REQUEST FOR A STANDARD PATENT
AND NOTICE OF ENTITLEMENT

The Applicant identified below requests the grant of a patent to the nominated person identified below for an invention described in the accompanying standard complete patent specification.

Applicant and Nominated Person:
Canada Conveyor Belt Co., Ltd.
19500 56 Avenue, Surrey, British Columbia, V8S 6K4, CANADA

Invention Title:
APPARATUS AND METHOD OF DAMAGE DETECTION FOR MAGNETICALLY PERMEABLE MEMBERS

Actual Inventors:
Dieter W. Blum

Address for Service:
PHILLIPS ORMONDE & FITZPATRICK
367 Collins Street
Melbourne 3000 AUSTRALIA

Details of basic application(s):
954,485 UNITED STATES OF AMERICA US 30 September 1992

Applicant states the following:

1. The nominated person is the assignee of the actual inventor(s)

2. The nominated person is
 - the applicant
 - the assignee of the applicant
 - authorized to make this application by the applicant
 of the basic application.

3. The basic application(s) was/were the first made in a convention country in respect of the invention.

The nominated person is not an opponent or eligible person described in Section 33-36 of the Act.

28 September 1993

Canada Conveyor Belt Co., Ltd.
By PHILLIPS ORMONDE & FITZPATRICK
Patent Attorneys
By
Our Ref: 341769
5999q
1. An apparatus arranged to detect anomalies in a magnetically permeable member having a longitudinal axis, by providing a magnetic field at an operating area at which said magnetically permeable member is located, where said apparatus is arranged relative to said member so that there can be movement of said member relative to said apparatus along said longitudinal axis, said apparatus comprising:

a. coil means to generate said magnetic field as longitudinally spaced first and second field components at longitudinally spaced first and second field locations at said operating area;

b. sensing means arranged to respond to modifications in each of said first and second field components,

whereby when a portion of said member having an anomaly passes through said first and second field locations to create modifications in said first and second field components, said
sensing means responds to modifications created by said anomaly in said first and second field components to detect said anomaly.
The following statement is a full description of this invention, including the best method of performing it known to applicant(s):
APPARATUS AND METHOD OF DAMAGE DETECTION FOR
MAGNETICALLY PERMEABLE MEMBERS

5 Background of the Invention

(a) Field of the Invention

The present invention relates to electromagnetic sensing and analysis of damage and/or deterioration of objects made of, or incorporating, a magnetically permeable material, and also to an apparatus and method for the analysis of data related to the same, and more particularly to such an apparatus and method which is particularly adapted to perform such sensing and analysis in an article such as an elongate conveyor belt, where reinforcing cables made of the magnetically permeable material are embedded in (and thus largely concealed in) a relatively non-permeable material such as the rubber like structure of the belt.

15 (b) Background Art

Large conveyor belts are used in a variety of applications, one of the major applications being in the mining industry where metal ore or other material is carried from the mine to a collecting location. For example, in an open pit mine, it is not uncommon to have a conveyor belt extending from a lower location upwardly for a distance as long as several thousand feet or even several miles. Such belts can possibly be as large as
eight feet wide, and possibly as thick as four inches. The main belt material generally is a moderately flexible rubber-like material, and the belt is reinforced by a plurality of longitudinally extending metal cables which are positioned within the belt and extend along the length thereof.

One of the problems is that after continued use the metal reinforcing cables will deteriorate. For example, there may be a break in the conveyor belt material that would permit water or possibly even an acid (e.g. resulting from water reacting with the conveyed material) to come in contact with one or more of the cables to corrode the cables. The damage to the cables could come from an impact of some sort, or the deterioration could occur from natural wear or possibly fatigue of the metal because of long continued use. Sometimes the damage to the cable is a total break, and in some instances a partial deterioration that simply weakens the belt.

Since the metal cables in the belt are not visible, it is difficult to detect much of the damage to the cables. Unfortunately, when the damage is sufficiently severe so that it becomes outwardly visible, there may already have been a condition which would make further use of the belt dangerous. For this reason, it has usually been a practice in the industry to in a sense "overdesign" the belts so that there would be an adequately large margin of error to enable the belt to still function reasonably safely, even though there had been substantial degradation of the reinforcing cables.

Accordingly, an improved means of sensing deterioration (even a relatively small amount of
deterioration) at an earlier time when it would not be visible by inspecting the outside of the belt would be advantageous.
Summary of the Invention

The apparatus of the present invention is arranged to detect anomalies in a magnetically permeable member having a longitudinal axis, by providing a magnetic field at an operating area at which the magnetically permeable member is located. The apparatus is arranged relative to said member so that there can be movement of said member relative to said apparatus along the longitudinal axis.

The apparatus comprises coil means to generate the magnetic field as longitudinally spaced first and second field components at longitudinally spaced first and second locations at the operating area. There are sensing means arranged to respond to modifications in each of the first and second field components.

Thus, when a portion of the member having an anomaly passes through said first and second field location to create modifications in said first and second field components, the sensing means responds to modifications created by the anomaly in the first and second field components to detect the anomaly.

