NOTICE OF ENTITLEMENT

We, INM-Gruppen AB and Stig-Rune Yngvesson of Box 21, S-435 21 Mälnlycke, Sweden and Box 64, S-430 92 Fotö, Sweden, being the applicants in respect of Application No. 47665/93 state the following:

NOMINATED PERSON(S)

We are the Nominated Person(s) to whom we request that the patent be granted.

ENTITLEMENT TO INVENTION

The actual inventor is Stig-Rune Yngvesson and INM-Gruppen AB have joint entitlement from the actual inventor by virtue of the following facts:

INM-Gruppen AB have been assigned partial rights to the invention by the inventor.

NATIONAL PHASE OF PCT APPLICATION

The applicant of the application listed in the declaration under Article 8 of the PCT is Stig-Rune Yngvesson and the right for INM-Gruppen AB to jointly claim priority has been assigned to them by Stig-Rune Yngvesson.

The basic application listed in the declaration made under Article 8 of the PCT is the first application made in a Convention country in respect of the invention.

Signed on behalf of INM-Gruppen AB and Stig-Rune Yngvesson by their patent attorney

9 August, 1995
METHOD AND DEVICE FOR TENSIONING A CORD WHEN JOINING TOGETHER TWO OR MORE ARTICLES

A device for tensioning a flexible cord which is wound at least twice around two or more articles to be joined, said device comprising:

- a stationary member which during use is stationary with respect to the articles around which the cord is wound, said stationary member being provided with an abutment member for abutment against at least one of the articles which are to be joined, said abutment member presenting two spaced-apart adjacent jaw members, each jaw member being provided with a substantially U-shaped opening for accommodating at least a portion of at least one of said articles which are to be joined; and

- means associated with said stationary member for holding the cord and displacing it with respect to the stationary member.
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

<table>
<thead>
<tr>
<th>(51) International Patent Classification</th>
<th>(11) International Publication Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>D04G 5/00 // B25B 25/00</td>
<td>WO 94/03670</td>
</tr>
<tr>
<td></td>
<td>(43) International Publication Date:</td>
</tr>
<tr>
<td></td>
<td>17 February 1994 (17.02.94)</td>
</tr>
</tbody>
</table>

(21) International Application Number:	PCT/SE93/00658
(22) International Filing Date:	9 August 1993 (09.08.93)
(30) Priority data:	10 August 1992 (10.08.92) SE

(71) Applicant (for all designated States except US):	INM GRUP-PEN AB [SE/SE]; Box 21, S-435 21 Mölnlycke (SE).
(71)(72) Applicant and Inventor:	YNGVESSON, Stig-Rune [SE/SE]; Box 64, S-430 92 Fot6 (SE).
(74) Agents:	GRAUDUMS, Valdis et al.; Albihn West AB, Box 142, S-401 22 Göteborg (SE).

Published
With international search report.

(54) Title: METHOD AND DEVICE FOR TENSIONING A CORD WHEN JOINING TOGETHER TWO OR MORE ARTICLES

(57) Abstract

A method and device for joining together two or more articles, such as sections of a fishing net, using a flexible cord (10). The cord is wound at least twice around at least a part of the articles to form a knot (19). In order to form a taught joint, the knot is influenced by mechanical means (11; 21) to create a tension in the knot of the order of 1000N or more.
TITLE: Method and device for tensioning a cord when joining together two or more articles.

TECHNICAL FIELD:
The present invention relates to a method for joining together two or more articles using a flexible cord which is wound at least twice around at least a part of said articles to form a knot. The invention further relates to a device for carrying out the method. The method is particularly, though not exclusively, intended for use in the fishing industry for binding nets to support lines and chains.

