of the first fluid passage 330a. It will be appreciated from the foregoing, that the flange portion 1c of the transmission case of the prior art shown in Fig. 1 is omitted and therefore the overall length of the transmission is reduced by an amount corresponding to the length \(k \) shown in Fig. 1.

Fig. 4 illustrates a part of an alternative embodiment of the automatic transmission in accordance with the present invention. This embodiment is substantially similar to the embodiment shown in Figs. 2 and 3 and, as such, like reference numerals are assigned to like parts and elements. Additionally, only a part different from the embodiment of Figs. 2 and 3 is illustrated for the purpose of simplicity of description.

In this case, the fluid passageway 330 includes a first portion 330a, and a second portion 336 or an end fluid passage. The second portion 336 opens at one end thereof to the first portion 330a and opens at the other end thereof to the flat surface \(M \) to which the control valve body 124 and the flange portion 236a of the oil
pan are secured. The second portion 336 is communicated through the flat surface M with a fluid receiving portion of the control valve body 124 through which fluid under pressure from the pump 112 is supplied to the control valve body 124. As shown, the second portion 336 is oriented so that it extends at an acute angle across the extension (not shown) of the flat surface 112a of the fluid pressure pump 112. The second portion 336 may be produced upon casting of the transmission case 10. The transmission case 10 is formed at its bottom portion (in the drawing) with a flange portion 338 which extends from the closed end 106 of the transmission case 10, but does not extend beyond the vertical plane of the outer wall 106a of the first fluid passage 330a. The flange portion 338 is formed with a flat surface which lies on the extension of flat surface M of the case 10.

With the thus arranged fluid passageway 330, the control valve body 124 can be located inside or at right-hand side (in the drawing) of the flat surface 112a of the fluid pressure pump 112. Therefore, when the flange portion 236a of the oil pan 236 is secured to the flange portion 338 of the transmission case 10, the outer-most periphery of the oil pan flange portion 236a can be laid on or withdrawn from the extension of the outer wall 106a of the first fluid passage 330a. As a result, the overall length of the transmission can be reduced by the amount
corresponding to the length \(l \) shown in the prior art transmission of Fig. 1.

As is appreciated from the foregoing discussion, according to the present invention, since the automatic transmission is shortened in its axial direction and therefore mounting of the transverse engine with the automatic transmission on the chassis of the vehicle becomes easier during assembly of the vehicle having the front-drive system.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:--

1. An automatic transmission including

a generally cup-shaped transmission case having a
generally circular closed end, said transmission case
housing therein

a planetary gear system that includes a planetary
gear elements, a power input element of the planetary
gear system being drivably connected to a hydrokinetic
unit, a power output element of said planetary gear
system having an output gear, the output gear being
disposed between the planetary gear elements and the
hydrokinetic unit, clutch means for connecting together
two elements of the planetary gear system for rotation in
unison, brake means for anchoring one element of the
planetary gear system, fluid pressure operated servos
for actuating the clutch means and the brake means, and
a fluid pressure pump drivably connected to the hydro-
kinetic unit and located adjacent the circular closed end
of the transmission case, said fluid pressure pump having
a generally flat surface opposite to the inner surface
of the circular closed end of the transmission case,

a control valve body in communication with the
fluid pressure pump to supply selectively fluid pressure
to the servos, the control valve body being secured to
the transmission case other than the circular closed end
and located generally parallel with the axis of the
transmission case,
said transmission case comprising
means defining an fluid passageway fluidly connecting
the fluid pressure pump to the control valve body and
including an end portion which is directly fluidly con-
ected to a fluid receiving portion of the control valve
body which receiving portion receives fluid under pressure
from the fluid pressure pump, said end portion of said
fluid passageway being located opposite to said circular
closed end of said transmission case with respect to the
generally flat surface of the fluid pressure pump.

2. An automatic transmission as claimed in Claim 1,
further comprising an oil pan for containing therein a
fluid and covering the control valve body, said oil pan
being formed with a flange portion secured to the trans-
mision case, the periphery of said flange lying closer
to the flat surface of the fluid pressure pump than the
outer-most portion of the outer surface of the circular
closed end of the transmission case.

3. An automatic transmission as claimed in Claim 2, in
which said transmission case is formed with a flat surface
to which the control valve body and the flange portion of
said oil pan are secured.
4. An automatic transmission as claimed in Claim 3, in which said fluid passageway includes a first portion defined between the flat surface of the fluid pressure pump and the inner surface of the circular closed end of the transmission case, said first portion being communicable with the fluid pressure pump, a second portion connected to said first portion and lying generally perpendicular to the flat surface of said transmission case, a third portion connected to said second portion and lying generally perpendicular to said second portion, and a fourth portion connected to said third portion and lying perpendicular to the flat surface of said transmission case, said fourth portion being formed with said end portion of said fluid passageway so that said end portion lies on the flat surface of the transmission case.

5. An automatic transmission as claimed in Claim 4, in which said second portion of said fluid passageway is produced by forming an elongate through-hole connecting said first portion to ambient air and thereafter plugging an open end of said through-hole, said second portion of said fluid passageway is produced by forming a first elongate hole crossing said elongate through-hole and thereafter plugging an open end thereof, and said third portion of said fluid passageway is produced by forming a second elongate hole communicating at one end thereof with said first elongate hole, the other end thereof
being opened on the flat surface of the transmission case.

6. An automatic transmission as claimed in Claim 3, in which said fluid passageway includes a first portion defined between the flat surface of the fluid pressure pump and the inner surface of the circular closed end of the transmitting case, the first portion being communicable with the fluid pressure pump, and a second portion connected to said first portion, said second portion extending beyond the extension of the flat surface of the fluid pressure pump and reaching the flat surface of the transmission case, said second portion being formed with said end portion of said fluid passageway so that said end portion of said fluid passageway lies on the flat surface of the transmission case.

7. An automatic transmission including a transmission case having a substantially vertical closed left end wall, said transmission case enclosing a fluid pressure pump located adjacent to the closed left end wall, said pump having a flat vertical end surface facing and spaced from the interior side of the left end wall, a control valve body affixed to a lower portion of the transmission case, walls in the transmission case forming a pump passageway extending from the pump and opening at the lower portion of the transmission case, walls in the control valve body forming a valve body passageway extend-
ing from the control valve and opening at the lower portion of the transmission case in communication with the pump passageway, and an oil pan affixed to a lower portion of the transmission case, the oil pan enclosing the control valve body, the improvement therein comprising:

(a) the location of the pump passageway opening being to the right of the vertical plane of the flat vertical end surface of the pump; and

(b) the location of the oil pan being entirely to the right of the vertical plane of the vertical closed left end wall of the transmission case.

8. An automatic transmission as claimed in Claim 7, in which the pump passageway has an upper vertical portion and a lower angled portion, the angled portion extending down and to the right.

9. An automatic transmission as claimed in Claim 7, in which the pump passageway has, in connected sequence, a downwardly extending vertical first portion, a rightwardly extending horizontal second portion, and a downwardly extending vertical third portion.

Dated this 23rd day of August, 1979.

NISSAN MOTOR COMPANY, LIMITED
By their Patent Attorneys
GRIFFITH, HASSEL & FRAZER.