In the preferred form, the sensing means is arranged to respond to intensity of the magnetic field at a sensing location. In one embodiment, the sensing means is positioned between the field components so that the sensing location is between said field components. The field coil means is arranged to provide at least portions of the first and second field components both extending through the sensing locations. Also, in the preferred form, the sensing means is arranged to respond to shifts in balance between the first and second field components.
at the sensing location. More specifically, the coil means is arranged to provide first and second magnetic field loops which have adjacent portions thereof oriented oppositely to one another at the sensing location.

Also in the preferred form, the field coil means is arranged so that when there is substantially equal magnetic reluctance at the first and second field locations, the first and second field components substantially balance each other at the sensing area.

When the magnetic reluctance at the first and second field locations is different, the first and second field components vary in strength to create net magnetic field portion at the sensing area. Thus, when the anomaly is at the first field location or at the second field location to cause differing magnetic reluctance in either said first or second field component, the magnetic field intensity at the sensing location is modified to cause the sensing means to respond.

The specific preferred configuration of the armature means is that the armature means comprises three longitudinally spaced armature portions, namely a forward armature portion, a rear armature portion and an intermediate armature portion between the forward and rear armature portions.

The coil means further comprises field coil generating means arranged to create the first field component as a magnetic loop extending through the forward armature portion and the intermediate armature portion, and to create the second field component as a second magnetic loop extending through the rear field component and through the intermediate armature portions.
Portions of the forward and rear magnetic loops passing into said central armature portion are directed oppositely to one another.

The sensing means comprises a plurality of magnetic responsive sensors spaced from one another transversely to the longitudinal axis to extend transversely across the operating area. In the first embodiment, the sensors are positioned at a lower edge portion of the intermediate armature portion. As an alternative configuration, the sensors can be positioned at a location between upper and lower parts of the intermediate armature portion.

Alternating current power means is utilized to impose an alternating current on said field coil means to create said first and second field components as alternating magnetic fields.

The apparatus further comprises circuit means having receiving means to create a processing signal in response to an input from each of the sensors. The circuit further comprises multiplexing means to respond to each of said processing signals to create a plurality of multiplexer signal outputs corresponding to processing signals from the sensors.

Also, there is processing means to receive the multiplexer signal outputs to identify anomalies associated with certain of said sensors.

Also, the circuit means comprises field coil frequency control means responsive to linear speed of the member, relative to spacing of said first and second field components. This is done in a manner to relate frequency of the alternating field of said coil means to
a time interval of one portion of the member moving, relative to said apparatus, from the first field location to the second field location.

In a second embodiment, the apparatus comprises first and second longitudinally spaced sensing means portions positioned at, respectively, the first and second field locations, respectively. Each of the first and second sensing portions is responsive to modifications in the first and second field components, respectively.

In the second embodiment, the field coil means is arranged so that when there is substantially equal magnetic reluctance at the first and second field locations, the first and second field components are of substantially equal intensity, and when the magnetic reluctance at the first and second field locations is different, the first and second field components vary in strength. Thus, when the anomaly is at the first field location and then at the second field location to differing magnetic reluctance in said first and second field components, the magnetic field intensity at the sensing location is modified to cause said sensing means to respond.

In the preferred form, there is an armature means comprising three armature sections, as described above, and the first and second sensing portions are positioned between the forward armature portion and the intermediate armature portion and between the rear armature and intermediate armature portion, respectively.

Also, desirably alternating current power means is utilized to impose an alternating current on said coil.
means to create the first and second field components as alternating magnetic fields.

In the method of the present invention, an apparatus is utilized as described above. The magnetically permeable member is moved through the operating area to modify reluctance in the first and second components, with this being sensed by the sensing means.

Other features will become apparent from the following detailed description.
Brief Description of the Drawings

Figure 1 is an isometric view of a first embodiment of the present invention illustrating the apparatus of the present invention in use in sensing possible defects in a conveyor belt;

Figure 2 is a side elevational view of the apparatus of Figure 1, showing the conveyor belt in section; and

Figure 3 is a schematic drawing illustrating the control circuitry and apparatus of the first embodiment of the present invention.

Figure 4 is an isometric view similar to Figure 1, showing a second embodiment of the present invention;

Figure 5 is a side elevational view (similar to Figure 2) of the second embodiment shown in Figure 4;

Figure 6 is a schematic drawing illustrating the control circuitry and apparatus of the second embodiment shown in Figures 4 and 5.

Figures 7 through 10 illustrate somewhat schematically four possible arrangements of the directions of the magnetic fields used in connection with the second embodiment.
Description of the Preferred Embodiment

With reference to Figures 1 and 2, there is shown a portion of a conveyor belt 10 having a main body portion 12 made of a rubber-like moderately resilient material that has relatively low magnetic permeability. Embedded in the interior of the main body portion 12 is a plurality of elongate longitudinally extending cables 14 which are spaced laterally from one another along substantially the entire width of the belt. Typically, in a belt having a width of between 12 to 96 inches and a vertical thickness dimension of between about 1/2 to 4 inches, there could be as many as 20 to 240 cables, spaced from one another at intervals from about 0.45 to 1.0 inch (measured center line to center line). The diameter of such cables could be, in a typical belt, from as large as 1/2 inch.