BACKGROUND OF THE INVENTION:
Fishing nets used in trawling are made up of several net sections which are joined to each other via a ripline. Depending on the material of the ripline and its application, the ripline normally has a diameter of between 10 mm and 35 mm, though is typically around 28 mm. Edge regions of the net sections are gathered to form selvedges which are then bound to the ripline using a woven cord of around 4 mm diameter. The binding operation is performed manually at distinct locations along the ripline. The operation consists of threading the cord on a dolly and passing the dolly through a mesh in the net adjacent the selvedge and around the rope several dozen times at each location. After each winding, the cord must be pulled tight. The operation is completed by passing the dolly under one or more windings to secure the bind. The net also comprises a so-called bolseline bound in the manner described above to the lower leading edge of the net. To this bolseline is further bound a steel chain, typically of HLC 13-8 dimensions, which is attached to the hauling gear of the trawler. The net may also be provided with a
footrope to which gear such as rockhopper gear can be shackled.

Due to the many hundreds of bindings which are necessary to assemble a fishing net, the assembly task is very labour-intensive and time-consuming. Whilst the net itself can be assembled on dry land, it must be attached to the hauling gear of the trawler on the boat. In addition, if a section of net needs to be replaced, this may have to be performed at sea.

In order to be able to exchange sections of netting or to replace gear, the bindings must be quickly releasable. This implies that the cord used for the bindings must be cuttable with a bladed instrument, thereby ruling out the possibility of using a wire-wound binding or similar.

Devices are known from e.g. US-A-1 181 191 and US-A-1 072 301 for applying a wire hose clamp to a length of hosing, whilst US-A-4 202 384 and US-A-3 254 680 describe devices for installing self-locking straps. None of these devices are, however, suitable for applications contemplated by the present invention.

SUMMARY OF THE INVENTION:

It is therefore an object of the invention to provide a device and method using the device, for joining together two or more articles using a flexible cord, which method is quicker and less labour-intensive than previous methods.

The device according to the invention is suitable for carrying out the tensioning phase of the method according to the invention.
In accordance with the invention, there is provided a device for tensioning a flexible cord comprising a member which during use is stationary with respect to the article or articles around which the cord is wound, and means for gripping the cord and displacing it with respect to the stationary member.

Particularly in accordance with the invention, the device for tensioning a flexible cord which is wound at least twice around two or more articles to be joined, comprises:

a stationary member which during use is stationary with respect to the articles around which the cord is wound, said stationary member being provided with an abutment member for abutment against at least one of the articles which are to be joined, said abutment member presenting two spaced-apart adjacent jaw members, each jaw member being provided with a substantially U-shaped opening for accommodating at least a portion of at least one of said articles which are to be joined; and

means associated with said stationary member for holding the cord and displacing it with respect to the stationary member.

Preferably said stationary member is a rod having said abutment member at one end, and said means for holding the cord and displacing it with respect to the stationary member is in the form of a housing into which the rod passes, which housing is provided with holding means for holding at least one end of the cord used to form the knot and means for displacing the housing along the rod.
Alternatively said stationary member is a housing having said abutment member, and said means for holding the cord and displacing it with respect to the stationary member is rotationally carried on said housing.

In this alternative arrangement, preferably said means for displacing the housing along the rod comprises a worm-gear arrangement.

The means for displacing the housing along the rod may be preferably electrically, hydraulically or pneumatically driven.

The method according to the present invention makes use of a flexible cord which is wound at least twice around at least a part of the articles to form a knot. The method is characterized in that the knot is influenced by the device described above to create a tension in the knot of the order of at least several hundred Newtons.

Particularly in accordance with the invention there is also provided a method for joining together two or more articles using a flexible cord which is wound at least twice around at least a part of said articles to form a knot, wherein said knot is influenced by the device described above to create a tension in said knot of the order of at least several hundred Newtons. It is preferred that the tension in the knot lies between 1000N and 50000N, with tension in the range 1500N to 5000N being most preferred.

Since the cord need only be wound twice around the articles, no dolly is required and the entire binding operation can be completed in a fraction of the time previously taken. In order to ensure that the knot is sufficiently secure, the device can be quickly connected to
one end of the cord to pull the cord tight to a predetermined tension.

The cord may be manually wound around the articles, and the device may be a hand held tool.

