being an active surface having a primary seal band
Convention Application for a Patent

We, CHICAGO RAWHIDE MANUFACTURING COMPANY,

of 900 North State Street, Elgin, Illinois 60120, United States of America,

hereby apply for the grant of a Patent

for an invention entitled "COMPOSITE TEFLOM HELIX SEAL"

which is described in the accompanying complete specification.

This application is a Convention application and is based on the application numbered 563,149 for a patent or similar protection made in United States of America on 19th December, 1983.

Our address for service is: CALLINAN AND ASSOCIATES Patent Attorneys, of 48-50 Bridge Road, Richmond, State of Victoria, Australia.

Dated this 18th day of December, 1984.

CHICAGO RAWHIDE MANUFACTURING COMPANY
By its Patent Attorneys:
CALLINAN AND ASSOCIATES
Declaration in Support of
(a) A Convention Application
(b) An Application
for a Patent or Patent of Addition

In support of the Application/Convention Application made by
(c) Chicago Rawhide Manufacturing Company

for a patent/patent of addition for an invention entitled:
(d) Composite Teflon Helix Seal

I/We (c) Ross V. Oddo

of (c) Chicago Rawhide Manufacturing Company

900 North State Street, Elgin, Illinois 60120, USA.
do solemnly and sincerely declare as follows:

1. I/We am/are the applicant for the patent/patent of addition to make this declaration on its behalf.

2. (c) The basic application(s) as defined by Section 141 of the Act was/were made in United States on the 19th day of December, 1983

by Glenn Peisker, Keith Christiansen and Gil Jaime,
Serial No. 563,149

3. (d) I/We are the actual inventor(s) of the invention.

(a) I/We are the actual inventor(s) of the invention referred to in the basic application.

Glenn Peisker, of 24160 N. Flintcreek Drive, Barrington, Illinois 60010, Keith Christiansen, of 1214 Lincoln Avenue, Fox River Grove, Illinois 60021, and Gil Jaime, of 922 Locut Street, West Dundee, Illinois 60018, all of United States of America

(b) I/We are the actual inventor(s) of the invention and the facts upon which the applicant I/We am/are the said Company is entitled to make the application are as follows:

Assignment dated October 18, 1984 assigning the invention from the said actual inventors to the applicant.

4. The basic application referred to in paragraph 2 of this Declaration was the first application made in a Convention country in respect of the invention the subject of the
1. A fluid seal assembly for retaining fluid within and excluding foreign materials from, a sealed region defined by said seal and first and second, relatively movable machine elements, said seal assembly comprising, in combination, a casing element of generally annular form, having a mounting portion adapted to be received in fixed relation with said first machine element and a bonding portion adapted to receive an elastomeric element bonded thereto in fluid tight relation, said seal assembly also including a resinous fluorocarbon primary seal ring unit, said seal ring unit being, in its unstressed condition, of tapering annular form and thin cross-section and being defined by reduced and enlarged diameter end surfaces and by closely spaced apart, generally parallel, radially inner and outer seal ring surfaces, with one of said inner and outer surfaces
being an active surface having a primary seal band portion formed thereon adjacent one of such end portions, said seal band being adapted to engage a part of said second machine element in substantially fluid tight dynamic relation, and the other of said inner and outer surfaces being a reverse surface having one portion thereof disposed in use in generally facing relation to said sealed region, said reverse surface further including a circumferential band portion acting as a bonding surface, and an elastomeric flexible positioning collar unit having one portion bonded to said casing and another bonding portion bonded to said bonding band on said primary ring, and a principal body portion extending between said bonded portions so as to positively but resiliently locate said primary seal ring within said casing.

22. A mold assembly for manufacturing a fluid seal, said mold assembly including a first, relatively fixed mold part having surfaces thereon defining at least in part the shape of an article to be manufactured, said surfaces including a radially innermost, generally frusto-conical surface having radially inner and outer margins, with said radially innermost margin being adapted to engage one surface of a resinous seal ring placed therein, at least one surface also defining one portion of a cavity for forming an annular collar, and casing support means in
the form of a generally radially extending additional annular surface, a second, intermediate mold member having generally annular surfaces directed oppositely to said additional annular surface and in overlying relation to a casing received in said mold, said intermediate member also including at least one inlet for fluent elastomeric material and further including surfaces defining an additional portion of said collar-forming cavity, and a third mold member having a generally frusto-conical surface portion adapted to engage a margin of said seal ring on a face thereof opposite the face engaged by said innermost margin of said fixed mold part, said third mold member having coining land and groove formations thereon for cold forming hydrodynamic grooves in said resinous ring when said mold is in the fully closed position thereof, said mold also permitting, in the closed position thereof, flow of fluent elastomer to fill said collar-forming cavity and bond said casing to said ring unit.

24. A method of manufacturing an oil seal, said method comprising cutting a frusto-conical ring of thin cross-section from a cylindrical billet of resinous fluorocarbon material, placing said ring in a holder having frusto-conical surfaces registering with and in supporting position to one surface of said resinous ring, coining hydrodynamic formations in the surface of
said fluorocarbon ring opposite the surface supported by said first mold part by movement of a coining die into contact with said surface under a high force, positioning said ring within an opening in an annular seal casing element, and bonding said ring to said element by the formation of an elastomeric collar having an inner margin portion bonded to the portion of said ring surface which was supported by said holder and another margin bonded to a portion of said seal casing, whereby said ring is firmly but resiliently supported generally centrally of said seal casing by a resilient annular collar, and whereby hydrodynamic formations are formed on a generally radially inwardly directed surface of said seal ring for contact with an associated machine member.
COMPLETE SPECIFICATION

TO BE COMPLETED BY APPLICANT

name of Applicant: CHICAGO RAWHIDE MANUFACTURING COMPANY

desire of Applicant: 900 North State Street, Elgin, Illinois 60120,
United States of America.

tual Inventor: GLENN PEISKER, KEITH CHRISTIANSEN and GIL JAMES.