The apparatus of the present invention is generally designated 16, and it comprises a "W" shaped yoke 18, two field coils 20 and 22, respectively, wound around two portions 18a and 18b, respectively, of the yoke 18, and one set 24 of Hall effect sensors 26 positioned adjacent to the lower middle portion 28 of the yoke 18.

The yoke 18 is positioned immediately above the belt 10 and extends transversely across the entire width of the belt 10. The yoke 18 comprises three vertically aligned sections, namely forward and rear sections 30 and 32, respectively, and a middle section 34. (For purposes of description, the term "front" or "forward" will denote a direction in which the upper run of the belt 10
is moving, as indicated by the arrow 36, while the term "rear" or "rearward" denotes an opposite direction.

Also, the yoke 18 comprises a top horizontally aligned section 38 that is connected to (or made integrally with) the three vertically aligned sections 30-34. The lower edges 40 of the front and rear vertical sections 30 and 32 are spaced a short distance above (or possibly below the lower surface) the top surface 42 of the belt 10 (e.g. 1/4 to 2 inches above). The yoke 18 was desirably made as a plurality of "W" shaped laminations (possibly 1/4 of an inch in thickness) so as to reduce eddy currents in the yoke 18.

The two field coils 20 and 22 are wound around the forward and rear portions 44 and 46 of the top armature section 38, and these coils 20 and 22 are connected at 47 to a source of alternating current. Thus, it can be readily seen that the field coils 20 and 22 generate two alternating magnetic fields one of which extends in a loop from the forward section 30, through the front top yoke portion 44, through the middle yoke section 34 and thence through the portions of the cables 14 which are positioned between the yoke sections 30 and 34. The other alternating magnetic field extends through the rear section 34, through the adjacent portion 46 of the top yoke section, through the middle yoke section 34 and thence through the portions of the cables 14 that extend between the yoke sections 32 and 34.

The Hall effect sensors 26 extend in a transverse row at evenly spaced intervals across the width of the belt 10 and are spaced a short distance (typically between 1/4 to 2 inch above the top surface 42 of the
belt 10. The sensors 26 are positioned adjacent to, and immediately below the lower edge 48 of the middle section 34 of the yoke 18, and typically, these sensors 26 could be spaced laterally from one another about 1/4 to 1/2 inch (measured center line to center line). Each Hall effect sensor 28 is aligned so that its active (i.e. magnetic flux sensing) axis will normally intersect lines of flux extending upwardly into r downwardly from the lower edge 48 of the middle vertical section 34 above the yoke 18. The lower edge 48 of the middle yoke section 34 is located a short distance higher than the lower edges 40 of the front and rear sections 30 and 32. The set 24 of the Hall effect sensors 26 is mounted in some suitable manner, either directly to the armature 18 or possibly to some other mounting means. For example, the sensors 26 could be mounted to a related printed circuit board which may contain ancillary electronics. The supporting structure would support the entire armature 18, coils 20 and 22 and the sensor set 24 in a firm and rigid position that is in static proximity to the upper surface of the belt. For ease of illustration, the particular mounting device is not shown.

Since the magnetic lines of flux generated in the alternating field will seek the path of least reluctance, it can be seen that if the metal cables 14 are fully intact, these cables 14 would provide the path of least reluctance, and the lines of flux would be concentrated in the path provided by the portions of the cables 14 between the adjacent yoke sections (i.e. 30/34 and 32/34). On the other hand, if the cable portions between either of the yoke sections 30/34 or 32/34 are either
broken or corroded so as to reduce their cross-sectional area, then there would be greater reluctance and thus there would a lesser concentration of the lines of flux in the adjacent section of cables 14.

As indicated previously, there is an alternating current that is directed through the field coils 20 and 22. The windings of these coils 20 and 22 are arranged so that the fields created by these two coils 20 and 22 are in the same direction at any one point in time.

Thus, as illustrated in Figure 2, during one half cycle of the alternating current, the direction of the magnetic fields created by the field coils 20 and 22 are both in a clockwise direction. On the other half cycle, the directions of the magnetic fields (as see in Figure 2) will reverse and be counterclockwise.

To describe the effect of this on the operation of the present invention, let's consider a situation where the portions of the cables 14 and the belt 10 that are immediately below the front and rear portions of the yoke 18 are fully intact, similarly positioned in the belt, and of substantially uniform diameter. Thus, the reluctance provided by the two cable portions would be substantially identical.

By examining Figure 2, it can be seen that with the two magnetic loops being oriented in the same direction (either both clockwise or both counterclockwise) the directions of the flux through the center vertical section 34 are actually opposite to one another. Thus, if the two portions of the cables 14 beneath the forward and rear portions of the yoke are both substantially
intact and similarly placed so that these provide the
same amount of reluctance, and with the fields created by
the two windings (each having the same ampture turns)
being of the same strength, the two magnetic loops will
be of the same magnitude. Thus, the field portions that
would exist in the vertical center section 34 of the yoke
18 essentially cancel each other out.

