APPLICATION FOR A STANDARD PATENT

I/WE, THE WIGGINS TEAPE GROUP LIMITED, a British Company of P.O. Box 88, Gateway House, Basing View, Basingstoke, Hampshire, RG21 2EE, England,

hereby apply for the grant of a Standard Patent for an invention entitled

"Fibre Reinforced Composite Plastics Material"

which is described in the accompanying complete specification.

This application is made under the provision of Part XVI of the Patents Act 1952 and is based on an application for a patent or similar protection made in United Kingdom on 6 January, 1984 (No. 8400294)

Our address for service is: F.B. RICE & CO.,
28A Montague Street, Balmain, NSW 2041

Dated this 4th day of January, 1985.

THE WIGGINS; TEAPE GROUP LIMITED

By: [Signature]

Patent Attorney

To: The Commissioner of Patents
COMMONWEALTH OF AUSTRALIA

P.B. RICE & CO., Patent Attorneys, Sydney
In support of the (Convention) Application made by: THE WIGGINS TEAPE GROUP LIMITED

for a patent for an invention entitled FIBRE REINFORCED COMPOSITE PLASTICS MATERIAL

GERALD WILLIAM WHITE

of and care of the applicant company do solemnly and sincerely declare as follows:

- (a) I
- (b) I am authorised by the applicant company for the patent to make this declaration on its behalf.

Delete the following if not a Convention Application.

The basic application as defined by section 141 (142) of the Act was made

in United Kingdom on 6 January 1984 No. 84 00294

by the applicant company

The basic application referred to in this paragraph is the first application made in a Convention country in respect of the invention the subject of the application.

- (a) The said inventors made the invention in the normal course of their employment with the applicant company, said applicant company therefore being entitled to apply by virtue of the provisions of Section 34(1)(fa)

Declared at ENGLAND this SIXTEENTH day of SEPTEMBER 1987

Sign: Status: GRP PATENTS MANAGER

Declarant's Name: GERALD WILLIAM WHITE

F. B. RICE & CO PATENT ATTORNEYS

This form is suitable for any type of Patent Application. No legalisation required.
1. A fibre reinforced plastics structure comprising a porous matrix of thermoplastics material and reinforcing fibres, the pores of said matrix being wholly or partly invested with a thermosetting plastics material.

2. A method of forming a fibre reinforced plastics structure as claimed in claim 1 comprising the steps of forming a porous matrix of thermoplastics material and reinforcing fibres, and investing the matrix with a thermosetting plastics material.
Application Number :
Lodged :
Complete Specification Lodged :
Accepted :
Published :
Priority : 6 January 1984
Related Art :

Name of Applicant : THE WIGGINS TEAPE GROUP LIMITED
Address of Applicant : P.O. Box 88, Gateway House, Basing View, Basingstoke, Hampshire RG21 2EE England.
Actual Inventors : Bronislaw RADVAN; Andrew TILL

Complete Specification for the invention entitled:
"Fibre Reinforced Composite Plastics Material".

The following statement is a full description of this invention including the best method of performing it known to us :—
This invention relates to fibre reinforced plastics materials for use in producing plastics mouldings. In particular, it relates to such materials which embody both thermosetting and thermoplastic components in such a manner that the advantages of both are maximised.

Thermosetting materials are usually available to the moulder in the form of liquids, or of powders which soften upon heating. They may be used to impregnate a reinforcing fabric or may be mixed with short reinforcing fibres, or with fillers. When formed into a desired shape and heated to a specific temperature, thermosetting materials undergo an irreversible chemical change and solidify into the formed shape. The resulting article exhibits, in general, good stiffness and strength, and, especially good resistance to heat and prolonged mechanical stress.

However, because the thermosetting process is irreversible, reject articles cannot be scrapped and the material reused. They also tend to be relatively brittle.

More importantly, the forming process is slow, being of the order of several minutes, because the mould must be held closed until the curing process has been completed. For this reason especially, thermosetting materials do not lend themselves to modern high speed production techniques. As a result, and despite the advantages which articles moulded from thermosetting materials afford, they are being displaced by thermoplastics materials.
Examples of thermosetting materials are phenol-formaldehyde resin, urea and melamine formaldehyde resins, epoxy resins, unsaturated polyesters, and polyurethanes.

