 APPLICATION FOR A STANDARD PATENT

The Dow Chemical Company
2030 Dow Center, Abbott Road, Midland, Michigan 48640, UNITED STATES
OF AMERICA

hereby applies for the grant of a standard patent for an invention entitled:

POLYAMIDE RESINS WITH GOOD TOUGHNESS PROPERTIES

which is described in the accompanying complete specification.

Details of basic application(s):

234,342 UNITED STATES OF AMERICA 18 August 1988

Address for Service:

PHILLIPS ORMONDE & FITZPATRICK
Patent and Trade Mark Attorneys
367 Collins Street
Melbourne 3000 AUSTRALIA

DATED this EIGHTEENTH day of AUGUST 1989

PHILLIPS ORMONDE & FITZPATRICK
Attorneys for:
The Dow Chemical Company

By:

Our Ref: 144328
POF Code: 1037/1037
AUSTRALIA

In support of the

CONVENTION

application made by

THE DOW CHEMICAL COMPANY

2030 Dow Center, Abbott Road

Midland, Michigan 48640, U.S.A.

(hereinafter called "applicant(s)") for an

invention entitled

POLYAMIDE RESINS WITH GOOD TOUGHNESS

(I/W) Richard G. Waterman, General Patent Counsel

THE DOW CHEMICAL COMPANY

2030 Dow Center, Abbott Road

Midland, Michigan 48640, U.S.A.

do solemnly and sincerely declare as follows:

1. I am/we are the applicant(s). (or, in the case of an application by a body corporate)

2. I am/we are authorized to make this declaration on behalf of the applicant(s).

2. I am/we are the actual inventor(s) of the invention. (or, where the applicant(s) is/are not the actual inventor(s))

Augustin T. Chen, 893 Farmington Drive, Cheshire, Connecticut 06410, United States of America

is/are the actual inventor(s) of the invention and the facts upon which the applicant(s) is/are entitled to make the application are as follows:

The applicant Company is the assignee of the said invention from the said actual inventor(s).

(Note: Paragraphs 3 and 4 apply only to Convention applications)

3. The basic application(s) for patent or similar protection on which the application is based is/are identified by country, filing date, and basic applicant(s) as follows:

U.S. Priority Serial No. 234,342
Filed on: August 18, 1988
Inventor: Augustin T. Chen

4. The basic application(s) referred to in paragraph 3 hereof was/were the first application(s) made in a Convention country in respect of the invention the subject of the application.

Declared at

Midland, Michigan 48640, U.S.A.

Dated

3 August 1989

By:

RICHARD G. WATERMAN

General Patent Counsel

To: The Commissioner of Patents

Agent: Phillips, Ormonde & Fitzpatrick

Note: No legalization or other witness required.
1. A linear, segmented, non-elastomeric, thermoplastic polyesteramide having an elongation not beyond 150 percent and comprising a recurring unit of the formula

\[
\begin{align*}
\text{wherein R is selected from the group consisting of alkylene, cycloalkylene, and arylene, A is the residue of a polymeric diol HOAOH having a molecular weight from about 400 to about 6000, B is the residue of a dicarboxylic acid HOOC-B-COOH selected from the class consisting of aliphatic dicarboxylic acids having from 6 to 14 carbon atoms inclusive, isophthalic and tere-}
\end{align*}
\]
phthalic acids, m has a mean value of less than 1 and greater than 0, D is the residue of a dicarboxylic acid HOOC-D-COOH such that the melt temperature of the hard segment derived therefrom is not greater than 325°C, and y has an average value greater than 14. A process of making a polyesteramide represented by recurring units of formula (I) according to Claim 1, comprising the steps of

(a) preparing a carboxylic acid-terminated polyester by contacting under reaction conditions at least 2 molar proportions of a dicarboxylic acid HOOC-B-COOH or a mixture of two or more such acids, per 1 molar proportion of a polymeric diol HO-A-OH and separating said polyester from the resulting water of condensation; and

(b) reacting said polyester by contacting same, under conditions such that a substantially complete reaction occurs, with a diisocyanate R(NCO)₂ and a diacid HOOC-D-COOH wherein the diacid is employed in greater than 10 molar proportions per 1 molar proportion of the polyester of step (a) and the diisocyanate is employed in such an amount that total carboxylic acid equivalents of the polyester and the diacid are substantially equal to the isocyanate equivalents.
AUSTRALIA

Patent Act

COMPLETE SPECIFICATION
(ORIGINAL)

Class Int. Class

Application Number:
Lodged:

Complete Specification Lodged:
Accepted:
Published:

Priority:
Related Art:

Name(s) of Applicant(s): THE DOW CHEMICAL COMPANY

Address(es) of Applicant(s):
2030 Dow Center,
Abbott Road,
Midland, Michigan
United States of America

Our Address for service is: PHILLIPS ORMONDE & FITZPATRICK
Patent and Trade Mark Attorneys
367 Collins Street
MELBOURNE, Australia 3000

Complete Specification for the invention entitled:

POLYAMIDE RESINS WITH GOOD TOUGHNESS

The following statement is a full description of this invention, including the best method of performing it known to applicant(s):

0804N
This invention relates to polyesteramides and is more particularly concerned with non-elastomeric polyesteramides derived from carboxylic acid terminated prepolymers, diisocyanates and dicarboxylic acids.

