COMMONWEALTH OF AUSTRALIA
Patents Act 1952
APPLICATION FOR A STANDARD PATENT

XXWE YOSHIDA KOGYO K.K. a Japanese company of No., 1, Kanda Izumi-cho, Chiyoda-ku, Tokyo, Japan

hereby apply for the grant of a Standard Patent for an invention entitled
METHOD OF AND APPARATUS FOR FORMING ELEMENT-FREE SPACES IN CONTINUOUS SLIDE FASTENER CHAIN WITH FLY STRIPS

which is described in the accompanying complete specification.

This application is made under the provision of Part XVI of the Patents Act 1952 and is based on an application for a patent or similar protection made
in Japan on 9 December 1983 (No. 58-233225)

My/Our address for service is: F.E. RICE & CO.,
25A Montague Street,
Balmain, NSW 2041

Dated this 27th day of November 1984.

YOSHIDA KOGYO K.K.

By: Patent Attorney
Commonwealth of Australia
The Patents Act 1952

DECLARATION IN SUPPORT

In support of the (Convention) Application made by: Yoshida Kogyo K. K.

for a patent for an invention entitled: "APPARATUS FOR FORMING ELEMENT-FREE SPACES IN CONTINUOUS SLIDE FASTENER CHAIN WITH FLY STRIPS"

I, Ichiro Agata, of and care of the applicant company do solemnly and sincerely declare as follows:

or

b) I am authorised by the applicant(s) for the patent to make this declaration on its behalf.

Delete the following if not a Convention Application.

The basic application as defined by section 141(XX) of the Act was made

in Japan on December 9, 1983

by the present applicant company

The basic application referred to in this paragraph is the first application made in a Convention country in respect of the invention the subject of the application.

b) Shinichi Kojima of 4024, Mikkaichi, Kurobe-shi, Toyama-ken, Japan, and Kiichiro Ishikawa of 3063 Balearic Drive, Marietta, Georgia 30067, U.S.A.

are the actual inventor(s) of the invention and the facts upon which the applicant company is entitled to make the application are as follows: The applicant company is the assignee of the invention from the said actual inventors.

Declared at: Tokyo, Japan, this 9th day of November 1984

Signed Ichiro Agata Status Director

Yoshida Kogyo K. K.

Declarant's Name

F. B. RICE & CO PATENT ATTORNEYS

This form is suitable for any type of Patent Application. No indication required.
1. A method of forming element-free spaces in a continuous slide fastener chain at ends of successive fly strips sewn by at least one line of stitching to the slide fastener chain having a pair of intermeshed rows of coupling elements, said method comprising the steps of:

(a) intermittently feeding a continuous ungapped slide fastener chain longitudinally through a gap-forming station, with the fly strips folded about the stitching to such an extent that the interengaged rows of coupling elements are fully exposed;

(b) detecting portions of the intermeshed rows of coupling elements to be removed at said gap-forming station by
(1) temporarily providing a relatively large space between confronting ends of an adjacent pair of the folded fly strips when the confronting ends arrive at a first point which is spaced a first distance upstream from said gap-forming station,

(2) determining whether the longitudinal extent of the thus provided space is larger than a predetermined distance,

(3) sensing the departure of the trailing end of a preceding one of the adjacent pair of the fly strips from said first point regardless of said determination of the longitudinal extent of the space, and

(4) thereafter sensing the arrival of the leading end of the succeeding fly strip at said first point only when the longitudinal extent of the space is larger than said predetermined distance;

(c) stopping the feeding of the chain when the chain has advanced through said first distance after said sensing of the trailing and leading ends; and

(d) removing the thus detached portions of the intermeshed rows of coupling elements at said gap-forming station while the chain is at rest.
Method of and apparatus for forming element-free spaces in continuous slide fastener chain with fly strips

The following statement is a full description of this invention including the best method of performing if known to us:
The present invention relates to automation of the manufacture of trouser closures for fly openings, and more particularly to a method of and an apparatus for forming element-free spaces or gaps in a continuous slide fastener chain at its portions corresponding to ends of successive fly strips sewn to the chain.