In this situation the magnetic field would extend
through the two top sections 44 and 46, downwardly
through the rear yoke section 32, then across the rear
air gap to pass through the portions of the cords 14 that
are beneath the yoke 18, thence upwardly through the
forward air gap through the forward yoke section 30 to
essentially close the loop. The two arrows indicated at
9
49 that would extend upwardly to or downwardly from the
center yoke section 34 essentially do not exist. Also,
there will be a rather small portion of the magnetic
field which extends through the empty space immediately
above the belt 10 and extending between the three yoke
sections 30, 34 and 32, but this would be negligible.

Let us now take a situation where there is an
anomaly in a certain portion of the cords or cables 14,
either a break or possibly corrosion. This change in
that portion of the cable or cables 14 would increase the
reluctance to the magnetic field passing therethrough.
When this portion of the belt having the anomaly is
passing beneath the rear portion of the yoke 18 (i.e in
the space between the rear section 30 and the middle
section 34), the reluctance of that magnetic loop will
increase, and thus the strength of the magnetic field
that loops through the back portion of the yoke 18 will
diminish. The net result is that the strength of the two magnetic loops will be out of balance (the forward magnetic loop having greater strength), so that there will be a net magnetic field reaching through either upwardly or downwardly through the middle section 34, depending upon the direction of the flow of current. (In Figure 2, with the magnetic fields being counterclockwise, there would be a net downwardly directed magnetic field extending through the Hall effect sensor or sensors 26 and into the cables 14.) Thus, the Hall effect sensor or sensors 26 will detect this magnetic field and create a signal related thereto.

When the portion of the belt 10 having the damaged section 14 passes immediately below the middle section 34, then the main portions of the cables 14 that are positioned rearwardly and forwardly of the middle section 34 of the yoke 18 would have substantially the same reluctance. Accordingly, the two magnetic loops would be balanced, and at that time the magnetic flux in the middle section 34 would effectively be zero, and the Hall effect sensor or sensors 26 would detect substantially no magnetic field.

Next, the anomaly in the cable or cables 14 would, as the belt 10 continues to travel forwardly, pass beneath the forward portion of the yoke 18, and the reluctance of the forward magnetic loop would decrease. This would again imbalance the two magnetic loops, with the rear magnetic loop being stronger, and this would in turn create magnetic lines of flux passing either
upwardly or downwardly through the Hall effect sensor or sensors 26 in the area adjacent to the anomaly.

The signal or signals generated by the Hall effect sensor or sensors 26 create a "fingerprint" that would correspond to the nature of the anomaly. For example, if the anomaly is a sharp break in one or more of the cables, this would be expected to create a signal of possibly a shorter duration and having a distinctive shape. On the other hand, if the anomaly is corrosion that extends over a longer length of the cables 14 and the belt 10, then the anomaly would have a different fingerprint related to that anomaly.

As indicated previously, one possible source of error in using a Hall effect sensor in connection with a moving conveyor belt is that there may be some degree of flutter in the belt where the vertical location of the belt would change. Thus, if the belt 10 moves closer to the Hall effect sensors 26, this makes the air gaps shorter and would thus cause a change in the magnetic fields sensed by the Hall effect sensors 26.

This problem is alleviated as follows. One or more Hall effect sensors would be positioned adjacent to the belt 10, and these would be positioned and aligned so that they would respond to the fluctuating magnetic field created by the coils 20 and 22, somewhat in the manner disclosed in the second embodiment. As the belt 10 moves toward and away from the apparatus 16, the air gaps would increase or decrease, thus changing the amplitude of the magnetic field sensed by these particular Hall effect sensors. It can be assumed that the major length of the cables 14 of the conveyor belt 10 would be intact,
and thus establish a "signature" that would represent a "healthy" portion of the belt moving toward and away from the apparatus 16. Thus, there would be provided a reference signal from which the other signals from the Hall effect sensors 26 could be compared, and the "footprint" of an anomaly could be analyzed, taking this factor into consideration.

Reference is now made to Figure 3 to describe the circuitry of the present invention. In Figure 3, there is shown one Hall effect sensor 26 of the plurality of such sensors 26 in the Hall effect sensor set 24. As indicated previously, when there is an imbalance in the two magnetic loops in the yoke 18, this will create a fluctuating magnetic field adjacent to the lower edge 48 of the middle yoke section 18, and this will be detected by the sensor or sensors 26 at that location. Each Hall effect sensor 26 is connected to a positive voltage source at 50, and each sensor 26 has its GND terminal 51 connected to ground. The output terminal 52 is connected to respective coupling capacitors 53 which are in turn connected through a line 54 to the input terminal of a respective amplifier 56. These three aforementioned connections are generally representative of available Hall effect devices. The capacitors 53 serve to effectively block any DC component (i.e. offset) present in the output signals of the sensors 26.