The polyamides such as the nylons known as nylon 6 and 66 have long been recognized for their wide range of utility in the manufacture of molded parts. While enjoying many excellent physical properties they do suffer some drawbacks of which the major ones are relatively low toughness or impact strength and high moisture pick-up. These particular defects limit their use in the manufacture of any parts exposed to high humidity conditions because the moisture absorption results in loss of dimensional strength. The arrival of nylon 11 and 12 has, to a large degree, corrected the deficiencies of toughness and water absorption but at the expense of high temperature resistance when compared to nylon 6 and 66.

Accordingly, there remains a need for a thermoplastic polymer similar to the nylons which can
satisfy all three requirements of good toughness, resistance to elevated temperatures, and low moisture absorption.

A class of polyesteramides has been disclosed in U.S. Patents 4,129,715 and 4,649,180. These polymers represent the first elastomers to have high aromatic content while at the same time being easily injection moldable. These disclosed polymers are completely unrelated to the above nylons both structure-wise and property-wise. They are fully elastomeric in character having elongation properties well in excess of 200 percent and hardness properties no higher than can be measured on the Shore D scale (ASTM Test Method D-2240).

In order to achieve their intended purpose, the reference patents clearly call for aromatic moieties in the polymer backbone. Additionally, the molar fraction of hard segments associated with the aromatic moieties must not exceed certain specified upper limits. This limitation is defined by the value of \(x \) in the recurring units of formula (I) in U.S. Patent 4,129,715, column 2, as having an upper limit of 10. As will be apparent from the discussion below, these reference polyesteramides while related structurally to the polyesteramides of the present invention, are completely unrelated in their properties.

This invention is directed to linear, segmented, non-elastomeric, thermoplastic polyesteramides having an elongation not greater than 150 percent and characterized by a recurring unit of the formula

\[36,632-F \]
wherein R is selected from the group consisting of alkylene, cycloalkylene, and arylene, A is the residue of a polymeric diol HOAOH having a molecular weight from about 400 to about 6000, B is the residue of a dicarboxylic acid HOOC-B-COOH selected from the class consisting of aliphatic dicarboxylic acids having from 6 to 14 carbon atoms, inclusive, isophthalic and terephthalic acids, m has a mean value of less than one and greater than 0, D is the residue of a dicarboxylic acid HOOC-D-COOH such that the melt temperature of the hard segment derived therefrom is not greater than 325°C, and y has an average value greater than 10.

This invention is particularly directed to a polyesteramide (II) in accordance with formula (I) above wherein R is 4,4'-methylenebis(phenylene), A is the residue of a polyester glycol of molecular weight from about 1000 to about 3000, B is the residue of an aliphatic dicarboxylic acid having from 6 to 14 carbon atoms, inclusive, m has the mean value defined above, D is the residue of an aliphatic dicarboxylic acid, and y has an average value of from 11 to 40.
The term "non-elastomeric" means the opposite to elastomeric. It describes a polymer which, after elongation, does not recover fully after release of a stress. Generally, a true elastomer describes a material which can be elongated by at least 200 percent strain and still fully recover after releasing the stress. The stiffness or modulus properties of the present polymers are such that they will not elongate beyond about 150 percent without breakage, more likely, they will not elongate beyond 50 percent.

The term "alkylene" refers to straight- and branched-chain alkylene having 4 to 12 carbon atoms, inclusive, such as butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, and dodecylene, including normal and isomeric forms thereof.

The term "cycloalkylene" means cycloalkylene having 5 to 16 carbon atoms, inclusive, such as 1,3-cyclopentylene, 1,3-cyclohexylene, 1,4-cyclohexylene, 2-methyl-1,4-cyclohexylene, and radicals having the formula

\[
\begin{array}{c}
\text{Z} \\
\text{alkylene having 1 to 4 carbon atoms, inclusive, for example, methylene, ethylene, propylene, ethylidene and isopropylidene.}
\end{array}
\]
The term "arylene" means arylene having 6 to 18 carbon atoms, inclusive, such as phenylene, tolylene, naphthylene, diphenylene, and radicals having the formula

\[\text{[Diagram of arylene structure]} \]

wherein Z is defined as above.

The radicals defined by R above can be substituted by one or a plurality of inert substituents. The term "inert substituent" means a substituent which is inert under the conditions of the polymerization process and does not otherwise detract from the polymer's inherent physical properties. Illustrative of such substituents are halo, i.e., chloro, bromo, fluoro, and iodo; alkyl from 1 to 8 carbon atoms, inclusive, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, and isomeric forms thereof; alkoxy from 1 to 8 carbon atoms, inclusive, for example, methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, and cyano. When R is alkylene, any inert substituents selected from alkyl would be included in those alkylene radicals in isomeric form.