5 Further advantageous embodiments of the method and apparatus according to the present invention are detailed in the respective dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS:

The invention will be described in more detail in the following by way of example only and with reference to the attached drawings in which:

Fig 1. shows a number of net sections making up a typical trawler net;

Fig 2. shows a section of netting to which is attached a bolseline and steel chain using a prior art method;

Fig 3. shows a section of netting to which is attached a bolseline and steel chain using the method according to the present invention;

Fig 4. illustrates a knot suitable for use in the method according to the present invention;
Fig. 5 is a schematic perspective view of a first apparatus for carrying out the method according to the invention;

Fig. 6 is a schematic perspective view of the apparatus according to Fig. 5 in use, and

Fig. 7 is a schematic plan view of a second apparatus for carrying out the method according to the invention.

DETAILED DESCRIPTION:

The partial net shown in Fig. 1 is of the Whitefishtrawl model "Bering Sea" type made from braided polyethylene netting. It is to be noted that only the front region of the net is shown in Fig. 1. The partial net comprises two main sections, i.e. a lower section 1 and an upper section 2. The sections are joined to each other along their adjacent edges via riplines 3 (two shown in the drawing) of around 28 mm karat rope. The lower net section 1 is further provided with a bolseline 4 at its leading edge 5. This line 4 may similarly be 28 mm karat rope. In order to weigh down the leading edge 5 of the net during trawling, a chain 6 is affixed to the bolseline 4. The chain 6 also serves as an attachment for rockhopper gear (not shown). As denoted by reference numeral 7, the leading edge of the upper net section 2 is provided with a combination rope of around 24 mm diameter.

Due to the large number of sections which make up a complete fishing net, a great many ropes need to be attached to the net. Since due to wear and tear it is often necessary to exchange certain net sections, these ropes must be removable in a simple manner from the net sections. It is desirable therefore if the ropes can be removed by cutting through their bindings to the net by means of a bladed instrument such as a knife.
The most common prior art means for attaching a rope to a net section is shown in Fig. 2. More specifically, Fig. 2 shows a part of the lower section 1 of netting to the leading edge 5 of which a bolseline 4 and a chain 6 are attached. The leading edge 5 is formed by gathering up a length of netting to form a selvedge and then securing it to the bolseline 4 at intervals along the line by means of wound bindings 7. Similarly, the chain 6 is attached to the bolseline 4 at intervals therealong by means of wound bindings 8. The wound bindings 7 and 8 are achieved by threading a woven cord of around 4 mm diameter on a dolly and then passing the dolly through a mesh in the net and around the bolseline several dozen times at each location. After each winding, the cord must be pulled tight to maintain the required tension in the binding. The operation is completed by passing the dolly under one or more windings to secure the binding.

Fig. 3 illustrates a section of netting corresponding to that shown in Fig. 2, though in which the bindings between the net 1, bolseline 4 and chain 6 are achieved in accordance with the present invention. The bindings 9 are achieved by winding a length of cord 10 (see Fig. 4) at least twice around at least parts of the articles to be joined to form a knot. The knot shown in the drawings and most clearly illustrated in Fig. 4 is a so-called clove hitch, though it will be apparent that many other types of knot may also be suitable. In contrast to the cord used in the prior art, the cord used to form the knot in the method according to the present invention may be somewhat thicker, for example 14 mm.

In accordance with the present invention, the cord is wound to form a knot and is then influenced by mechanical means to create a tension in the knot of the order of at least several hundred Newtons, preferably between 1.000N and
50.000N, though normally between 1.500 and 5.000N. In order to facilitate the binding operation on board ship, it is advantageous if the mechanical means for producing the desired tension in the knot is portable and hand-held. Devices suitable for performing the method according to the present invention are shown in Figs. 5, 6 and 7. The device illustrated in Figs. 5 and 6 is generally denoted by reference numeral 11 and comprises a generally cylindrical, hand-held housing 12 within one end of which a motor 13 is accommodated. The motor 13 may be driven electrically, hydraulically or pneumatically. The motor 13 drives a worm gear arrangement 14 or similar within the housing 12. The worm gear arrangement converts the rotational motion of the motor into translational displacement of an elongated rod 15. The device is so constructed that, in an initial position, the elongated rod 15 is substantially entirely accommodated within the housing 12. When the motor 13 is activated to operate in a first direction, the rod 15 is caused to extend from the housing 12 in a direction away from the motor 13, as shown in Fig. 6. Conversely, when the direction of rotation of the motor 13 is reversed, the rod 15 is caused to be retracted towards its initial position. The amount which the rod 15 is caused to extend from the housing 12, i.e. the stroke of the device, is selected depending on its intended use, though preferably lies between 100 and 300 mm.