The output from each differential amplifier 56 is directed through the line 57 to a related band pass filter 58 which excludes certain lower frequency and higher frequency signals. The lower frequency signals could occur, for example, from fluctuations in the up and
down or sideways movement of the belt 10. The higher frequency signals could result from a variety of causes a related sample and hold unit 62.

It should be noted at this point that there is for each Hall effect sensor 26 a related capacitor 53, amplifier 56, band pass filter 58 and sample and hold unit 62. Therefore, each time there is a magnetic field 26a that is generated (in response to detecting an anomaly) to activate a related sensor or sensors 26, the signal from each sensor 26 passes through the capacitor 53, to be amplified by the related amplifier 56, through the band pass filter 58 to the related sample and hold unit 62.

The output from the sample and hold unit 62 is directed through a related line 63 to a multiplexer 64 which takes readings from all of the inputs (indicated at 65) from the various sample and hold units 62 sequentially so as to provide a single output 67.

The sample and hold units 62 each receive an input signal at 66 to tell that sample and hold unit 62 when to sample one of the signals from the band pass filter 58. The output of the sample and hold units are directed to the multiplexer 64, and the output of the multiplexer 64 is through a line 67 to an analog to digital converter 68. There is provided a multiplex control unit 69 which provides the sampling signal at 66 to each of the sample and hold units 62. Also, this multiplex control unit 69 sends a signal through line 70 to step the multiplexer 64. The analog to digital converter 68 sends a flag signal through the line 72 and sends its data output through the line 73 to the processor 74. The flag signal
through the line 72 simply indicates to the processor 74 that data is being transmitted, with the actual transmission being sent through the line 73 (as indicated previously). The multiplexer control unit 69 also has an output through line 75 which supplies the processor 74 with information as to the channel from which a related Hall effect sensor 26 is being transmitted.

The processor 74 sends through the line 76 a signal to a time base generator 77 which in turn sends a timing signal through the line 78 to the multiplex control 69. In addition, the time base generator 77 through a line 79 sends a signal to the sine ROM 80 that translates the signal from the time base generator 77 into a digitally encoded sine wave and is transmitted through a digital to analog bit select 81 which produces a smooth sine wave that passes through a low pass filter 82 and then to an amplifier 83. The output from the amplifier 83 is through the line 84, this being the current which drives the field coils 20 and 22 to in turn produce the magnetic fields in the yoke 18.

There is a timing unit 85 which is responsive to the speed of the conveyor 10, and sends a signal related to the conveyor speed to the processor 74. The processor 74 in turn sends a timing signal through the line 76 to the time base generator 77.

Further, the apparatus 16 can be provided with a temperature compensating feature. For example, a Hall effect sensor 26 can be provided at a location adjacent to the other Hall effect sensors 26, so as to be responsive to a magnetic field, and as the ambient temperature changes, this particular Hall effect sensor
substantially the same. The result is that there is substantially no magnetic field created at the location of the sensors 26, so that the sensors 26 do not produce an output signal.

However, let us take the situation where there is, for example, an anomaly in one or more the cables 14 in one localized section of the belt 10 (e.g. where possibly only one or two cables 14 are damaged at a particular location). The multiplexer 64 monitors the outputs 63 sequentially, with the stepping of the multiplexer 64 being controlled by the multiplexer control 69. Further, the multiplexer control 69 sends signals to the analog to digital computer 68. The data transmitted through the line 73 from the analog to digital computer 68 is received in the processor 74, and this data from the processor 74 can be either stored and/or displayed in some manner, or possibly be further processed to provide the desired format of the information. The processor 74 has additional functions, however. It receives the input from the timing unit 85, as to the speed of the belt 10. The processor 74 uses this information to send a signal to the time base generator 77, and the time base generator 77 in turn sends this information through the line to the multiplexer control 69. This information is necessary so that the multiplexer control 69 can time its actions in accordance with the linear speed of the belt 14.

Also the time based generator provides the signal to generate the sine waves through the sine ROM 80, digital to analog bits select 81, filter 82 and amplifier 83 to provide the execration current for the coils 20 and 22.
The two field coils 120 and 122 are wound around the forward and rear portions 144 and 146 of the top armature section 138, and these coils 120 and 122 are connected at 144 to a source of alternating current. Thus, it can be readily seen that the field coils 120 and 122 generates two alternating magnetic fields one of which extends in a loop from the forward section 130, through the front top yoke portion 144, through the middle yoke section 134, and thence through the portions of the cables 14 which are positioned between the armature sections 130 and 134. The other alternating magnetic field extends through the rear section 134, through the adjacent portion 146 of the top armature section, through the middle armature section 134 and thence through the portions of the cables 14 that extend between the yoke sections 132 and 134.