The term "polymeric diol" as used herein to characterize residue A in formula (I) is inclusive of polyether, polyester, and polycarbonate diols having molecular weights in the stated range.
The term "aliphatic dicarboxylic acids having from 6 to 14 carbon atoms" means the acids represented by the formula HOOC-C\textsubscript{n}H\textsubscript{2n}-COOH wherein the total number of carbon atoms, including those in the carboxylic groups, lies within the stated 6 to 14 carbon range and C\textsubscript{n}H\textsubscript{2n} represents straight- or branched-chain alkylene having the appropriate carbon atom content. Illustrative of such acids are adipic, pimelic, suberic, azelaic, sebacic, 1,11-undecanoic and 1,12-dodecadienoic, α-methyladipic, α,α-dimethyladipic, α-ethylpimelic, α-ethyl-α-methyipimelic, β,β'-diethyl-β,β'-dimethylosuberic, 2,2,4-trimethyladipic, 2,4,4-trimethyladipic, α,α-dimethyiazelaic, and α,α,a',a'-tetramethylsebacic acids.

The term "molecular weight" means the number average molecular weight as determined by end-group analysis.

Surprisingly, the present polyesteramides, while having recurring units similar to those disclosed in the cited references, are possessed of physical properties completely unrelated to those same polymers. In fact, the present polymers have the properties characteristic of the nylons discussed above and are not elastomers in their behavior.

The previously known polymers must have aromatic moieties in the backbone and the molar hard segment contents derived therefrom are specifically limited as noted above to achieve the desired thermal formability, i.e., injection moldability. Quite unexpectedly it has been found that by raising the hard segment content, to those values of y called for...
presently, the polymers obtained are not only injection moldable but are possessed of entirely different properties. Furthermore, it has been discovered that increasing the hard segment content provides polymer backbones wherein the radical R need not be limited to aromatic moieties as in the previously known polymers of U.S. Patent 4,129,715, but can include other types of non-aromatic radicals and still achieve good high temperature resistance.

This discovery is considered to be quite significant since it provides a class of polymers meeting the needs set forth above for a nylon-type plastic having good toughness, good resistance to high temperatures, and low moisture pick-up.

The polyesteramides of this invention can be employed in any of those applications for which nylon 11, nylon 12 or nylon ST are useful. They can find particular utility in the manufacture of sheathing for cables, for hoses used in air brakes on trucks, and for fuel lines in fuel injected automobile engines and aircraft. Increasing applications for such polymers are in the sporting goods area including badminton shuttlecocks and protective gear, for example, shin, shoulder, elbow and knee pads, and protective headgear.

The polyesteramides having the formula (I) above are readily prepared using the typical ingredients and procedures of U.S. Patents 4,129,715 and 4,649,180. The novelty and unexpected advantages in the present polymers reside in the higher levels of hard segment residues in the recurring units as compared with the previously known polymers. This is reflected in
the higher values for \(y \) in the formula (I) above compared to the value of \(x \) in the formula (I) of U. S. Patent 4,129,715. In the present case, \(y \) has an average value greater than 10. Advantageously, \(y \) has an average value of from 11 to about 40, preferably from about 12 to about 30.

The term "hard segment" refers to the amide linkages formed from the acid residues of \(B \) and \(D \) as opposed to the "soft segments" arising from the polymeric diol residue \(A \).

The polyesteramides are prepared by a two-step procedure. In the first step of the procedure there is prepared a carboxylic acid-terminated polyester by reacting at least 2 molar proportions of a dicarboxylic acid \(\text{HOOC-}B\text{-COOH} \) wherein \(B \) is as previously defined, or a mixture of two or more such acids, with one molar proportion of a polymeric diol \(\text{HO-}A\text{-OH} \) having a molecular weight within the range stated above. Preferably, the proportion of dicarboxylic acid is in excess of 2 moles per mole of diol and a particularly preferred proportion is within the range of about 2.1 moles to about 2.4 moles of acid per mole of diol.

The preparation of the carboxylic acid-terminated polyester prepolymer is carried out in accordance with procedures well-known in the art for such prepolymers. Illustratively, the free acid and the polymeric diol are heated in the presence of a solvent such as toluene or xylene, and the water of condensation is removed azeotropically from the reaction mixture. If desired, an esterification catalyst such as antimony trioxide, p-toluene sulfonic acid, or calcium acetate,
can be employed but the use of catalysts of this nature is generally unnecessary except when the esterification proceeds slowly. When the amount of water of condensation removed from the reaction mixture corresponds to the theoretical, i.e., 2 moles for each mole of diol, the carboxylic acid-terminated prepolymer is isolated by removing the solvent by distillation, advantageously under reduced pressure.

The dicarboxylic acids employed in the preparation of the carboxy-terminated prepolymers can be any of the aliphatic dicarboxylic acids having from 6 to 14 carbons as defined and exemplified above or the two aromatic acids. Preferred as a group are the aliphatic dicarboxylic acids. Preferred species within this group include adipic, pimelic, suberic, azelaic, and sebacic acids, and mixtures thereof.

The polymeric diols defined above preferably have a number average molecular weight falling within a range of from about 1000 to about 3000. Illustrative of polyether diols are the poly(alkylene ether)diols obtained by polymerizing one or more cyclic ethers such as ethylene oxide, propylene oxide, butylene oxide and tetrahydrofuran. The poly(alkylene ether)diols are inclusive of polyethylene glycol, polypropylene glycol, poly(tetramethylene glycol), polypropylene glycols capped with ethylene oxide, random copolymers of ethylene oxide and propylene oxide, and adducts of ethylene oxide, propylene oxide and like alkylene oxides with homopolymers of conjugated alkadienes such as butadiene and isoprene, and copolymers of said alkadienes with vinyl monomers such as acrylonitrile, methacrylonitrile and styrene. Preferred polyether
diols for use in preparing the polyesteramides are poly(tetramethylene glycol) and ethylene oxide-capped polypropylene glycols where the ethylene oxide content is within the range of from about 5 percent to about 40 percent.