Address for Service: CALLINAN AND ASSOCIATES, Patent Attorneys, of
48-50 Bridge Road, Richmond, State of Victoria, Australia.

omplete Specification for the invention entitled: "COMPOSITE TEFON HELIX SEAL"

The following statement is a full description of this invention, including the best method of performing it known
me:

Note: The description is to be typed in double spacing, pica type face, in an area not exceeding 250 mm in depth and 160 mm in
width, on tough white paper of good quality and it is to be inserted inside this form.

FIG. 11 shows the above elements with the
mold closed, with the rubber overflow or "dump" areas
380 filled with rubber and with the mounting diameter
COMPOSITE TEFLOM HELIX SEAL

The present invention relates to improved shaft seals constructed of specialty materials and adapted for a wide variety of applications.

Specialty materials having low friction and favorable wear capabilities, including fluorocarbon materials such as high polymers of tetrafluoroethylene (TFE), are known as potentially advantageous for sealing applications, but such materials at the time also have known drawbacks.

Such resinous materials per se are of a plastic character; they are subject to cold flow; and can be nicked or scratched during installation. Obtaining and maintaining proper fit clearances and forces with associated machine parts difficult. Filled or composite TFE and like materials are now known which include a matrix of TFE resin but include inert fillers (carbon black, glass fibers, etc.); these are better for certain applications.

TFE, being non-elastic, is poor for static seals. Many TFE seals thus incorporated helices (screw threads, vanes, etc.) to create hydrodynamic action. Fluid can be returned to the seal cavity by a "pumping" action when there is relative motion between the seal and the shaft.

TFE is not easily bonded to a casing, and in some cases, to rubber. Thus, manufacturing and assembling TFE seals and developing correct sealing lip or surface profiles is a serious problem not yet entirely overcome. However, TFE and related low friction materials, are still of interest as their advantages have become more widely known.
The invention provides novel fluorocarbon which includes a formed resin ring element adapted to serve both as the primary lip and as an auxiliary or excluder lip. At least a portion of the lip surface contains hydrodynamic formations consisting of grooves or like indented or debossed surfaces rather than upstanding or protruding vanes or ribs; the resinous seal ring as a whole is in the form of a generally frusto-conical ring having an intermediate portion thereof bonded by an annular collar unit to an associated casing, having one radially spaced apart portion acting as the primary lip surface and having a different diameter than the seal diameter at the bond area, and further having an auxiliary lip of a third diameter adapted to engage another relatively movable surface to form an excluder lip. Preferably, the seal also comprises an associated or accessory casing forming a wear sleeve or seal engagement surface so that the primary seal lip can be protected after manufacture and prior to and during installation.

According to the invention, novel methods of manufacturing the seal are also provided.

The present invention provides a seal unit having a casing with a mounting portion and a seal element attachment portion, a resinous contoured seal ring element made of a fluorocarbon resin material and having outer, inner, and intermediate diameters, and inner and outer surface portions with at least one of the innermost and outmost diameter portions being adapted to form a primary seal with an associated machine element and with an intermediate portion of one surface being bonded by an annular elastomeric collar along the faces of the radial casing flange and the annular band on the reverse or inactive surface of the resin. This collar provides firm but flexible location extending by drawing according to form of view, of features and show resin or taper resin seal flange or unit rubber ID (ins adapted to rev
extending between it and the bonding portion of the associated casing.

The invention also provides a novel seal-making method which includes cutting a cylindrical tubular fluorocarbon resin billet so as to form a tapered or frusto-conical seal ring, placing this ring and a seal casing in a mold, and forming an annular elastomeric bonding collar extending between one surface of the seal element and the seal casing unit. The method may also include forming one or more hydrodynamic surface formations of one surface of the seal ring element by a coining operation while the ring is supported in a contoured mold unit.

The accompanying description and the drawings relate to several examples of seals made according to the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a preferred form of seal embodying the invention;

FIG. 2 is a fragmentary vertical sectional view, of the seal of FIG. 1, showing certain seal features;

FIG. 3 is taken along lines 3-3 of FIG. 2 and shows the helix formed in the face of the seal ring;

FIG. 4 shows a tubular cylindrical billet of resinous material used in making the seal ring;

FIG. 5 shows the billet after it is beveled or tapered;

FIG. 6 shows the preferred method of making resin sealing rings from the billet;

FIG. 7 shows the coining die used in making sealing rings;
FIG. 8 shows part of the support fixture and ring forming die and shows sealing ring ready to be coined;

FIG. 9 shows the preferred form of mold used to make seals of the invention;

FIG. 10 shows part of the mold of FIG. 9 in the closed position with the ring and casing therein but before being filled with elastomer;

FIG. 11 shows the seal in the final process of being formed;

FIG. 12 shows a seal installed in position of use with a plurality of associated machine members; and

FIG. 13 shows an alternate form of seal of a unitized construction and including a wear sleeve as well as sealing element.
DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION

The seal of the invention may be embodied in different forms, both unitized and non-unitized. The sealing action may result from an outer casing with a ring having a radially inwardly directed compressive load, with the excluder lip acting axially, or in reversed form, with the primary casing on the inside and the sealing lip being urged radially outwardly against companion flange or other sealed surface.