The Hall effect sensors 128 of the forward set 124 extend in a transverse row at evenly spaced intervals across the width of the belt 10 and are spaced a short distance (typically between 1/4 to 2 inch above the top surface 142 of the belt 10. The sensors 128 are positioned half way between the forward and intermediate armature sections 130 and 134, and typically, these sensors could be spaced laterally from one another about 1/4 to 1/2 inch (measured center line to center line). Each Hall effect sensor 128 is aligned so that its active (i.e. magnetic flux sensing) axis will intersect lines of flux extending between the lower edges 140 of the vertical sections 130 and 134 above the belt 10. The sensors 128 of the rear set 126 are positioned between the rear yoke section 132 and the intermediate yoke.
section 134 in substantially the same manner as the Hall
effect sensors 128 of the forward set 124. The two sets
124 and 126 of the Hall effect sensors 128 could be
mounted to a related printed circuit board which may
contain ancillary electronics. The supporting structure
would support the entire armature 118, coils 120 and 122
and the sensor sets 124 and 126 in a firm and rigid
position that is in static proximity to the upper surface
of the belt. For ease of illustration, the particular
mounting device is not shown.

Since the magnetic lines of flux generated in the
alternating field will seek the path of least reluctance,
it can be seen that if the metal cables 14 are fully
intact, these cables 14 would provide the path of least
reluctance, and the lines of flux would be concentrated
in the path provided by the portions of the cables 14
between the two yoke sections (i.e. 130/134 and 132/134).
On the other hand, if the cable portions between either
of the yoke sections 130/134 or 132/134 are either broken
or corroded so as to reduce their cross-sectional area,
then there would be greater reluctance and thus there
would be a lesser concentration of the lines of flux in
the adjacent section of cables 14. Thus, if a particular
Hall effect sensor 128 senses a stronger magnetic field,
this would indicate that the adjacent path of reluctance
through the adjacent cable or cables 14 would be greater,
and thus indicate some form of damage. The output of
each sensor 128 will be a function of the ampere turns
product of the field coil 120 or 122, the sensitivity to
the magnetic flux of the sensor 128 itself, the position
of the sensor 128 in relation to the magnetic field
lines, and the permeability of the reinforcing cables 14, and also the position of the adjacent portions of the cables 14 in relation to the magnetic field lines.

The operation of this second embodiment, relative to the sensing of the magnetic lines of flux differs from the first embodiment, and this will be described below.

The apparatus 116 is positioned above the belt 10 as shown in Figures 1 and 2 (and as described above), and the alternating current is imposed on the two windings or the two field coils 120 and 122. Then the conveyor belt 10 is set in motion so that it travels longitudinally beneath the apparatus 116. The Hall effect sensors 128 of the two sets 124 and 126 are monitored to sense any change in the strength of that portion of the magnetic field extending through the Hall effect sensors 128.

The output of each sensor 128 bears an inverse relationship to the permeability of the adjacent portions of the reinforcing cables 14 and to the position of the adjacent portions of the cables 14 in relation to the magnetic field lines. The magnitude of the output of the sensor 128 is a direct function of the strength of any intersecting magnetic flux (i.e. field lines). Therefore, as indicated above, the absence of any permeable material in the magnetic field generated by either of the coils 120 or 122 will appear as a strong flux (maximum field line intersection) and thereby produce the highest output. The presence of any permeable material will produce a path of lesser reluctance for the magnetic lines of force to follow and will thereby reduce the magnitude of the flux encountered
by the Hall effect sensor 128, and correspondingly reduce
the magnitude of its output.

As indicated previously, one potential source of
error in using a Hall effect sensor in connection with a
moving conveyor belt is that there may be some degree of
flutter in the belt in that it may move up and down.
Thus if the belt 10 moves closer to the Hall effect
sensors 28, this makes the air gap shorter, and would
thus cause a change in the magnetic field sensed by the
Hall effect sensors 128. As will be described more fully
hereinafter, this problem is alleviated in this second
embodiment in that the outputs of two longitudinally
lined sensors 128 of the sets 124 and 126 have their
signals correlated to one another so as to eliminate the
adverse effect of this belt flutter. This is done as
follows.

The frequency of the energizing current in the yoke
118 is controlled, relative to the longitudinal spacing
of the two Hall effect sensor sets 124 and 126 and also
relative to the linear speed of the belt 10 so that the
time interval of each sine wave is equal to the time it
takes one portion of the belt 10 to travel from a
location below one Hall effect sensor set 126 to the
other Hall effect sensor 124. Thus, for example, let it
be assumed that the belt is fluttering in a manner that
it has moved upwardly a short distance and is more
closely adjacent to the two sets of the Hall effect
sensors 128. This would normally be expected to lessen
the strength of the portion of the magnetic fields that
pass through the two sets of Hall effect sensors 128.
The sensing apparatus is able to compare the two sine
wave portions imposed on that particular field coil 120 or 122 at the time that a given portion of the cable is beneath first the rear set 126 of sensors 128 and then under the forward set 124 of the sensors 128. If the amplitude of these two sine waves varies to the same degree, then this would indicate a condition where the belt 10 has moved either closer to or further away from the Hall effect sensors 128. The manner in which this is done will be described more fully later when the circuitry of the present invention is described relative to Figure 6.