Illustrative of the polyester diols are those obtained by reacting a dicarboxylic acid such as adipic, suberic, azelaic, and glutaric acids, with an excess, over the stoichiometric amount, of a dihydric alcohol such as ethylene glycol, propylene glycol, 1,4-butanediol, and 1,6-hexanediol, including mixtures of two or more such diols. Preferred polyester diols are the poly(tetramethylene)adipates, -suberates, -azelates, and -glutarates, and poly(hexamethylene)adipates, -suberates, -azelates, and -glutarates.

Illustrative of the polycarbonate diols are those having the recurring polycarbonate linkage -ROCO₂- wherein R can be C₂⁻⁻⁻⁻⁵ alkylene, C₅⁻⁻⁻⁻⁸ cycloalkylene, or C₆⁻⁻⁻⁻⁻¹₈ arylene, as exemplified in U.S. Patent 4,649,180.

It will be readily understood by one skilled in the art that in the case of the polyester diols, an alternate route to their carboxylic acid-terminated polyester component consists of the direct polymerization of an excess of any of the appropriate dicarboxylic acids set forth above with any of the appropriate dihydric alcohols also set forth above.

In an alternative embodiment, the carboxy-terminated prepolymers can include the carboxy-
-terminated copolymers of butadiene and acrylonitrile or like vinyl monomers. Illustrative of such materials are those available under the trade name Hycar™ polyacrylic rubbers from B. F. Goodrich.

An overall preferred class of diols HOAOH comprises the polyester diols discussed above, also referred to at times as polyester glycols.

In the second step of the polymer preparation, the carboxylic acid-terminated polyester is reacted with a diisocyanate R(NCO)₂ and diacid HOOC-D-COOH wherein R and D are as defined above. Illustrative examples of diisocyanates are hexamethylene diisocyanate, decamethylene diisocyanate, 2,2,4-trimethylhexylene diisocyanate, 2,4,4-trimethylhexylene diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 1-methyl-2,5-cyclohexylene diisocyanate, 4,4'-methylenebis(cyclohexyl isocyanate), 4,4'-isopropylidenebis(cyclohexyl isocyanate), m- and p-phenylene diisocyanate, chlorophenylene diisocyanate, 2,4- and 2,6-toluene diisocyanates and mixtures thereof, a,a'-xylylene diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-methylenebis(phenyl isocyanate), mixtures of 4,4'- and 2,4'-methylenebis(phenyl isocyanate), liquefied forms of methylenebis(phenyl isocyanate) such as those resulting from the diisocyanates which have been treated so as to convert a minor proportion of the diisocyanate to the corresponding carbodiimide which latter is in equilibrium with further diisocyanate to form urethane-imine groups, for example in U.S. Patent 3,384,653, and mixtures of any of the above diisocyanates.
A preferred class of diisocyanates comprise the arylene diisocyanates which give rise to the arylene radical R in formula (I). Particularly preferred member of this class is methylenebis(phenyl isocyanate), more particularly the 4,4'-isomer.

In respect of the dicarboxylic acid HOOC-D-COOH, the only real limitation is the fact that the hard segment amide arising from its reaction with an isocyanate group shall not have a melt temperature exceeding 325°C. This temperature which is called the glass transition temperature (Tg) of the polyesteramide, as the polymer chemist well knows, is readily determined by differential scanning calorimetry (DSC). Advantageously, the acid is a straight-chain aliphatic dicarboxylic acid having from about 6 to about 9 carbon atoms (inclusive of those in the carboxylic groups) but other dicarboxylic acids can be employed provided that the above melt temperature conditions are satisfied. Illustrative of such acids are adipic, azelaic, sebacic, suberic, and trimethyladipic acids. Particularly preferred are azelaic and adipic as well as a mixture of approximately equimolar amounts of these two acids. It will be readily apparent to one skilled in the art that the radicals B and D in formula (I) can be identical or different depending on the choice of diacids in each case.

The proportions in which the dicarboxylic acid HOOC-D-COOH is employed will be governed largely by the properties desired in the resulting polyesteramide in combination with the selection made for the other radicals A, B, and R in the formula (I) above. The acid must be employed in a greater than 10 mole proportion
per mole of the carboxylic acid-terminated prepolymer component which already contains the radicals A and B. Advantageously, the acid is employed in a range of from about 11 to about 40 moles per mole of prepolymer and, preferably, from about 12 to about 30 moles. It will be recognized by one skilled in the art that these molar proportions will result in the average values for y set forth above.

The overall proportions of these three ingredients are such that the total carboxylic acid equivalents and isocyanate equivalents are substantially equal.

Advantageously, but not necessarily, the reaction is carried out in the presence of an inert organic solvent in which the reactants are soluble. By "inert organic solvent" is meant an organic solvent which does not enter into reaction with any of the reactants or with the product and which does not interfere with the desired course of the reaction in any other way. Illustrative of inert organic solvents are tetramethylenesulfone, dichlorobenzene, monochlorobenzene, \(\alpha \)-butyrolactone, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, xylene, and including mixtures of two or more such solvents.