The thermoplastics are usually available to the fabricator in granular or particulate form or as a sheet. They soften upon heating and can be pressed, moulded, extruded or cast into a desired shape into which they solidify upon cooling. The softening and hardening processes are relatively fast so that the article can be moulded, hardened by cooling and ejected from the mould in a matter of seconds rather than minutes. Fillers and reinforcing materials may be included. When the thermoplastics material is in the form of a sheet, the reinforcement will be in the form of fabrics or fibre mats and in the case of granular or particulate materials, in the form of short fibres. Articles moulded from thermoplastic materials tend to be lighter and often tougher than in the case of thermosetting materials. But their stiffness is less, especially under conditions of prolonged stress. Their resistance to heat is, of course, poor.

Examples of thermoplastics are the polyolefins, polystyrenes, polyamides, polyvinyl chloride, and the saturated polyesters, together with blends of these materials.

Attempts have been made to combine thermoplastics and thermosetting materials in a single article so as to achieve at least some of the technical advantages of each. Thus for example in the manufacture of an article such as a bath tub, an initial moulding is produced rapidly from a thermoplastics sheet by heating and vacuum-forming. After coating in and removal from the mould, the outside of the cooled moulding is then covered with liquid thermosetting polyester resin, reinforced with short glass
fibres, which is then allowed to cure slowly whilst maintaining its shape. This has the advantage of avoiding long dwell times in the mould, but defects arise in the end product when in use, due to insufficient adhesion between the two materials. This results from differential thermal expansion which produces warping and delamination.

It is among the objects of the present invention to provide a method of combining thermoplastic and thermosetting materials in such a manner that articles formed from the resulting composite avoid at least some of the disadvantages of the known techniques.

According to one aspect of the present invention a fibre reinforced structure comprises a porous matrix of thermoplastic material and reinforcing fibres, the pores of said matrix being wholly or partly invested with a thermosetting plastics material.

The invention also extends to sheets or articles formed from such a plastics structure in which the thermosetting plastics material has cured.

In another aspect, the invention provides a method of forming a reinforced plastics structure, comprising the steps of forming a porous matrix of thermoplastics material and reinforcing fibres, and investing the matrix with thermosetting plastics material.

The porous matrix may be formed in various ways. Thus for example an open fibrous structure comprising 20% to 60% by weight of reinforcing fibres having a high modulus of elasticity (as herein defined), and being between about 7 and 50 millimetres long, and 40% to 60% by weight of wholly or substantially unconsolidated particulate plastics material, and in which the fibrous and plastics components are bonded into an air permeable structure in the manner
described in co-pending United Kingdom Patent Application No. 84 00290 filed 6th January 1984. Alternatively, blowing agents may be incorporated in the structure of the thermoplastics material and reinforcing fibres to cause it to expand and become porous when heat and pressure are applied in sequence and then removed.

The porous matrix may be formed by a fibre reinforced thermoplastics material which has been consolidated by heating and cooling under pressure and then reheated to cause the resilience of the fibres to re-expand it and render the sheet porous as described in co-pending United Kingdom Patent Application No. 84 00293 filed 6th January 1984.

The fibre reinforced plastics structure of the invention affords the fast forming capability of the thermoplastics material with the superior mechanical and heat resistance properties of the thermosetting material. Because the two materials are combined in an intimate manner, separation is virtually impossible. Furthermore, there is little risk of distortion and separation due to differential thermal expansion.

The matrix may be completely impregnated or invested with thermosetting liquid, in which case articles formed from the matrix will be relatively dense. Or the surface layers only of the matrix may be impregnated, for example, by coating. This will result in a lighter article but may provide a sufficient increase in stiffness as compared with the unimpregnated matrix, together with a sealed surface which will prevent the ingress of other fluids such as water or oil, into the expanded central zone.

An excess of liquid thermosetting materials may also be applied to the surface where the article to be formed is
required to have a very smooth, glossy appearance. This is particularly desirable where the moulded article is to be used as a substitute for elements previously formed from sheet metal. Such surfaces are difficult to achieve with conventional fibre reinforced materials.

A low temperature curing liquid resin may be used to impregnate the matrix, which is then stored to enable curing of the resin to proceed slowly at room temperature, or at least at a temperature considerably below the softening point of the thermoplastics material. Alternatively, the porous matrix is initially impregnated with a relatively slow curing thermosetting resin. It is then heated rapidly to the moulding temperature of the thermoplastics component, rapidly transferred to a moulding press and pressed into the desired shape before the curing of the thermosetting component is complete.