In the manufacture of trouser closures for fly openings, a continuous slide fastener chain, to which a succession of fly strips is sewn end to end in substantially abutting relation with only a very small space between an adjacent pair of the fly strips, is fed to an intermittently operating device for forming element-free spaces or gaps in the slide fastener chain. To this end, it has been customary practice to detect ends of the successive fly strips in order to automatically control the feeding of the chain as well as the intermittent operation of the gap-forming device. Such end detection is achieved by first folding the fly strips about a line of stitching to
expose a pair of intermeshed rows of coupling elements of the chain as the latter advances, then providing temporarily a substantially V-shaped space between confronting ends of two adjacent fly strips prior to the arrival of the confronting ends at the gap-forming device, and finally sensing the presence of the V-shaped space when the trailing end of a preceding one of the adjacent two fly strips passes the light beam of a photoelectric sensor. However, such trailing end detection system is not suitable in applications wherein the fly strips are sewn to the slide fastener chain at random spaced fashion. More particularly, when an adjacent pair of such fly strips is sewn to the chain with a relatively large space between confronting ends of the fly strips, an element-free space or gap formed in the chain would extend across only the trailing end of a preceding one of the two fly strips and terminate short of the leading end of the succeeding fly strip. With the slide fastener chain having the thus formed element-free space, automated operation in subsequent processing is difficult to achieve.

The present invention seeks to provide a method of and an apparatus for forming element-free spaces in a continuous slide fastener chain at portions corresponding precisely to ends of successive fly strips stitched to the chain, regardless of the
spaceing between adjacent fly strips.

The present invention further seeks to provide a method capable of detecting portions of a slide fastener chain to be removed or gapped even when a relatively large space is defined between confronting ends of an adjacent pair of successive fly strips sewn to a slide fastener chain.

A further object of the present invention is to provide an apparatus comprising a sensor means for carrying out the above-mentioned detection.

According to a first aspect of the present invention, there is provided a method of forming element-free spaces in a continuous slide fastener chain at ends of successive fly strips sewn by at least one line of stitching to the slide fastener chain having a pair of intermeshed rows of coupling elements, said method comprising the steps of: intermittently feeding a continuous ungapped slide fastener chain longitudinally through a gap-forming station, with the fly strips folded about the stitching to such an extent that the interengaged rows of coupling elements are fully exposed; detecting portions of the intermeshed rows of coupling elements to be removed at said gap-forming station; stopping the feeding of the chain when the chain has advanced through said first distance after said sensing of the trailing and leading ends; and removing the thus detached portions of the
intermeshed rows of coupling elements at said
gap-forming station while the chain is at rest,
characterized in that said detecting includes the steps
of temporarily providing a relatively large space
between confronting ends of an adjacent pair of the
folded fly strips when the confronting ends arrive at a
first point which is spaced a first distance upstream
from said gap-forming station, determining whether the
longitudinal extent of the thus provided space is
larger than a predetermined distance, sensing the
departure of the trailing end of a preceding one of the
adjacent pair of the fly strips from said first point
regardless of said determination of the longitudinal
extent of the space, and thereafter sensing the arrival
of the leading end of the succeeding fly strip at said
first point only when the longitudinal extent of the
space is larger than said predetermined distance;

According to a second aspect of the present
invention, there is provided an apparatus for forming
element-free spaces in a continuous slide fastener
chain at ends of successive fly strips sewn by at least
one line of stitching to the slide fastener chain
having a pair of intermeshed rows of coupling elements,
said apparatus comprising: a power-driven feed unit for
intermittently feeding a continuous ungapped slide
fastener chain with the successive fly strips sewn
thereeto, along a combined path including a pair of
straight paths joined at a fixed turning point; a
deflector disposed on said combined path and extending
along said pair of straight paths across said turning
point for folding the fly strips, as they pass said
deflector, to such an extent that the intermeshed rows
of coupling elements are fully exposed; said first and
second straight paths being inclined with respect to
one another for shifting the direction of movement of
the fly strips at said turning point so as to provide
temporarily a relatively large space between
confronting ends of an adjacent pair of the folded fly
strips; a sensor assembly disposed adjacent to said
fixed turning point for detecting portions of the rows
of coupling elements to be removed; a stopper under the
control of said sensor assembly and operatively
connected to said feed unit for interrupting its
feeding when the chain has advanced through a first
distance after the sensing of the trailing and leading
ends; and a power-driven gapping device disposed on one
of said pair of straight paths at said first distance
downstream from said fixed turning point and
operatively controlled by said stopper for removing
portions of the intermeshed rows of coupling elements
while the chain is at rest, characterized in that said
sensor assembly determines whether the longitudinal
extent of said space is larger than a predetermined
distance and first sense the departure of the trailing
end of a preceding one of the adjacent pair of the fly strips from said turning point, regardless of the determined longitudinal extent of said space, and thereafter sense the arrival of the leading end of the succeeding fly strip at said turning point only when the longitudinal extent of said space is larger than said predetermined distance;