At the end of the rod 15 remote from the motor 13 there is arranged an abutment member generally denoted by reference number 16. The abutment member 16 may be secured to the rod 15 by any suitable means, such as by welding or by means of a bolt passing through the abutment member and engaging with internal threads in a bore in the end of the rod 15. Preferably, though, the abutment member is releasable to facilitate exchange thereof. The abutment member 16 comprises two adjacent jaw members 17, separated by a
distance \(d \). Each jaw member 17 is provided with a substantially U-shaped opening 18 of a certain width \(w \) and depth \(l \). The values of the distance \(d \), the width \(w \) and the depth \(l \) are selected depending on the intended field of application of the device. For example, in the fishing industry where such a device is intended to secure bindings between the net, balseline and chain as illustrated in Fig. 3, the distance \(d \) can suitably vary between 30 and 60 mm, the width \(w \) between 35 and 65 mm, and the depth \(l \) between 45 and 75 mm. Advantageously, the distance \(d \) is greater between the jaws 17 at the upper region of the abutment member than at the lower region.

It is of course conceivable that the device 11 be provided with a selection of abutment members 16 of differing sizes.

On the housing 12 in the vicinity of the end from which the rod 15 extends, there is provided gripping means 20, for example in the form of two opposed gripping members 21 resiliently biased towards each other. The gripping means 20 is intended to grip at least one end of the chord 10 which for example forms the knot illustrated in Fig. 4. The gripping means 20 may instead be in the form of a forwardly inclined capped peg around which the ends of the chord 10 can be wrapped.

In operation, the cord 10 is wrapped at least twice around the articles to be joined to form a knot. Thereafter, the abutment member 16 on the rod 15 is placed against one or more of the articles to be joined so that at least a portion of at least one of the articles is accommodated within the openings 18 of the jaw members 17. One, though preferably both, end \(\alpha \) the cord 10 is then inserted in the gripping means 20. Upon actuation of the motor 13, the housing 12 and thereby the gripping means 20 are displaced away from the knot, as shown in Fig. 6, to impart a tension
in the cord 10. When the knot is suitably taut, the cord 10 can be severed along its length between the knot and the gripping means 20.

The device illustrated in Fig. 7 is generally denoted by reference numeral 30 and comprises a substantially Y-shaped housing 31. To one branch of the housing there is rigidly attached an abutment member 16 of the type described with relation to the embodiment shown in Figs. 5 and 6. On the other branch of the housing 31 opposite the abutment member 16, a handle 32 is provided. A motor 13 having a spindle 33 is arranged within the housing 31 in such a manner that the spindle 33 of the motor projects from the housing and extends transversely to an imaginary line joining the abutment member 16 with the handle 32. Gripping means 20 is provided on the spindle 33 and is arranged for rotation therewith. The gripping means 20 is suitably in the form of a split pulley 34, the two halves of which can be brought together to thereby clamp an item placed therebetween. In the present case, such an item would be the ends of the cord 10.