In a further variation, a thin, porous, fibre reinforced thermoplastics matrix is fully impregnated with the thermosetting resin, heated to the moulding temperature of the thermoplastics material and laminated with one or more hot unimpregnated sheets and then formed in a hot press. In a variation of the last mentioned procedure, a further impregnated sheet is added to the other side of the unimpregnated sheets which thus form an unimpregnated core in the article when formed.

The invention will now be further described with reference to the accompanying drawings in which :-

Figure 1a is a cross-section through a first form of fibre reinforced plastics structure according to the invention.
Figure 1b is a cross-section through a plastics moulding formed from a structure of Figure 1a,

Figure 2a is a cross-section through a consolidated fibre reinforced thermoplastics sheet,

Figure 2b is a cross-section through an intermediate structure formed from the sheet of Figure 2a,

Figure 2c is a fibre reinforced plastics structure according to the invention formed from the structure of Figure 2b and,

Figure 2d is a plastics moulding formed from the structure of Figure 2c.

Referring first to Figure 1a, this shows a porous sheet like structure 1 consisting of a porous matrix of glass reinforcing fibres 2 and particulate thermoplastics material 3, the matrix being impregnated throughout with a thermosetting resin 4. Optionally, the thermosetting resin 4 may be applied only to the surfaces of the matrix so that the core regions remain free of thermoset material when cured.

The matrix comprised of the fibres 2 and particulate thermoplastics material 3 may for example be made in accordance with the process set out in copending United Kingdom Patent Application No. 84 00290, Filed 6 January 1984. Alternatively, it may be formed by adding a blowing agent, heating and compressing the matrix and then relieving both the heat and pressure to allow expansion to take place and produce a porous material.
Figure 1b shows a moulding 5 formed from the impregnated sheet material of Figure 1a. In order to form a moulding, the sheet 1 is initially heated until the thermoplastics content 3 has become plastic. The sheet 5 is then quickly transferred to the mould and moulding effected before the thermosetting resin has cured. After the mould temperature has been reduced sufficiently to solidify the thermoplastic component, the moulding can be removed from the mould so that the thermosetting material 10 can cure slowly at a controlled temperature.

Turning now to Figure 2, Figure 2a shows a consolidated sheet 10 comprising glass reinforcing fibres 11 dispersed through a solid thermoplastics matrix 12. Since the sheet 10 has been formed by the application of heat and pressure and then cooled whilst under pressure, the fibre reinforcement remains trapped in a stressed condition within the solid thermoplastics matrix.

Turning now to Figure 2b, this shows the sheet 10 after heating. As the thermoplastics content 12 becomes plastic, it adheres to the fibres 11 which, being released from their trapped condition, cause the whole structure to expand and form an open porous matrix 13.

Figure 2c shows the matrix 13 of Figure 2b after impregnation or surface coating with the thermosetting resin 14 as described with reference to Figure 1. The impregnated or coated matrix 13 is then heated and moulded into a moulding 15, as shown in figure 2d in the manner described above with reference to Figures 1a and 1b.

Preferably, the fibrous content of the sheet is between about 7 and about 50 millimetres long since this will permit free flow of the materials comprising the composite sheet during the moulding process.
Example No. 1
The use of powdered post-formable thermoset resin

A sample of reinforced sheet material was prepared by dispersing the following ingredients in an aqueous foam, forming a web, and drying

Polypropylene powder (Grade GS 608E) supplied by ICI Ltd. 60 parts by weight

Glass fibre, 12 millimetres long, x 11 microns diameter (Grade R18D) supplied by O.C.F. Ltd. 40 parts by weight

Pre-catalysed unsaturated polyester powder (Mark 3118) supplied by Decostone B.V. 10 parts by weight

The sample was placed in a forming tool of a hydraulic press, with platens heated at 170° C, which was closed to a pressure of 700 lb. per square inch of the sample, at the end of a heating period, when the heating was turned off, and the platens cooled with circulating water, whilst under full pressure. Upon release, a well-formed shape with a moderate degree of draw was released.