The seal may also, but need not include an auxiliary, axially acting lip. Herein, "axially inner" means toward the sealed region and "axially outer" means away from the sealed region; "primary" as applied to the lip or seal ring means that which is intended to retain a fluid within the sealed region and "auxiliary" refers to a lip used to exclude contaminants from the area between itself and the vicinity of the primary lip. "Unitized" refers to a seal having an intended wearing surface along which the seal band is situated on an accessory wear sleeve element associated in use with the principal seal assembly. "Secondary" means a seal which is formed between two relatively immovable or non-rotatable surfaces, (the seal casing and the counterbore e.g.).

FIG. 1 shows the invention to be embodied in a seal unit 20 and to include a casing unit 22, a resinous sealing ring unit 24 which is secured to the portion of the casing 22 by an annular elastomeric bonding and locating collar generally designated 26. Referring now in particular to FIG. 2, it is shown that the casing 22 includes an axially extending mounting flange portion 28
joined at a radius portion 30 to a radially extending flange or bonding portion 32. The resin sealing ring 24 is preferably made from a resinous fluorocarbon material such as a high polymer of tetrafluoroethylene and is in the form of a tapered, beveled or frusto-conical ring of thin cross-section.

The seal ring 24 includes an active surface 34 and a reverse surface 36, and may be subdivided (for purposes of description) into an inner diameter portion 38 on which the primary seal band 40 will be formed (see also FIGS. 12 and 13) an outer diameter portion 42 which will form an auxiliary lip generally designated 44, and an intermediate or bonding portion 46.

In FIG. 2 shows that a single spiral groove 48 or a plurality like formations 48 are coined, or cut along the active surface 34 of the inner diameter portion 38 of the ring 24. These grooves 48 are hydrodynamic pumping elements whose construction will be described elsewhere herein.

FIG. 2 also shows that a cylindrical elastomeric body 50 is formed on the outer surface 52 of the flange 28, and that this body includes a plurality of ribs 54 giving a contoured character to the outside diameter ("OD") mounting surface 56 of the body 50. The elastomer used to form the body 50 is also used to provide a generally annular bumper element 58 having a flat nose portion 60 and being of generally rectangular cross-section. In use, the nose 60 surface may be used to abut a portion of a sealed mechanism or an associated companion flange as referred to elsewhere herein.
Another element of the seal is the annular collar 26 of elastomeric material used to secure the sealing ring 24 to the casing 22. It includes axially inner and outer bonding body portions 62, 64 of thin cross-section, which are spaced apart by the thickness of the flange 32 and which meet at their inner diameters to form an annular center section 66 of the collar 26. A portion of the collar web 26 lying inwardly of the center section 66 is seen to be of increased width and to form an annular mounting pad surface 68 which lies along and is firmly bonded to the intermediate or bonding band portion 46 of the reverse side surface 38 of the resin sealing ring 24.

FIG. 12 shows the seal assembly 20 in an installed position of use, in a sealed mechanism 70 which include a machine member 72 having a counterbore surface 74 which snugly receives the ribs 54 on the outer diameter of the mounting body 50, thus locating the axial flange 28 of the seal casing 22. The counterbore 74 also receives an outer race 76 locating a plurality of tapered roller bearings 78 which also roll along an inner race 80, pressed over the outer diameter surface 82 of a rotary shaft 84.

The installation also includes a spacer 86 or pressed over the shaft 84 and providing an end face surface 88 for engagement by the auxiliary lip 44, as will appear. The sealed region 90 is atleast partially filled with oil or grease, and has its principal parts exposed to such lubricant in liquid or vapor phase. A primary seal band 40 is formed where the inner diameter portion 38 of the seal ring 24 is slightly deformed or "bell-mouthed" so as to lie closely over, and impart a
radial compressive load to the exterior surface 82 of the rotary shaft 84. Here the grooves 48 lie along and face the sealed surface. The primary seal band 40 is formed by contact between the active or inner surface 34 of the ring 24, while the reverse surface 38 is used for bonding and, except for being fluid, gas and vapor impermeable, does not per se form an active sealing surface.

The end surface 88 on the spacer 86 engages or is closely spaced from the nose surface 60 c of the spacer 58. The auxiliary lip 44 is dimensioned so as to be placed under a slight axial end face load in this installed position, thereby drawing its outer diameter 42 somewhat outwardly and also into a "bell-mouthed" position, enabling it to obtain an maintain a sliding seal fit with the end face surface 88.

FIG. 13 shows an alternate form of seal 20a in a mechanism 70a having a sealed region 90a. This seal includes the shaft 84a, the exterior surface 82a and the bearings and races 76-80a, etc. of its counterpart in FIG. 12. However, the seal of FIG. 13 includes an auxiliary sleeve 92 with an axially extending mounting Flange 94 for engaging the seal ring 24, a radius portion 96 and a radially extending combination unitizing flange and auxiliary lip companion flange 98 as well as a small unitizing curl 100. A wear surface 102 lies on the outer surface of the flange 94 while a ribbed elastomeric mounting body 104 is bonded to the inner surface of this flange 94. In use, the body 104 is press fit over the surface 82a during installation of the seal. The nose portion 60a of the spacer 58a
provides the same function as its counterpart FIG. 12, except that it engages the inner or wearing surface 106 of the flange 98, as does the auxiliary lip surface 44a formed on the outer diameter 42a of the primary seal ring 24a. The seal assembly 20a is thus a unitized seal.