When operating the device according to Fig. 7, the cord 10 is wrapped at least twice around the articles to be joined to form a knot. Thereafter, the abutment member 16 on the housing 31 is placed against one or more of the articles to be joined so that at least a portion of at least one of the articles is accommodated within the openings 18 of the jaw members 17. One or both ends of the cord 10 are then inserted in the gripping means 20. Upon actuation of the motor 13, the gripping means 20 is caused to rotate to impart a tension in the cord 10. When the knot is suitably taut, the cord 10 can be severed along its length between the knot and the gripping means 20.
The invention is not restricted to that described above or shown in the drawings, but may instead be varied within the scope of the appended claims. For example, although the invention has been described in relation to fishing, it may effectively be used in many different applications in which a bound joint is required. Rather than a powered motor being used, it is conceivable that a mechanically-actuated ratchet arrangement be adopted.
THE CLAIMS defining the invention are as follows:

1. A device for tensioning a flexible cord which is wound at least twice around two or more articles to be joined, said device comprising:

 a stationary member which during use is stationary with respect to the articles around which the cord is wound, said stationary member being provided with an abutment member for abutment against at least one of the articles which are to be joined, said abutment member presenting two spaced-apart adjacent jaw members, each jaw member being provided with a substantially U-shaped opening for accommodating at least a portion of at least one of said articles which are to be joined; and

 means associated with said stationary member for holding the cord and displacing it with respect to the stationary member.

2. The device according to claim 1, wherein said stationary member is a rod having said abutment member at one end, and said means for holding the cord and displacing it with respect to the stationary member is in the form of a housing into which the rod passes, which housing is provided with holding means for holding at least one end of the cord used to form the knot and means for displacing the housing along the rod.

3. The device according to claim 1, wherein said stationary member is a housing having said abutment member, and said means for holding the cord and displacing it with respect to the stationary member is rotationally carried on said housing.
4. The device according to claim 2, said means for displacing the housing along the rod comprises a worm-gear arrangement.

5. The device according to claim 2 or 3, wherein said means for displacing the housing along the rod is electrically, hydraulically or pneumatically driven.

6. A method for joining together two or more articles using a flexible cord which is wound at least twice around at least a part of said articles to form a knot, wherein said knot is influenced by the device claimed in any one of the preceding claims to create a tension in said knot of the order of at least several hundred Newtons.

7. A method as claimed in claim 6 wherein the tension in the knot is between 1000 Newtons and 50000 Newtons.

8. A method as claimed in claim 6 wherein the tension in the knot is between 1500 Newtons and 5000 Newtons.

9. The method according to any one of the preceding claims 6 to 8 wherein the cord is wound manually around said articles and that the device as claimed in any one of claims 1 to 5 is in the form of a hand-held tool.

10. A device for tensioning a flexible cord substantially as herein described with reference to the drawings.

11. A method for joining together net sections of a trawler net substantially as herein described with reference to the description of the embodiment.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC5: D04G 5/00 // B25B 25/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC5: D04G, B65B, B25B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

QUESTEL

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US, A, 4449429 (H. SAUER ET AL), 22 May 1984 (22.05.84), column 2, line 64 - column 3, line 2; column 4, line 31 - line 33; column 5, line 43 - line 55, figures 1,3</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4,7,8</td>
</tr>
<tr>
<td>X</td>
<td>US, A, 1072301 (J.E. BLAKE), 2 Sept 1913 (02.09.13), page 2, line 67 - line 85, figures 1,2</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4,6,7</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 1435071 (R.F. KERSEN), 7 November 1922 (07.11.22), figures 1,4</td>
<td>1-7</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [X] See patent family annex.

Date of the actual completion of the international search: 18 November 1993

Date of mailing of the international search report: 19 - 11 - 1993

Name and mailing address of the ISA/Authorized officer
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Thorunn Grenmark
Telephone No. +46 8 782 25 00

Facsimile No. +46 8 666 02 86

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FR, A1, 2311126 (LE DAUPHIN), 10 December 1976 (10.12.76), page 4, line 11 - line 35, figure 5</td>
<td>1</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT
Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-A- 4449429</td>
<td>22/05/84</td>
<td>DE-A, C-</td>
<td>3126632</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A, B-</td>
<td>2508834</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A-</td>
<td>58028471</td>
</tr>
<tr>
<td>US-A- 1072301</td>
<td>02/09/13</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>FR-A1- 2311126</td>
<td>10/12/76</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 1992)