The experiment was repeated to make a control sample, omitting the polyester additive. Corresponding pieces of both samples were tested with the following results:

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum bending stress, MPa</td>
<td>61</td>
<td>50</td>
</tr>
<tr>
<td>Flexural modulus MPa</td>
<td>3700</td>
<td>3400</td>
</tr>
</tbody>
</table>

(i.e. a partly thermoset articles was obtained at the expense of a moderate loss in strength.)
Example No. 2
Impregnation with liquid thermosetting resins

(A) Physical Properties

Samples of thermoplastic reinforced sheet material were made, as in Example No. 1 with the following compositions:

reinforcement: glass fibre, 12 millimetres long,
11 microns diameter
(as in Example No. 1)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>polypropylene powder (Grade PXC 81604) supplied by ICI Ltd. 52 per cent by weight</td>
</tr>
<tr>
<td>Sample 2</td>
<td>polyvinyl chloride powder, (Grade Corvic S57/116) supplied by ICI Ltd. 70 per cent by weight</td>
</tr>
<tr>
<td>Sample 3</td>
<td>acrylic resin powder, (Grade Diakon LG 156) supplied by ICI Ltd. 70 per cent by weight</td>
</tr>
</tbody>
</table>

The three samples were consolidated into flat dense sheets in a hydraulic press, heated to 190° C (polypropylene) or 210° C (polycynilchloride) or 200° C (acrylic) and a pressure of 200-300 psi was applied at the end of the heating cycle of approximately 5 minutes. The press was then opened to varying extents for different samples, which were thus allowed to re-expand to various thicknesses and densities, and cooled.

Control portions of samples 1, 2 and 3 were then tested for Flexural Modulus and Ultimate Tensil Strength, whilst the remainders were divided into two impregnated by quick immersion in different liquid thermosetting resin solutions:
either: phenol-formaldehyde resin (Grade MS 7814) supplied by Ciba-Geigy
or: melamine-formaldehyde resin (Grade BL434) supplied by B.I.P. Chemicals, dissolved in water to a concentration of 50 percent by weight.

The impregnated samples were then dried in air-circulation oven at 100° C for a period of 1 hour approximately, cooled and weighed in order to determine the pick-up of resin solids, and then cured in a flat press at 170-200° C, either at contact pressure (so as to produce only partly-impregnated materials) or under a pressure of 250 psi, when cure and consolidation were achieved in approximately 5 minutes. They were then cooled and tested as above.

The results are summarised in the attached Table No. 1. They show that the impregnation of the expanded samples with thermosetting resins produced an increase in strength and stiffness; also the samples remained sufficiently thermoplastic at the end of the drying cycle to be capable of consolidation before curing.

Visual examination showed the samples to be uniformly and finely impregnated, with no visible boundaries between the thermoplastic, and thermosetting, regions.

Samples No. 1A and 4 in the table were also tested for hardness at different temperatures by the following procedure: a piece of the sample resting on a metal support was placed in an air circulating oven, and the temperature raised to 150° C. After 5 minutes the support and the sample were quickly taken out of the oven, and the hardness of the sample was measured using a Shore D instrument by Shore Instrument & Manufacturing Co. Another piece of the sample was then placed on the support in the oven, and the procedure repeated at several higher temperatures.
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Sample No.</th>
<th>Matrix</th>
<th>Grammage g/m²</th>
<th>Liquid-Resin Type</th>
<th>Liquid-Resin pick-up % by weight</th>
<th>Thickness mm Before Impregnation</th>
<th>Flexural Modulus MPa</th>
<th>Ultimate Tensile Strength MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1A</td>
<td>PP</td>
<td>1280</td>
<td>None</td>
<td>0</td>
<td>1.85</td>
<td>2860</td>
<td>46.5</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td>PP</td>
<td>1280</td>
<td>None</td>
<td>0</td>
<td>2.36</td>
<td>2530</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>PP</td>
<td>1280</td>
<td>None</td>
<td>0</td>
<td>2.80</td>
<td>2030</td>
<td>28.9</td>
</tr>
<tr>
<td>Partial Impregnation</td>
<td>3</td>
<td>PP</td>
<td>1330</td>
<td>PF</td>
<td>47</td>
<td>2.36</td>
<td>4200</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>PP</td>
<td>1330</td>
<td>PF</td>
<td>42</td>
<td>2.36</td>
<td>6100</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>PVC</td>
<td>2920</td>
<td>PF</td>
<td>17</td>
<td>4.31</td>
<td>3400</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>PVC</td>
<td>2920</td>
<td>PF</td>
<td>20</td>
<td>4.31</td>
<td>2600</td>
<td>22</td>
</tr>
<tr>
<td>Full Impregnation</td>
<td>9</td>
<td>ACR</td>
<td>2740</td>
<td>MF</td>
<td>15</td>
<td>3.91</td>
<td>6500</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>ACR</td>
<td>2740</td>
<td>MF</td>
<td>17</td>
<td>3.91</td>
<td>9300</td>
<td>66</td>
</tr>
<tr>
<td>Consolidation</td>
<td>6</td>
<td>PP</td>
<td>1330</td>
<td>PF</td>
<td>24</td>
<td>2.36</td>
<td>8030</td>
<td>57</td>
</tr>
</tbody>
</table>