FIGS. 4-8 show certain steps in the preferred method of forming the seal ring of the invention. Referring to FIG. 4, there is shown a cylindrical fluoro carbon billet 200 which is preferably made from a glass fiber filled, high polymer of tetrafluoroethylene (TFE), a tough solid material having a lubricious surface. The billet 200 has inner side walls 202 and outer side walls 204, made to any convenient length by known methods such as sintering.

The sealing rings 24 (FIGS. 1-3 and 12-13) of the invention are made by chucking the billet 204 in a suitable tool and rotating it while a knife 206 is used to cut a tapered edge or bevel 208 on the billet 200. Thereafter, as shown in FIG. 6, the knife is moved axially downwardly and the process repeated until a plurality of rings 24-1, 24-2, 24-3, etc. are cut or "skived" from the billet 200. These rings, 24-1 to 24-3, are of the general frusto-conical shape shown, having a cylindrical inner edge 210, a cylindrical outer edge 212, and radial inner and outer face surfaces 214, 216.

Thereafter, one or more hydrodynamic grooves are formed into the seal rings 24 by cutting with a knife, awl or like instrument, or by coining. FIG. 7 shows a ring coining die 220, which includes a support fixture 222, having a tapered, upwardly directed conical...
having a relieved inner surface 234 and a contoured end generally designated 236 with (FIG. 8) a radially inner land-and-groove portion 238 and a radially outer, flat surface portion 240.

The inner portion 238 includes a plurality of sharpened lands 242 spaced apart from each other by grooves 244. The inner diameter 212 of the ring 24 is sized so as to lie in a notched annular area 246 formed by cooperation between the die parts 222, 228. When the ring forming die 220 is closed under high force or pressure, the lands 242 form grooves in the inner diameter margin or active surface portion 34 lying on the inner diameter 38 of the ring 24.

FIGS. 4-8 thus show a preferred simple, and effective method of making and coining frusto-conical rings suitable for use with the invention.

FIGS. 9-11 show an assembly 300 for the molding completed seals using the preformed casing 22 and a precut but not coined ring 24. The mold assembly 300 includes a top plate 302, an inner core 304, an outer core 306, a sprue plate 308, and a seal ring holddown plate 310. FIG. 9 also shows a drawn or stamped casing generally designated 22 positioned between the cores 304, 306 and the sprue plate 308, with its axial flange 28 extending downwardly and its radial flange 32 being shown to present what will become an axially inwardly directed surface 33 lying downward for support on the end face portions 312 of a plurality of stamping support bosses 314.

12. A fluid seal assembly as defined in Claim
The core 304 includes a center recess 316 for receiving a locating pin or dowel 318 for alignment purposes, and includes portions which help define both the outer and inner seal cavities 320, 322. These include an outermost annular surface 324, surmounted by a locating bead 326. Located radially inwardly of the stamping support bosses 314 are contoured surfaces 328 adapted to form a portion of what will become the web 66 in the finished seal. A tapered or beveled resin ring support surface 330 is also provided and terminates at its inner edge in an annular groove 332, upwardly and inwardly of which lies a tapered mating or registration surface 334.

The outer core 306 includes a lowermost annular surface 336 above which is a grooved or ribbed surface 338 adapted to form the ribs 54 in the outer diameter of the seal casing 22.

The sprue plate 308 is preferred for injection molding and includes, in addition to the lower flat surface 340 adapted to lie upon the surface 341 of the core 306, a tapered sprue 342 terminating at an inlet 344. It will be understood that the sprues 342 are tapered passages spaced apart from each other about the periphery of the cavity formed in part by the sprue plate 308, and that radially inwardly thereof is a mold element 344 having a generally cylindrical registration surface 346 below which is a tapered surface 348 having the important function of engaging the outer diameter portion 42 of the seal ring 24. Contoured surfaces, including the surface 350 and 352 also define additional portions of the outer and inner mold cavities 320, 322.
The seal ring holddown element 310, includes opposed flat surfaces 354, 356 enabling it to be stacked with the other elements when the mold is closed. In addition, it includes a upper sprue passage 358 and an annular formation 360 terminating in a pair of beveled annular surfaces 362, 364. The surface 364 abuts or lies closely spaced apart from its counterpart surface 334, and the surface 362 lies along and engages the active surface 34 of the ring 24 when the mold is closed. A plurality of coining formations 366 are shown as lying along the radially inner margin of the surface 362, for in-mold coining.

The outer margin 368 of the surface 362 is in vertical registry with the support surface 34 for the outer diameter 42 of the ring 24. The mold top plate includes the downwardly directed flat surface 370 adapted to engage the surface 346 on the mold part 310 as well as a plurality of radial grooves 372 standing outwardly from and communicating with the main sprue passage 374, through which fluent elastomeric material passes as rubber is injected during manufacture. A plurality of O rings 376, 376a, 376b, are shown to be provided in the respective mold sections and each is received within a groove 378, 378a, etc. in a conventional manner to insure sealing and/or vacuum control when the mold is closed.