Let us assume that there are two locations on the belt 10 that are spaced longitudinally from one another a distance equal to the forward to rear spacing of the two sets 124 and 126 of Hall effect sensors 128. The alternating currents of the two windings 120 and 122 are in phase, and the frequency is controlled relative to the speed of travel of the belt 10 and the spacing of the Hall effect sensor sets 124 and 126. Thus, the two adjacent longitudinally spaced Hall effect sensors 128 from the forwards and rear sets 124 and 126 will be adjacent to the two spaced sections of the belt 10 at the same time. If the cables 14 at the two longitudinally spaced cable locations are undamaged, paths of the same reluctance are provided beneath the two longitudinally spaced Hall effect sensors 128, so that the sine waves sensed by the two adjacent longitudinal spaced Hall effect sensors 128 will increase or decrease in amplitude by the same amount, under circumstances where the belt has moved either closer to or away from the Hall effect sensors 128.
On the other hand, let us assume that there is an anomaly in one cable 14 at a location, and that there is a longitudinally spaced section spaced from this anomaly the same distance as the spacing of the two Hall effect sensor sets 124 and 126. Under these circumstances when the anomaly in the cable 14 is beneath a Hall effect sensor 128 of the rear set 126, the Hall effect sensor 128 of the rear set 126 will detect this anomaly, presumably by sensing an increase in the magnetic field passing through the Hall effect sensor 128 of the rear set 126 that is at that time adjacent to the anomaly. On the other hand, the adjacent forward Hall effect sensors 128 of the forward set 124 will be directly over an undamaged section of the cable 14 and its magnetic field will not be disturbed. Then a short increment of time later, this anomaly will have moved from beneath the rear Hall effect sensor set 126 to beneath the forward Hall effect sensor set 124, and at this time this anomaly will affect the pattern of the magnetic field in the forward yoke section 118a differently from an undamaged cable portion, and this will be detected in a Hall effect sensor of the forward set 124. As will be described later, the control circuitry of the present invention is able to distinguish that situation from that of which the change in the field strength is merely due to the flutter.

Also, as indicated previously, analysis has indicated that the "fingerprint" of the detected signal will vary, depending upon the type of anomaly which is being detected. For example, if there is a distinct break in the cable 14, the duration of time during which
this break moves from beneath the rear sensor set 126 to
the forward sensor sets is relatively short and the
changes in the magnetic field could be two rather abrupt
changes closer in time sequence. On the other hand, let
us assume that the anomaly is an extended area of
corrosion which would pass between the two sensor sets
124 and 126 over a more extended interval of time. This
would produce a significantly different fingerprint that
would extend over a longer time interval. By analysing
the configuration and duration of the signal created by
the anomaly, the nature of the anomaly can be more
closely ascertained.

Reference is now made to Figure 6 to describe the
circuitry of the second embodiment of the present
invention. The circuitry of the second embodiment is
quite similar to that of the first embodiment, except in
the manner in which the signals from the Hall effect
sensor sets 124 and 126 are initially processed. The
field produced by the forward field coil is indicated at
120a, and that produced by the rear field coil is
designated 122a. It can be seen that these magnetic
fields 120a and 122a intersect the Hall effect sensors
128 of the forward and rear sets 124 and 126. Each Hall
effect sensor 128 is, as in the first embodiment,
connected to a positive voltage source at 150, and each
sensor 128 has its GND terminal 152 connected to ground.
The output terminals 152 are connected to respective
coupling capacitors 153 which are in turn connected
through lines 154 and 155 to the input terminals of a
differential amplifier 156.
As in the first embodiment, there is a plurality of a differential amplifiers 156, each of which connects to respective band pass filters 158 so that each pair of a forward and rear sensor is connected to its related differential amplifier 156 and filter 158. It should be noted at this time that the variations in the two magnetic fields 120a and 120b would be in the form of two sine waves that are in phase with one another. The differential amplifier 156 detects a difference in these two sine waves. A difference in the two sine waves would ordinarily indicate some sort of an anomaly. On the other hand, if the sine waves change in amplitude simultaneously (due to the fluttering of the belt) this would not produce an output from the differential amplifiers 156. Thus (as described previously), the potential problem of the futter of the belt effecting the strength of the signals is alleviated, and the differential amplifier 156 generates a signal only when there is an anomaly, such as from damage to the cables 14 or a splice in the cables 14.

The remainder of the circuitry for this embodiment is substantially the same as described in Figure 3 with reference to the first embodiment. Accordingly, it is believed that no further description of this circuitry of the second embodiment is needed.

In this second embodiment, there are at least four possible variations in the manner in which the oscillating magnetic fields are created, and these will be described with reference to Figures 7 through 10. In Figure 7, there is illustrated an arrangement where the magnetic fields are in phase, and the directions of the
two magnetic fields created by the coils 120 and 122 are in the same direction. The orientation of the Hall effect sensors are the same, and the result in output signals are in phase. In this situation, the amplifier is a differential amplifier to detect any differences in the signals generated by the two sets of Hall effect sensors.