PP = polypropylene
PVC = polyvinylchloride
ACR = acrylic
PF = phenol formaldehyde
MF = melamine formaldehyde
The results of the tests are shown in Table 2 below:

<table>
<thead>
<tr>
<th>Description</th>
<th>Temperature °C</th>
<th>Hardness (540 RE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control = no impregnant</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>75-76</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>62-67</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>57-65</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>31-33</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>6</td>
</tr>
<tr>
<td>Impregnated with phenol</td>
<td>10</td>
<td>53-65</td>
</tr>
<tr>
<td>formaldehyde resin</td>
<td>15</td>
<td>53-59</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>52-55</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>51-53</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>40-48</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>37-40</td>
</tr>
</tbody>
</table>

The results show that the material impregnated with liquid thermosetting resin retains its hardness over a greater range of temperatures.

Also, the material no longer expanded in thickness on reaching the higher temperatures, demonstrating the restraining action of the thermosetting additive.

Example No. 3
Impregnation with liquid thermosetting resins

(B) Formability
A sample was prepared as for samples 3 and 4 in Table 1 of Example No. 2. with the following difference: after impregnation and drying, the sample was pre-heated briefly in an air oven at 180°C, and placed quickly in a shaped tool in a toggle-type press heated at 180°C. The press
was closed fast to a pressure of some 250 psi for a period of 5 minutes. Upon opening the press, a well-formed article of a moderate degree of draw, was released.

Example No. 4

Impregnation with liquid thermosetting resins by transfer from a thermoplastic film

(A) Physical Properties

When dealing with resins which cure too fast to be pre-heated to the moulding temperatures of the thermoplastic matrix; or which produce copious irritant or flammable fumes during such pre-heating, the following modification of the procedure in Example No. 2 was adopted.

Samples prepared as Nos. 1, 2 and 3 in Table No. 1 of Example No. 2, were pre-heated in an oven for 5 minutes at 200°C, or until they visibly expanded in thickness, and became soft and flexible to touch. In the meantime, two pieces of polycarbonate film (Grade Lexan) of a weight of 300g/m² each, and a thickness of 0.26 mm, supplied by General Electric (Euopre) Co. Ltd. were cut to the approximate size of the sample, and spread out flat on a table. A quantity of unsaturated polyester resin (Grade Crystic 198), catalysed with Catalyst Powder B, both supplied by Scott Bader Co. Ltd. was poured on to the surface of each piece of film, to form two thin puddles.

When the sample was sufficiently hot, it was quickly taken out of the oven, and placed down on to the surface of the puddle on the first piece of the film, when the liquid resin became immediately absorbed in the porous expanded surface, to act as a weak adhesive. The other side of the sample was then lowered on to the surface of the puddle on the second piece of film, with the same result. The whole was replaced in the oven for a period of 10-20 seconds, i.e. until the film visibly softened but did not melt and
shrink. It was then taken out, and placed between the platens of a hydraulic press, pre-heated to 120°C, and then kept for 15 minutes at contact pressure. It was then removed from the press, cooled and tested. The results are shown in the Table below:

TABLE NO. 3. Example No. 4

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Resin Pick-up percent by weight</th>
<th>Flexural Modulus MPa</th>
<th>Ultimate Tensile Strength MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>10A</td>
<td>44</td>
<td>2700</td>
<td>33</td>
</tr>
<tr>
<td>9A</td>
<td>50</td>
<td>3100</td>
<td>50</td>
</tr>
<tr>
<td>8A</td>
<td>54</td>
<td>3100</td>
<td>53</td>
</tr>
<tr>
<td>5A</td>
<td>65</td>
<td>3300</td>
<td>48</td>
</tr>
<tr>
<td>4A</td>
<td>73</td>
<td>3200</td>
<td>49</td>
</tr>
<tr>
<td>7A</td>
<td>76</td>
<td>2900</td>
<td>41</td>
</tr>
<tr>
<td>6A</td>
<td>98</td>
<td>3400</td>
<td>48</td>
</tr>
</tbody>
</table>

It will be appreciated that in order to facilitate handling in large scale production, the details of the procedure above may be altered: e.g. a partly gelled, or high-viscosity resin may be coated on to the film, and the film then applied to the hot sample, rather than vice-versa.

Example No. 5
Impregnation with liquid thermosetting resins by transfer from a thermoplastic film

(B) Formability
Samples were prepared as in Experiment No. 4 using various amounts of liquid resin puddle on the film. After re-heating in the oven, they were placed in the shaped tool of Example No. 3 in a toggle-shaped press, and the
press closed for 30 seconds at 130°C, to a pressure of some 250psi. They were then removed, lightly clamped in a rig, and left to complete the cure in an oven at 160°C for 10 minutes. Well formed, undistorted articles with strongly adhering glossy film surface, were obtained.

In a variant of this procedure, a relatively small puddle of the liquid resin was spread on one piece of film only, and applied to one side only of the sample. The sample still released well after 30 seconds from the press, and a glossy well-adhering surface film was obtained, as before, but only on one side.

In another variant of this procedure, the film used was oriented polypropylene, which had been sprayed with a release agent before the puddle was applied to it. After formation and curing, the film was stripped off, leaving a smooth hard, non-glossy, partly thermoset surface.

Example No. 6.
In-mould coating of expanded samples with liquid thermo-setting resins.

A sample of reinforced sheet material was made by the process described in Example No. 1 with the following composition.

Total grammage : 3000 g/m²
of which
25 polypropylene powder (as in Example No. 2.) 60 parts by weight
25 glass fibre (as in Example No. 1) 40 parts by weight

The sample was heated in an air circulating oven at 200°C for approximately 5 minutes, that is until it visibly expanded in thickness and became soft and flexible to touch. The tool described in Example No. 3 was pre-heated.
to 130°C in a toggle-type press. When the sample was ready, a quantity of unsaturated polyester resin (as in Example No. 3) sufficient to cover the lower part of the tool to a grammage of approximately 500 g/m² was poured into the lower part of the tool. The hot sample was quickly transferred from the oven into the tool, and the press closed fast to a pressure of some 250psi, and held closed for 10 minutes, i.e. until the resin was sufficiently gelled and cured for the sample to release cleanly.

The sample was then lightly clamped in a rig, and allowed to cure in an oven at 140°C for sufficient length of time to achieve full cure.

The article obtained was seen to be uniformly penetrated by the resin over the lower surface to give a hard and smooth thermoset surface. Some of the resin was also seen to have penetrated to the other side of the article with similar results.

In a variant of this procedure, the sample consisted of two pieces each of 1500 g/m² which were heated together, as before, to produce a two-layered sheet, of different compositions in each layer:

- **top layer**: 25% glass fibre by weight : 75% polypropylene
- **bottom layer**: 48% glass fibre by weight : 75% polypropylene

The bottom layer was seen to be much more expanded in thickness (as expected from the teaching in United Kingdom co-pending Application No. 84 00293 Filed 6th January 1984) and the bottom layer showed only very little expansion.

The top part of the tool (in contact with the top layer) was modified to include more complex detail of ribs and bosses, and was mounted in a hydraulic press capable of closing to a pressure of 1500psi over the area of the
article.

Upon release, the article was seen to be uniformly impregnated over the bottom surface, and only very little resin penetrated to the top surface. However, the latter side reproduced faithfully the fine detail of the tool.

It will be appreciated that the choice of the curing time will depend on the type of resin used for impregnation, and that much faster times may be obtained by this means.

Also, the liquid resins may be replaced by powdered resins, used for in-mould coating of known art, if so desired.