FIGS. 10 and 11 show the mold 300 with the elements in the closed position and the stamping 22 supported on the bosses 314, and its radially innermost surface 35 lying alongside and being engaged with the mold cavity forming surface 324. The bead 326 serves to center the stamping 22. With the mold closed, the
construction of the cavity 320 forming the ring around
the cylinder or body 50 of elastomer around the
outermost portion of the flange 28 can be seen, as can
the contours of the cavity 322 in which the various web
portions 62, 64 and the collar 66 are formed, which
elements terminate at their radially innermost portions
in the annular mounting or bonding pad 68 which extends
around the intermediate bonding band portion 46 of the
ring 24 so as to fix it securely in relation to the
casing.

Provision of the groove 332, in combination
with the pinching action provided between the surfaces
348 and surfaces 368 on the sprue plate 308 and the
holddown plate, respectively, insure that the ring 24 is
held in place properly, and further insure that "flash"
will not flow onto the surface 348, and hence will not
lie along the reversed surface portion of the auxiliary
lip-forming outer diameter 42 of the seal ring 24.

The mold surface 352 (FIGS. 10 and 11) is
spaced slightly apart from the upper surface of the
flange casing 22; this spacing permits fluent rubber to
flow from the sprue inlet 344 into the cavity 322.

Customarily, there are also provided hold down pins or
the like (not shown) to bear against the upper surface
of the casing and hold it in place during molding.

Being known to those skilled in the art and not forming
a part of this invention, these elements are not shown
or described in detail. Likewise, the land 314 is
discontinuous or has circumferentially spaced apart
portions permitting elastomer flow between such
portions.

- 13 -
FIG. 11 shows the above elements with the mold closed, with the rubber overflow or "dump" areas 380 filled with rubber and with the mounting diameter body 50 and the annular collar neck portion 66 of the rubber as well as the remaining elements being formed as shown in FIG. 3.

Another feature of the invention is that the land and groove surface 366 on the radially inner portion of the tapered surface 362 on the hold down ring 310 also serves to coin the plurality of hydrodynamic grooves 48 in the radially inner diameter margin 38 of the seal casing 24. This is done if the grooves are not preformed by the apparatus of FIGS. 7 and 8.

Accordingly, the mold of the type shown may accommodate and center the casing 22, and with the seal ring 24 inserted therein when the mold is closed, the ring is positioned by the groove 366 and pinched off by the surface 368 so as to remain positioned to accept the high pressure flow of fluent rubber into the cavities 320, 322 to form a seal which includes an outer diameter mounting body portion made from an elastomer as well as a mounting or locating collar portion and mounting pad formation which provides excellent locating and good flexibility in use.

The seal of the invention is highly advantageous for several reasons. First, the formation of the primary resinous sealing ring in the manner illustrated enables it to be a preformed frusto-conical tapered or "bell-mouthed" configuration which is ideal for engaging an associated shaft. It achieves this shape in the relaxed or as-formed condition. This not only simplifies assembly, but provides a graduated load extending from a smaller hydrodynamic formed as groove done in the past the active surface hydrodynamic element from the active subjected to a good static load or radial particularly with a hydrodynamic pattern from the active surface. This form of a good static load or radial particularly with this form of a good static load or radial particularly with an ability to use or washer to preform from the same primary seal is an excluder lip that can engage an form of exclusion other than the primary ring. An advantage of the resin ring advantageous which extends...
entirely overcome. However, TFE and related low friction materials, are still of interest as their advantages have become more widely known.

extending from the innermost diameter gradually along and to a larger diameter portion of the bevel. The hydrodynamic formations may be, and preferably are, formed as grooves rather than lands as has commonly been done in the past. This allows greatly reduced wear on the active surface of the ring, inasmuch as the hydrodynamic elements or vanes do not extend outwardly from the active surface of the material where they are subjected to wear. The controlled radial compressive load or radially inwardly directed sealing force, particularly with its graduated pressure effect, enables a good static seal to be maintained, as does the formation of the narrow pitch spiral or helix for hydrodynamic purposes. While this narrow pitch or like spiral is not a necessary feature of the invention, it is a pattern which has been particularly successful with this form of seal.

Another feature of the invention is the ability to use a single piece of TFE resin sealing ring or washer to provide an auxiliary or excluder lip seal from the same material. The tapered construction of the primary seal ring as formed permits the auxiliary or excluder lip to be formed on a larger diameter where it can engage an end face surface. This is a preferred form of excluder lip which preferably rides on a surface other than the same shaft which is being sealed by the primary ring. The frusto-conical or tapered construction is ideal from this standpoint.

Another advantage of the invention is that the resin ring may be bonded and located in a highly advantageous manner by the provision of the novel collar which extends between the webs of elastomer extending
adapted to form a primary seal with an associated machine element and with an intermediate portion of one surface being bonded by an annular elastomeric collar along the faces of the radial casing flange and the annular band on the reverse or inactive surface of the resin. This collar provides firm but flexible location of the lip as a whole. It provides an excellent bonding surface but it need not undergo significant bending motion leading to premature failure in use. It readily accommodates radial runout and provides a portion of greatly increased flexibility in relation to the modulus of the resin. Accordingly, in a slightly off centered or like shaft which is essentially round but which is not mounted concentrically with the counterbore, the eccentricity or radial runout may be accommodated by the elastomer while the resin ring, which is not inherently as flexible, or at least has a greater modulus, can follow the seal surface without undergoing high rate deflection. The collar may be made of any desired thickness, but preferably is relatively thin. It thus provides good centering action because of its geometry, while still providing a relatively thin cross section.