The reaction is carried out advantageously at elevated temperatures in the range of from about 100°C to about 250°C and most advantageously in the range of about from 150°C to about 230°C. The reaction is assisted in most cases by the inclusion in the reaction mixture of a catalyst for the reaction between isocyanato and carboxylic acid groups. Any of the
catalysts known in the art for this purpose can be employed such as the alkali metal alkoxides described in U.S. Patent 4,001,186, the N-alkali metal lactamates described in U.S. Patent 4,021,412, the phospholene-1-oxides or 1-sulfides (described in U.S. Patents 2,663,737 and 2,663,738 and the phospholane-1-oxides or 1-sulfides described in U.S. Patent 2,663,739. A particularly preferred group of catalysts comprises 1,3-dimethyl-2--phospholene-1-oxide, 1,3-dimethyl-3--phospholene-1-oxide and mixtures of these two isomers; 1-methyl-2--phospholene-1-oxide, 1-methyl-3--phospholene-1-oxide and mixtures of these two isomers.

The above catalysts are generally employed in amounts corresponding to from about 0.001 percent to about 0.5 percent by weight of total reactants and preferably in amounts corresponding to about 0.02 percent to from about 0.3 percent by weight of total reactants.

The progress of the reaction is readily followed by conventional techniques such as infrared or nuclear magnetic resonance spectroscopy. The end point of the reaction is determined by disappearance of absorption bands characteristic of the carboxylic acid group.

When the reaction is determined to be complete, by techniques such as those mentioned above, the desired polyesteramide can be recovered from the reaction mixture by pouring the latter into a solvent such as methanol, acetone, hexane or water, in which the polymer is insoluble. The polymer generally precipitates in the form of strands which quickly
solidify and which can be comminuted by any of the known techniques such as crushing and pelletizing. The polymer, either before or after comminution, can be washed, if desired, with appropriate solvents and then dried using conventional procedures.

The polyesteramides can have incorporated any additives which do not detract from the polymer's inherent properties to any significant degree. Typical of such additives are fillers, antioxidants, pigments, fire retardants, plasticizers, release agents, wax lubricants, and reinforcing agents such as glass fibers.

The present polymers are non-elastomeric and, accordingly, are characterized by low elongations, i.e., no greater than 150 percent. While having good resistance to elevated temperatures they are easily injection moldable. In this connection, their high temperature stability can easily exceed 100°C, as measured by their heat deflection temperature (HDT) at a test pressure of 264 psi (1820 kPa) in accordance with ASTM Test Method D-648-56.

Further, the toughness of the present polymers as measured by Izod impact test in accordance with ASTM Test Method D-256-56 is at least one ft lb/inch (53.38 J/m).

Yet another characteristic feature of the present polymers is their very low moisture pick-up as measured in accordance with ASTM Test Method 570. This pick-up is less than 1 percent by weight and generally no greater than 0.25 percent based on test sample weight.
Of most significance is the fact that the hardness of the instant polymers is characterized by a value of at least 50 as measured on the Rockwell M scale in accordance with ASTM Test Method D-785.

The present polymers can be molded into useful articles using any of the conventional methods for molding thermoplastic materials. These include, for example, compression molding, extrusion, and injection molding. Films are readily prepared by casting solutions of the polymers and removing the solvent. Molded articles find the greatest utility.

The following examples describe the manner and process of making and using the invention, but are not to be construed as limiting.

Example 1

A two-liter resin kettle is fitted with a mechanical stirrer, thermometer, reflux condenser, gas inlet tube and addition funnel. The kettle is charged with 66.44 g (0.066 mole) of a carboxylic acid-terminated polybutylene azelate of molecular weight of about 1000, 186.2 g (0.99 mole) of azelaic acid, 4 g of stearic acid and 900 ml of tetramethylenesulfone (TMS). Under a positive stream of nitrogen the ingredients are heated to about 218°C. At this point, 1.32 g of 1,3-dimethylphospholene oxide (DMPO) catalyst is added. Then over a two-hour period during stirring and under nitrogen at the above temperature, a solution of 263.1 g (1.05 moles) of 4,4'-methylenebis(phenyl isocyanate) (MDI) dissolved in 350 ml of tetramethylenesulfone is
added. Stirring at the 218°C temperature is continued for an additional two-hour period. The light yellow solution is cooled down to ambient room temperature (about 20°C). It is slowly poured into water causing the precipitation of the polymer into solid strands. The solidified polymer is separated from the liquid phase by decantation and chopped into small pieces. The product is further washed by stirring in a fresh portion of water. The solid is isolated by filtration and thoroughly dried. Thus, there is obtained 420 g of a polyesteramide in accordance with the formula (I) above wherein both B and D are residues of azelaic acid, A represents the residue of a polybutylene azelate glycol, R represents 4,4'-methylenebis(phenylene), m has a positive value less than 1, and y has a mean value of about 16; inherent viscosity (n_{inh}) determined at 0.5 percent by weight in N-methylpyrrolidone containing 4 percent by weight lithium chloride at 30°C is 1.02 for virgin polymer.