In Figure 8, there is a second arrangement where the directions of the magnetic fields are the same, but the orientation of the Hall effect sensors is opposite, so that the resultant output signals from the Hall effect sensors are out of phase. In this instance, the signals, indicated at a and b at Figure 8 are out of phase, and the amplifier 156, instead of being a differential amplifier would be a summing amplifier.

The third arrangement as shown in Figure 9, where the magnetic fields are out of phase, but the orientation of the Hall effect sensors is the same. In this instance, as in the situation of Figure 8, the resultant output signals of the Hall effect sensors are out of phase. Accordingly, the amplifier 156 would again be a summing amplifier.

Finally, as shown in Figure 10, the magnetic fields are out of phase, and there is an opposite orientation of the Hall effect sensors. The result is that the output signals are in phase, and as in Figure 7, a differential amplifier 156 would be used.

It is to be recognized that various modifications can be made in the present invention without departing from the basic teachings thereof.
The claims defining the invention are as follows:

1. An apparatus arranged to detect anomalies in a magnetically permeable member having a longitudinal axis, by providing a magnetic field at an operating area at which said magnetically permeable member is located, where said apparatus is arranged relative to said member so that there can be movement of said member relative to said apparatus along said longitudinal axis, said apparatus comprising:

a. coil means to generate said magnetic field as longitudinally spaced first and second field components at longitudinally spaced first and second field locations at said operating area;

b. sensing means arranged to respond to modifications in each of said first and second field components,

whereby when a portion of said member having an anomaly passes through said first and second field locations to create modifications in said first and second field components, said sensing means responds to modifications created by said anomaly in said first and second field components to detect said anomaly.

2. The apparatus as recited in claim 1, where said sensing means is arranged to respond to intensity of magnetic field at a sensing location.
3. The apparatus as recited in claim 2, wherein said sensing means is positioned so that said sensing location is between said field components, and said field coil means is arranged to provide at least portions of said first and second field components both extending through said sensing location.

4. The apparatus as recited in claim 2 or 3, wherein said coil means is arranged to provide first and second magnetic field loops which have adjacent portions thereof oriented oppositely to one another at said sensing location, and said field coil means is arranged so that when there is substantially equal magnetic reluctance at said first and second field locations, the first and second field components substantially balance each other at said sensing area, and when said magnetic reluctance at said first and second field locations is different, the first and second field components vary in strength to create a net magnetic field portion at said sensing area, whereby when said anomaly is at said first field location or at said second field location to cause differing magnetic reluctance in either said first or said second field component, the magnetic field intensity at said sensing location is modified to cause said sensing means to respond.

5. The apparatus as recited in any one of the preceding claims wherein said coil means comprises an armature means having three longitudinally spaced armature portions, namely a forward armature portion, a rear armature portion and an intermediate armature portion between said forward and rear armature portions, said coil means further comprising field coil generating means arranged to create said first field component as a first magnetic loop extending through said forward armature portion and said intermediate armature portion, and to create said second field component as a second magnetic loop extending through said rear armature portion and through said intermediate armature portion, with the portions of the forward and rear magnetic loops passing into said intermediate armature portion being directed oppositely to one another.

6. The apparatus as recited in any one of the preceding claims wherein said sensing means comprises a plurality of
magnetically responsive sensors spaced from one another transversely to said longitudinal axis to comprise a set of said sensors extending transversely across said operating area.

7. The apparatus as recited in claim 6 when appended to claim 5, wherein said sensors are positioned at a lower edge portion of said intermediate armature portion.

8. The apparatus as recited in any one of claims 1 to 5, further comprising alternating current power means to impose an alternating current on said coil means to create said first and second field components as alternating magnetic fields.

9. The apparatus as recited in claim 8, wherein said sensing means comprises a plurality of sensors, said apparatus further comprising circuit means having receiving means to create a processing signal in response to an input from each of said sensors, said circuit means further comprising multiplexing means to respond to each of said processing signals to create a plurality of multiplexer signal outputs corresponding to processing signals from the sensors, and processing means to receive said multiplexer signal outputs to identify anomalies associated with certain of said sensors.

10. The apparatus as recited in any one of the preceding claims, wherein said sensing means comprises first and second longitudinally spaced sensing means portions positioned at, respectively, said first and second field locations, respectively, with each of said first and second sensing portions being responsive to modifications in said first and second field components, respectively.

11. An apparatus arranged to detect anomalies in a magnetically permeable member substantially as herein described with reference to Figures 1-3 or Figures 4-10 of the accompanying drawings.

DATED: 27th September, 1993

PHILLIPS ORMONDE & FITZPATRICK
Attorneys for:

CANADA CONVEYOR BELT CO., LTD.
ABSTRACT OF THE DISCLOSURE

An apparatus to detect anomalies in a member, such as a conveyor belt, having reinforcing cables therein made of a magnetically permeable material. There is coil means arranged to create a magnetic field as two longitudinally spaced first and second field components at longitudinally spaced locations. There are Hall effect sensors arranged to respond to modifications in each of the first and second field components. In a first embodiment, there is one set of sensors positioned between the first and second field components. In a second embodiment, there are two sets of sensors spaced at said first and second field components.