It is believed that the flexible collar which is formed of elastomer and, in effect, intersects the surface of the primary seal ring at a substantial angle is an important novel feature of the invention for the type of locating action is provides. The seal is ideally adapted to both unitized and nonunitized constructions, and the methods used to make it are highly advantageous. FIGS. 9-11, show that the seal can be made in a single operation — coining of the hydrodynamic surfaces on the primary ring and molding both a rubber OD and the bonding collar and pad. The seal design is suitable for incorporating a rubber OD and is also readily suited to the use of a companion member and being in communication with said material inlet whereby an outer diameter elastomeric body may be adapted to revolve radially as the shaft 8 rotates. In some advantages of a seal of the invention in terms of external seal performance, it is not necessary ring by elaborating mandrels and

In "spiral," or hydrodynamic surface 34 of In that a variety of the return of the shaft, or to the sealed rotates and t In either case to "pump" the fluid into the seal seal is illustrated, example, in illustrate t "starts" thin.
FIG. 7 shows the coining die used in making sealing rings:

flange or unitizing element which may itself have a rubber ID (inside diameter). The seal may be readily adapted to reverse type installations where the seal acts radially outwardly, or wherein the part illustrated as the shaft 84 is stationary and the machine part 72 rotates. In such cases, centrifugal forces may be taken advantage of as a sealing parameter. In use, the seal of the invention has proved extremely advantageous in terms of extended wear, ease of manufacture outstanding seal performance and particularly, ease of manufacture. It is not necessary to preform the fluoro carbon resin ring by elaborate processes or form it by the use of mandrels and other techniques known to the prior art.

In the above description, the expression "spiral," or "helix" may be used to describe the hydrodynamic formations on the active or seal band surface 34 of the primary ring 24 of the seal.

In this connection, it should be understood that a variety of patterns are effective to bring about the return of oil to the sealed cavity upon rotation of the shaft, or, of course, return lubricant or the like to the sealed cavity in the event it is the seal which rotates and the shaft or the like which stands still. In either case, relative motion between the two serves to "pump" the oil, grease, or other sealed fluid back into the sealed region. In the use of fluorocarbon seals, it has generally been found that a screw thread pattern of fine pitch is preferred, and this form of seal is illustrated in FIGS. 1-3 of the drawings, for example, in these figures, the drawings are intended to illustrate the use of a helix having two or more "starts" that is, two or more points at which one of the
grooves 48 intersects the innermost edge portion 210 of the actual seal ring 24. In such case, oil entering any one particular groove along the seal band 40 will be in communication with oil in the sealed region at the point where the "start" occurs, that is, where the groove 48 intersects the axially innermost edge 210 of the seal ring. In some cases, there may be only a single start, as shown or implied in FIG. 12, for example, but the number of starts or intersections is not a material part of the invention, such features per se being known to the prior art.

Another form of hydrodynamic formation which has proved successful in use is one wherein the formation comprises a part of a spiral of a greatly differing pitch or taper, and in the oil seal art, such formations are often referred to as "helices", that is, as elements of a helix pattern. These separate elements, sometimes also referred to as "vanes", "ribs", or the like, are illustrated, for example in U.S. Patents Nos. 3,640,542 and 3,790,180.

Still further, other hydrodynamic formations, such as triangles, sinuous patterns, or the like may also be used, depending on the preference of the designer.

However, a preferred feature of the present invention is that the formation, particularly if it be of the screw thread, spiral, or helix form, be debossed or grooved into the surface of the seal ring, thereby diminishing wear considerably. In other words, when the major wearing surface 40 contacting the shaft or other sealed surface is free from upstanding or embossed formations, extended life in the use of the seal is made possible. In other words, they would be
locating collar generally designated 26. Referring now in particular to FIG. 2, it is shown that the casing 22 includes an axially extending mounting flange portion 28.

possible. If the formations were raised, for example, they would be exposed to premature wear.
The claims define:

1. within and excluding a region defined generally annular and adapted to be in relation, said elastomeric machine element an elastomeric relation, said fluorocarbon portion fora being, in its form and thin and enlarged condition apart, general ring surfaces, being an act portion formed portions, said of said second tight dynamic outer surface portion there relation to further include as a bonding positioning said casing bonding band portion exposed to primary see portion 38 "bell-mouth".

The claims define:

1. within and excluding a region defined generally annular and adapted to be in relation, said elastomeric machine element an elastomeric relation, said fluorocarbon portion fora being, in its form and thin and enlarged condition apart, general ring surfaces, being an act portion formed portions, said of said second tight dynamic outer surface portion there relation to further include as a bonding positioning said casing bonding band portion exposed to primary see portion 38 "bell-mouth".
The claims defining the invention are as follows:

1. A fluid seal assembly for retaining fluid within and excluding foreign materials from, a sealed region defined by said seal and first and second, relatively movable machine elements, said seal assembly comprising, in combination, a casing element of generally annular form, having a mounting portion adapted to be received in fixed relation with said first machine element and a bonding portion adapted to receive an elastomeric element bonded thereto in fluid tight relation, said seal assembly also including a resinous fluorocarbon primary seal ring unit, said seal ring unit being, in its unstressed condition, of tapering annular form and thin cross-section and being defined by reduced and enlarged diameter end surfaces and by closely spaced apart, generally parallel, radially inner and outer seal ring surfaces, with one of said inner and outer surfaces being an active surface having a primary seal band portion formed thereon adjacent one of such end portions, said seal band being adapted to engage a part of said second machine element in substantially fluid tight dynamic relation, and the other of said inner and outer surfaces being a reverse surface having one portion thereof disposed in use in generally facing relation to said sealed region, said reverse surface further including a circumferential band portion acting as a bonding surface, and an elastomeric flexible positioning collar unit having one portion bonded to said casing and another bonding portion bonded to said bonding band on said primary ring, and a principal body portion extending between said bonded portions so as to positively but resiliently locate said primary seal ring within said casing.
2. A fluid seal assembly as defined in Claim 1 wherein said active surface on said seal ring unit is a radially inwardly directed surface.