The polymer is extruded through a Brabender extruder in the form of 1/8" (3 mm) rod at a screw speed of 40 rpm and torque about 500 m-g with zone temperatures of #1=265°C; #2=270°C; #3=270°C; #4=268°C. The rods are chopped into pellets and injection molded into 8½" x 1/8" (21.6 cm x .3 cm) dumbbell test bars (ASTM D638) and into 5" x ⅛" x ⅛" (12.7 cm x 1.3 cm x .6 cm) flex bars (ASTM D790) using an Arburg model 221E injection molding machine under the following conditions: zone temperatures, #1=270°C; #2=275°C; #3=275°C; injection speed setting = 4 seconds; injection pressure = 800 psi (5515 kPa); injection time = 15 seconds; cycle time = 35 seconds; mold temperature = 88°C. The polyesteramide is characterized by the physical
properties set forth in the Table. The physical properties of commercially available samples of nylon 66, nylon 11, and nylon 12 are also set forth in the Table for direct comparison with the Examples 1-5 polyesteramide properties.

The polyesteramide embodied in Example 1 is observed to have modulus properties similar to nylon 66 but with impact strengths more characteristic of the nylons 11 and 12. At the same time, the HDT of Example 1 is considerably superior to those values for nylons 11 and 12. Also the polyesteramide is observed to have low water absorption characteristics, similar to the nylons 11 and 12 and much lower than nylon 66. The latter material was not tested in this experiment but is known from the literature to have a moisture pick-up of about 8 to 10 weight percent when tested under the recited ASTM test conditions.

Example 2

The following experiment describes the preparation of a polyesteramide in accordance with the present invention using virtually the identical procedures described above in Example 1 except for the employment of the following ingredients.

The resin kettle is charged with 60.4 g (0.056 mole) of a carboxylic acid-terminated polyhexylene adipate of molecular weight of about 1000, 176.72 g (0.926 mole) of azelaic acid, 5 g of stearic acid and 900 ml of tetramethylenesulfone. The solution is heated to 220°C followed by the addition of 1.25 g of 1,3-dimethylphospholene oxide and 250.9 g (1.044 mole) of 4,4'-methylenebis(phenyl isocyanate) in 350 ml of tetra-
methylenesulfone over the two-hour addition period. The yellow solution is heated at 220°C for two hours. The polymer product is precipitated by pouring the yellow solution into the two-gallon portion of water and the solid polymer purified similarly to Example 1 above. Thus there is obtained 400 g of a polyesteramide in accordance with formula (I) above wherein B and D are residues of adipic and azelaic acid respectively, while A represents the residue of a polyhexylene adipate glycol, R represents 4,4'-methylenebis(phenylene), m has a positive value less than 1, and y has a mean value of about 16.5; ninh determined as in Example 1 = 0.96.

The polymer is extruded and injection molded using the same conditions as in Example 1 above except for an injection speed setting of 3 and mold temperature of 98°C in the injection molding step. The molded parts are characterized by the physical properties shown in the Table.

Example 3

The following experiment describes the preparation of a polyesteramide in accordance with the present invention using virtually the identical procedures described in Example 1 except for the employment of the following ingredients.

A three-liter resin kettle is charged with 149.1 g (0.146 mole) of a carboxylic acid-terminated polybutylene azelate of molecular weight of about 1000, 305.3 g (1.60 moles) of azelaic acid and 1700 ml of tetramethylenesulfone. The solution is heated to about 225°C followed by the addition of 2.18 g of
1,3-dimethylphospholene oxide and 436.4 g (1.746 moles) of 4,4'-methylenebis(phenyl isocyanate) in 400 ml of tetramethylenesulfone over the two-hour addition period. The yellow solution is heated at 225°C for two hours. The polymer product is isolated and purified as previously described. Thus there is obtained 730 g of a polyesteramide in accordance with formula (I) above wherein both B and D are residues of azelaic acid, A represents the residue of a polybutylene azelate glycol, R represents 4,4'-methylenebis(phenylene), m has a positive value less than 1, and y has a mean value of about 11; m/nm determined as above = 0.82.

The polymer is extruded and injection molded similarly to Example 1 but under the following conditions:

Extruder conditions: zone temperatures
#1=255°C; #2=260°C; #3=265°C; #4=265°C; screw speed = 40 rpm and torque 600 m-g;

Injection conditions: zone temperatures
#1=260°C; #2=262°C; #3=265°C; injection speed setting = 4; injection pressure = 600 psi (4135 kPa); injection time = 15 seconds; cycle time = 30 seconds; mold temperature = 88°C. The polyesteramide is characterized by the physical properties shown in the Table.

Example 4

The following experiment describes the preparation of a polyesteramide in accordance with the present invention using virtually the identical procedure described in Example 1 except for the employment of the following ingredients.

36,632-F
A three-liter resin kettle is charged with 208.9 g (0.0675 mole) of a carboxylic acid-terminated polybutylene azelate of molecular weight of about 3000, 205.3 g (1.076 mole) of azelaic acid and 1400 ml of tetramethylenesulfone. The solution is heated to about 225°C followed by the addition of 1.43 g of 1,3-dimethyl phospholene oxide and 285.8 g (1.143 moles) of 4,4'-methylenebis(phenyl isocyanate) in 320 ml of tetramethylenesulfone over the two-hour addition period. The yellow solution is heated at 225°C for two hours. The polymer product is isolated and purified as previously described. Thus there is obtained 595 g of a polyesteramide in accordance with formula (I) above wherein both B and D are residues of azelaic acid, A represents the residue of a polybutylene azelate glycol, R represents 4,4'-methylenebis(phenylene), m has a positive value less than 1, and y has a mean value of about 16; n_{inh} determined as above = 0.87.