In either case, the advantage of the microporous structure of the hot expanded sheet permits even and thorough penetration, to ensure good adhesion of the coating, and the imparting of thermosetting properties to the article.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A fibre reinforced plastics structure comprising a porous matrix of thermoplastics material and reinforcing fibres, the pores of said matrix being wholly or partly invested with a thermosetting plastics material.

2. A method of forming a fibre reinforced plastics structure as claimed in claim 1 comprising the steps of forming a porous matrix of thermoplastics material and reinforcing fibres, and investing the matrix with a thermosetting plastics material.

3. A method of making a fibre reinforced plastics structure as claimed in claim 2 in which the porous matrix is formed as an open fibrous structure comprising 20% to 60% by weight of reinforcing fibres having a high modulus of elasticity (as herein defined), and being between about 7 and 50 millimetres long, and 40% to 60% by weight of wholly or substantially unconsolidated particulate plastics material, and in which the fibrous and plastics components are bonded into an air permeable structure.

4. A method of making a fibre reinforced plastics structure as claimed in claim 2 in which the porous matrix is formed by incorporating blowing agents in the structure of the thermoplastics material and reinforcing fibres to cause it to expand and become porous when heat and pressure are applied in sequence and then removed.

5. A method of making a fibre reinforced plastics structure as claimed in claim 2 in which the porous matrix is formed by a fibre reinforced thermoplastics material which has been consolidated by heating and cooling under pressure and then reheated to cause the resilience of the fibres to re-expand it and render the sheet porous.
6. A method of making a fibre reinforced plastics structure as claimed in any one of claims 2 to 5 in which the matrix is completely impregnated or invested with thermosetting liquid plastics material.

7. A method of making a fibre reinforced plastics structure as claimed in any one of claims 2 to 5 in which only the surface layers of the matrix are impregnated with the thermosetting plastics material.

8. A method of making a fibre reinforced plastics structure as claimed in any one of preceding claims 2 to 7 in which an excess of liquid thermosetting plastics material is applied to the surface of the matrix to provide a smooth glossy appearance.

9. A method of making a fibre reinforced plastics structure as claimed in any one of preceding claims 2 to 8 in which a low temperature curing liquid resin is used to impregnate the matrix which is then stored to enable curing of the resin to proceed slowly at room temperature considerably below the softening point of the thermoplastic material.

10. A method of making a fibre reinforced plastics structure as claimed in any one of preceding claims 2 to 8 in which the porous matrix is initially impregnated with a relatively slow curing thermosetting resin, is then heated rapidly to the moulding temperature of the thermoplastic component, rapidly transferred to a moulding press and pressed into a desired shape before the curing of the thermosetting component is complete.
11. A method of making a fibre reinforced plastics structure as claimed in any one of preceding claims 2 to 8 in which a thin porous fibre reinforced thermoplastics matrix is fully impregnated with the thermosetting resin, heated to a moulding temperature of the thermoplastics material and laminated with one or more hot impregnated sheets and then formed in a hot press.

12. A method of making a fibre reinforced plastics structure as claimed in claim 11 in which a further impregnated sheet is added to the other side of the impregnated sheet or sheets which form an unimpregnated core in the article when formed.

13. A method of making a fibre reinforced plastics structure as claimed in claims 2 to 5 in which the thermosetting plastics material carried on a film or sheet which is applied to the matrix.

14. A method of making a fibre reinforced plastics structure as claimed in claim 13 in which the thermosetting plastics material is located on a film or sheet of thermoplastics material which is then applied to the matrix and then heated and pressed.

15. A method of making a fibre reinforced plastics structure as claimed in claim 13 in which a partly gelled or high viscosity resin is coated on the film or sheet which is then applied to a hot matrix and pressed.

16. A method of making a fibre reinforced plastics structure as set forth in Examples 1 to 6 described herein.

17. A fibre reinforced plastics structure substantially as described herein with reference to and as shown in the accompanying drawings.
18. A method of making a fibre reinforced plastics structure substantially as described herein with reference to as shown in the accompanying drawings.

19. A sheet or articles formed from a plastics structure as set forth in claim 1 or claim 13 in which the thermosetting plastics material has been cured.

DATED this 4th day of January, 1985.

THE WIGGINS TEAPE GROUP LIMITED
Patent Attorneys for the Applicant:
F.B. RICE & CO.