3. A fluid seal assembly as defined in Claim 2 wherein said resinous fluoro carbon is a polymer of tetrafluoroethylene.

4. A fluid seal assembly as defined in Claim 1 wherein said casing element mounting portion includes an axially extending flange and wherein said bonding portion of said casing element comprises a generally radially extending flange.

5. A fluid seal assembly as defined in Claim 1 wherein said tapering annular form of said primary ring is a generally frusto-conical form.

6. A fluid seal assembly as defined in Claim 1 wherein said primary seal ring unit is formed by cutting a frusto-conical ring of thin cross-section from a cylindrical billet of fluoro carbon material.

7. A fluid seal assembly as defined in Claim 1 wherein said primary seal ring unit includes, at least on said seal band portion thereof, at least one hydrodynamic formation being adapted, upon relative rotation between said seal band and one of said machine elements, to pump lubricant into said sealed region along the interface between said seal band and a portion of said second machine element.
8. A fluid seal assembly as defined in Claim 1 wherein said primary seal ring unit includes, adjacent its enlarged diameter end, an auxiliary seal band formed on the portion of said active surface opposite said primary seal band, said auxiliary seal band being adapted to form an excluder seal in cooperation with a generally radially extending surface of said second machine element.

9. A fluid seal assembly as defined in Claim 1 wherein said primary seal band includes hydrodynamic formations forming a part thereof, said formations being in the form of grooves formed in said seal band.

10. A fluid seal assembly as defined in Claim 1 wherein said bonding portion of said casing element is formed on a radial flange of said casing, and includes the inner margins of the axial end faces of said casing and the radially innermost surface of said casing, with said portion of said collar which is bonded to said casing completely covering and being bonded to said margins and innermost surface.

11. A fluid seal assembly as defined in Claim 1 wherein said bonding surface on said primary seal ring lies on the radially outwardly directed surface of said ring and is disposed generally axially centrally thereof.
12. A fluid seal assembly as defined in Claim 1 wherein said seal band has formed in the surface thereof a hydrodynamic formation in the form of a spiral groove having a plurality of turns lying within the portion of the seal band which contacts an associated seal member in use.

13. A fluid seal assembly as defined in Claim 1 wherein said hydrodynamic formation comprises a plurality of spiral grooves, each of said grooves having a lead portion intersecting said end surfaces of seal ring at the axially innermost edge of said seal band.

14. A fluid seal assembly for retaining fluid within and excluding foreign materials from, a sealed region defined by said seal and first and second, relatively movable machine elements, said seal assembly comprising, in combination, a casing element of generally annular form, having a mounting portion adapted to be received in fixed relation with said first machine element and a bonding portion adapted to receive an elastomeric element bonded thereto in fluid tight relation, said seal assembly also including a resinous fluorocarbon primary seal ring unit, said seal ring unit being, in its unstressed condition, of tapering annular form and thin cross-section and being defined by reduced and enlarged diameter end surfaces and by closely spaced apart, generally parallel, radially inner and outer seal ring surfaces, with one of said inner and outer surfaces being an active surface having a primary seal band portion formed thereon adjacent one of such end portions, said seal band being adapted to engage a part
of said second machine element in substantially fluid
tight dynamic relation, and the other of said inner and
outer surfaces being a reverse surface having one
portion thereof disposed in use in generally facing
relation to said sealed region, said reverse surface
further including a circumferential band portion acting
as a bonding surface, and an elastomeric flexible
positioning collar unit having one portion bonded to
said casing and another bonding portion bonded to said
bonding band on said primary ring, and a principal body
portion extending between said bonded portions so as to
positively but resiliently locate said primary seal ring
within said casing.

15. A composite seal unit for shafts and the
like adapted to be positioned with respect to a first
machine member and for forming a fluid tight seal with a
relatively rotatable portion of a second machine member,
said seal unit comprising, in combination, an annular
primary seal ring unit made from a resinous fluorocarbon
material, said ring having, as formed, axially inner and
outer ends and a tapered sealing surface extending
between such ends, with a portion of the surface lying
adjacent the reduced diameter end forming a seal band
adapted to engage said second machine member in fluid
tight rotary sealing engagement, a seal casing made from
a relatively rigid material and adapted to have a
portion thereof received in fluid tight relation with
respect to said first machine member, and an elastomeric
collar unit extending between and joining a portion of
said casing to a portion of said primary seal ring, said
collar having a portion thereof bonded to a portion of
said resinous ring surface lying opposite said sealing surface thereof, whereby said ring is positively but flexibly positioned within said casing unit and whereby, in use, a sealing force is provided between said seal band and said second machine member, which sealing force increases progressively in the direction in which said ring tapers toward a reduced diameter.