The polymer is extruded and injection molded as described in Example 1 but under the following conditions:

Extruder conditions: zone temperatures
#1=250°C; #2=250°C; #3=260°C; #4=260°C; screw speed = 40 rpm and torque 600 m-g;

Injection conditions: zone temperatures
#1=267°C; #2=272°C; #3=272°C; injection speed setting = 4.5; injection pressure = 800 psi (5515 kPa); injection time = 15 seconds; cycle time = 30 seconds; mold temperature = 140°C. The polyesteramide is characterized by the physical properties shown in the table.

36,632-F
Example 5

The following experiment describes the preparation of a polyesteramide in accordance with the present invention using virtually the identical procedure described in Example 1 except for the employment of the following ingredients.

A three-liter resin kettle is charged with 148.5 g (0.048 mole) of a carboxylic acid-terminated polyhexylene azelate of molecular weight of about 3000, 246.1 g (1.29 moles) of azelaic acid and 1350 ml of tetramethylenesulfone. The solution is heated to about 225°C followed by the addition of 1.67 g 1,3-dimethylphospholene oxide and 334.5 g (1.34 moles) of 4,4'-methylenebis(phenyl isocyanate) in 320 ml of tetramethylenesulfone over the two-hour addition period. The yellow solution is heated at 225°C for two hours. The polymer product is isolated and purified as previously described. Thus there is obtained 610 g of a polyesteramide in accordance with formula (I) above wherein both B and D are residues of azelaic acid, A represents the residue of a polyhexylene azelate glycol, R represents 4,4'-methylenebis(phenylene), m has a positive value less than 1, and y has a mean value of about 26; n_{inh} determined as above = 1.07.

The polymer is extruded and injection molded as described in Example 1 but under the following conditions:

Extruder conditions: zone temperatures

#1 = 260°C; #2 = 260°C; #3 = 270°C; #4 = 270°C; screw speed = 40 rpm and torque 1350 m-g:

36,632-F
Injection conditions: zone temperatures
#1=267°C; #2=272°C; #3=272°C; injection speed setting
= 4.5; injection pressure = 800 psi (5515 kPa);
injection time = 15 seconds; cycle time = 30 seconds;
mold temperature = 140°C. The polyesteramide is
characterized by the physical properties shown in the Table.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Nylon 66</th>
<th>Nylon 11</th>
<th>Nylon 12*</th>
<th>Ex. 1</th>
<th>Ex. 2</th>
<th>Ex. 3</th>
<th>Ex. 4</th>
<th>Ex. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength in kPa (psi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield</td>
<td>73,085</td>
<td>34,545</td>
<td>42,060</td>
<td>72,945</td>
<td>69,290</td>
<td>64,120</td>
<td>30,060</td>
<td>47,435</td>
</tr>
<tr>
<td>Break</td>
<td>(10,600)</td>
<td>(5010)</td>
<td>(6100)</td>
<td>(10,580)</td>
<td>(10,050)</td>
<td>(9300)</td>
<td>(4360)</td>
<td>(6880)</td>
</tr>
<tr>
<td>Elongation (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield</td>
<td>18.0</td>
<td>5</td>
<td>20</td>
<td>7.1</td>
<td>5.5</td>
<td>7.0</td>
<td>7.0</td>
<td>7.5</td>
</tr>
<tr>
<td>Break</td>
<td>32</td>
<td>190</td>
<td>--</td>
<td>25</td>
<td>18</td>
<td>--</td>
<td>51</td>
<td>130</td>
</tr>
<tr>
<td>Tensile Modulus in kPa x 10^-3 (kpsi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2192.5</td>
<td>1072.1</td>
<td>--</td>
<td>1896.1</td>
<td>2083.6</td>
<td>2026.4</td>
<td>521.9</td>
<td>1232.8</td>
</tr>
<tr>
<td>Flex Modulus in kPa x 10^-3 (kpsi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2840.6</td>
<td>1186.6</td>
<td>1241.1</td>
<td>2082.2</td>
<td>2320.8</td>
<td>1715.4</td>
<td>1111.4</td>
<td>1592.0</td>
</tr>
<tr>
<td>Flex strength in kPa (psi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>49,850</td>
<td>--</td>
<td>101,490</td>
<td>36,750</td>
<td>73,980</td>
<td>47,575</td>
<td>68,325</td>
</tr>
<tr>
<td>Tg* in °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>55</td>
<td>--</td>
<td>102</td>
<td>--</td>
<td>105</td>
<td>87</td>
<td>101</td>
</tr>
<tr>
<td>Sample</td>
<td>Nylon 66</td>
<td>Nylon 11</td>
<td>Nylon 12</td>
<td>Ex. 1</td>
<td>Ex. 2</td>
<td>Ex. 3</td>
<td>Ex. 4</td>
<td>Ex. 5</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Rockwell Hardness<sup>2</sup> on M Scale</td>
<td>--</td>
<td>58</td>
<td>--</td>
<td>83</td>
<td>--</td>
<td>68</td>
<td>51</td>
<td>62</td>
</tr>
<tr>
<td>HDT<sup>3</sup> in °C</td>
<td>180</td>
<td>53</td>
<td>55</td>
<td>85</td>
<td>11</td>
<td>118</td>
<td>67</td>
<td>83</td>
</tr>
<tr>
<td>Notched Impact<sup>4</sup> in J/m (ft lb/in); 3mm notch</td>
<td>32</td>
<td>112</td>
<td>85</td>
<td>79</td>
<td>112</td>
<td>60</td>
<td>195</td>
<td>70</td>
</tr>
<tr>
<td>Water Absorption<sup>5</sup> in % by weight</td>
<td>--</td>
<td>0.18</td>
<td>--</td>
<td>0.10</td>
<td>--</td>
<td>0.12</td>
<td>0.25</td>
<td>0.14</td>
</tr>
</tbody>
</table>

¹ T_g=Glass transition temperature measured by differential scanning calorimetry (using DuPont Model 990 Thermal Analyzer with Model 910 DSC module)

² Rockwell hardness: Hardness measured in accordance with ASTM Test Method D785 using a Galileo A-200 Instrument (Galileo of Milan, Milan Italy)

³ HDT: Heat deflection temperature measured in accordance with ASTM Test Method D648-56 at 264 psi (1820 kPa)

⁴ Notched Izod: Izod impact strength measured in accordance with ASTM Test Method D256-56

⁵ Water absorption: Measures the percent by weight gain of a molded sample stored in water for 24 hours at 73°F (22.8°C) in accordance with ASTM Test Method 570
The claims defining the invention are as follows:

1. A linear, segmented, non-elastomeric, thermoplastic polyesteramide having an elongation not beyond 150 percent and comprising a recurring unit of the formula

\[
\begin{array}{c}
\text{[B-C-OAO-C]}_m \quad \text{[B-C-NHRNHC-D-C]}_y \\
\end{array}
\]

(I)

wherein R is selected from the group consisting of alkylene, cycloalkylene, and arylene, A is the residue of a polymeric diol HOAOH having a molecular weight from about 400 to about 6000, B is the residue of a dicarboxylic acid HOOC-B-COOH selected from the class consisting of aliphatic dicarboxylic acids having from 6 to 14 carbon atoms inclusive, isophthalic and terephthalic acids, m has a mean value of less than 1 and greater than 0, D is the residue of a dicarboxylic acid HOOC-D-COOH such that the melt temperature of the hard
segment derived therefrom is not greater than 325°C, and y has an average value greater than 10.

2. A polyesteramide according to Claim 1 wherein R is arylene.

3. A polyesteramide according to Claim 1 wherein R is 4,4'-methylenebis (phenylene).

4. A polyesteramide according to Claim 1 wherein A is the residue of a polyester diol.

5. A polyesteramide according to Claim 1 wherein B is the residue of an aliphatic dicarboxylic acid having from 6 to 14 carbon atoms, inclusive.

6. A polyesteramide according to Claim 1 wherein D is the residue of an aliphatic dicarboxylic acid.

7. A polyesteramide according to Claim 1 wherein y has an average value of from 11 to about 40.

8. A polyesteramide according to Claim 1 wherein R is 4,4'-methylenebis(phenylene), A is the residue of a polyester diol having a molecular weight of from about 1000 to about 3000, B is the residue of an aliphatic dicarboxylic acid having from 6 to 14 carbon atoms, inclusive, D is the residue of an aliphatic dicarboxylic acid, and y has an average value of from 11 to about 40.

9. A polyesteramide according to Claim 8 wherein D represents the residue from azelaic acid.
10. A polyesteramide according to Claim 9 wherein A and B are the residues of a polybutylene azelate glycol and azelaic acid respectively.

11. A polyesteramide according to Claim 9 wherein A and B are the residues of a polyhexylene adipate glycol and adipic acid respectively.

12. A polyesteramide according to Claim 9 wherein A and B are the residues of a polyhexylene azelate glycol and azelaic acid respectively.

13. A molded article of a polyesteramide according to Claim 1.

14. A process of making a polyesteramide represented by recurring units of formula (I) according to Claim 1, comprising the steps of

(a) preparing a carboxylic acid-terminated polyester by contacting under reaction conditions at least 2 molar proportions of a dicarboxylic acid HOOC-B-COOH or a mixture of two or more such acids, per 1 molar proportion of a polymeric diol HO-A-OH and separating said polyester from the resulting water of condensation; and

(b) reacting said polyester by contacting same, under conditions such that a substantially complete reaction occurs, with a diisocyanate R(NCO)₂ and a diacid HOOC-D-COOH wherein the diacid is employed in greater than 10 molar proportions per 1 molar proportion of the polyester of step (a) and the diisocyanate is employed in such an amount that total carboxylic acid
equivalents of the polyester and the diacid are substantially equal to the isocyanate equivalents.

DATED: 18 August 1989

PHILLIPS ORMONDE & FITZPATRICK
Attorneys for:
THE DOW CHEMICAL COMPANY