16. A fluid seal unit comprising, in combination an annular casing made from a relatively rigid material of a given thickness, having a mounting portion and a bonding portion, each portion formed at least in part by opposed, spaced apart casing surfaces, and a primary sealing ring made from a resinous fluorocarbon material, said ring lying generally radially inwardly of said casing and including a body portion of generally frustoconical configuration in its unstressed condition, said ring including an active surface portion directed generally axially outwardly of a sealed region with which said seal is to be associated in use, and partially radially inwardly of said region, and a static surface portion of increased diameter and spaced just outwardly from said active surface so as to provide a surface directed generally radially outwardly and towards a portion of said sealed region, and to further provide a circumferentially extending bonding band of substantial width, and an annular flexible elastomeric locating collar for said sealing ring, said collar having a radially inwardly directed surface portion lying along and being bonded to said primary ring bonding band in fluid tight relation, at least one web of elastomer joined to and extending along at least
one of said surfaces comprising said bonding portion of said casing, and a center portion joined to and extending between said ring bonding band and said casing bonding portion to positively but flexibly position said sealing ring with respect to said casing.

17. A method of manufacturing a composite seal assembly, said method including the steps of cutting at least one primary sealing ring in generally frusto-conical form from a cylindrical billet of a resinous fluorocarbon material so that said ring includes first and second principal surface portions, each being inclined with respect to the axis of said billet, one of such surfaces being a first surface directed generally radially inwardly and in a first axial direction, and the second surface being closely spaced apart from the first surface and being directed generally radially outwardly and in an opposite axial direction, supporting the ring thus formed against movement, disposing a relatively rigid annular casing unit adjacent said ring with at least a portion of said ring lying within a central opening in said casing, aligning said casing so as to have one margin thereof in generally radially aligned relation with a portion of said resin ring, and bonding said casing element to said seal ring by molding an elastomeric collar of thin cross-section such that said collar extends between and bonds portions of said second surface of said ring and a part of said casing to each other in fluid-tight relation.
18. A method as defined in Claim 17 wherein said casing unit includes an axially extending mounting surface and a radially extending flange unit, with said flange unit having an inner margin on each of its axially inner and outer surfaces, and wherein said portion of said collar bonded to said casing is bonded to both of said casing inner margins so as to form a thin web therealong.

19. A method as defined in Claim 17 wherein the portion of said second ring surface to which said collar is bonded comprises an annular band of frusto-conical configuration lying generally axially centrally of said ring and comprises not more than about half of the surface of said ring.

20. A method as defined in Claim 17 which also includes the step of forming a cylindrical mounting body of said elastomer on said casing so as to provide a rubber mounting surface thereon.

21. A method as defined in Claim 17 wherein said ring is positioned with one axial end thereof being axially spaced apart from one end surface portion of said casing so as to provide, in use, an excluder lip end portion on said ring, said excluder lip end being adapted to engage an associated machine member to form an auxiliary seal therewith.

22. A mold assembly for manufacturing a fluid seal, said mold assembly including a first, relatively fixed mold part having surfaces thereon defining at
least in part the shape of an article to be manufactured, said surfaces including a radially innermost, generally frusto-conical surface having radially inner and outer margins, with said radially innermost margin being adapted to engage one surface of a resinous seal ring placed therein, at least one surface also defining one portion of a cavity for forming an annular collar, and casing support means in the form of a generally radially extending additional annular surface, a second, intermediate mold member having generally annular surfaces directed oppositely to said additional annular surface and in overlying relation to a casing received in said mold, said intermediate member also including at least one inlet for fluent elastomeric material and further including surfaces defining an additional portion of said collar-forming cavity, and a third mold member having a generally frusto-conical surface portion adapted to engage a margin of said seal ring on a face thereof opposite the face engaged by said innermost margin of said fixed mold part, said third mold member having coining land and groove formations thereon for cold forming hydraulic grooves in said resinous ring when said mold is in the fully closed position thereof, said mold also permitting, in the closed position thereof, flow of fluent elastomer to fill said collar-forming cavity and bond said casing to said ring unit.

23. A mold assembly as defined in Claim 22 which further includes means fixed with respect to said first fixed mold part and which define at least portions of a cavity lying radially outwardly of said casing
molding both a rubber OD and the bonding collar and pad. The seal design is suitable for incorporating a rubber OD and is also readily suited to the use of a companion member and being in communication with said material inlet whereby an outer diameter elastomeric body may be formed on said casing at the same time said collar unit is being formed.

24. A method of manufacturing an oil seal, said method comprising cutting a frusto-conical ring of thin cross-section from a cylindrical billet of resinous fluorocarbon material, placing said ring in a holder having frusto-conical surfaces registering with and in supporting position to one surface of said resinous ring, coining hydrodynamic formations in the surface of said fluorocarbon ring opposite the surface supported by said first mold part by movement of a coining die into contact with said surface under a high force, positioning said ring within an opening in an annular seal casing element, and bonding said ring to said element by the formation of an elastomeric collar having an inner margin portion bonded to the portion of said ring surface which was supported by said holder and another margin bonded to a portion of said seal casing, whereby said ring is firmly but resiliently supported generally centrally of said seal casing by a resilient annular collar, and whereby hydrodynamic formations are formed on a generally radially inwardly directed surface of said seal ring for contact with an associated machine member.
25. A fluid seal assembly, a composite seal unit, a fluid seal unit, a method of manufacturing a composite seal assembly, a mold assembly or a method of manufacturing an oil seal substantially as hereinbefore described with reference to the accompanying drawings.

D A T E D, this 18th day of December, 1984.

CHICAGO RAWHIDE MANUFACTURING COMPANY
By its Patent Attorneys:
CALLINAN AND ASSOCIATES
major wearing surface 40 contacting the shaft or other
sealed surface is free from upstanding or embossed
formations, extended life in the use of the seal is made
portion formed thereon adjacent one of such end portions, said seal band being adapted to engage a part