Many other advantages and features of the present invention will become manifest to those versed in the art upon making reference to the detailed description and the accompanying sheets of drawings in which a preferred structural embodiment incorporating the principles of the present invention is shown by way of illustrative example.

Figure 1 is a schematic fragmentary plan view of a slide fastener chain with a succession of fly strips sewn thereto, the chain having element-free spaces or gaps formed according to the present invention;

Figure 2 is an enlarged fragmentary perspective view of an apparatus according to the present invention, with parts broken away, the view showing the manner in which confronting ends of two adjacent fly strips connected end to end are detected by a sensor assembly;

Figure 3 is a schematic fragmentary side elevational view corresponding to Figure 2; and

Figure 4 is a view similar to Figure 3, but
showing the manner in which confronting ends of two adjacent fly strips spaced at a relatively long distance are detected by the sensor assembly.

As shown in Figure 1, a slide fastener chain 10 made according to the present invention includes a series of element-free spaces or gaps 11 provided at portions corresponding to opposite ends 12a, 12b of each of successive fly strips 12 attached to the slide fastener chain 10. Before being processed or gapped, the slide fastener chain 10 has a pair of continuous interengaged rows of coupling elements 13 supported on confronting longitudinal edges of a pair of stringer tapes 14, 15. The fly strips 12 are sewn to one of the stringer tapes 14 by a double line of stitching 16 running lengthwise of the fly strips 12 and the stringer tape 14. Each of the fly strips 12 is wider than the slide fastener chain 10 and has a length substantially equal to the length of individual slide fasteners (not shown) which are made from the chain 10 by severing the same the element-free spaces 11. In sewing to the chain 10, an adjacent pair of the fly strips 12, 12 shown in the center of Figure 1 has been attached with a relatively large space 17 defined between their confronting ends 12b, 12a, while the remaining ones of the fly strips 12 have been attached end to end in substantially abutting relation with only a very small space 18 between their confronting ends.
Figure 2 shows an apparatus 20 for forming the element-free spaces 11 in a continuous ungapped slide fastener chain 10 to which the fly strips 12 are already sewn. The apparatus 20 comprises a feed unit 21 for intermittently feeding the slide fastener chain 10 toward a gap-forming device 22 along a combined path including a pair of first and second straight paths 23, 24 joined at a fixed turning point 25. The gap-forming device 22 is disposed on the second straight part 24 and spaced at a distance L (Figures 3 and 4) downstream from the turning point 25. The device 22 is of conventional construction and includes a stationary die 26 and a cut-out punch 27 reciprocably movable toward and away from the die 26 for forming the element-free spaces 11 of the desired length.

The apparatus 20 also comprises a deflector 28 disposed on the combined path and extending along the first and second straight paths 23, 24 across the turning point 25 for folding the successive fly strips 12 about the stitchings 16, as they pass the deflector 28, to such an extent that the unsewn side of the fly strips 12 lies at a right angle to the general plane of the stringer tapes 14, 15 to thereby expose the exposed stringer source (not shown) and thereafter speed up the stringer elements 13.

The first and second paths 23, 24 are inclined with respect to the direction of the slide fastener chain 10 and therefrom is shifted at a point where a confronting edge of the fold-up fly strip 12 arrives at the turning point 25. A sensor (not shown) is disposed around the turning point 25 for detecting the space occupied by the fly strip 12, and transmitting a photoelectric signal to the feed unit 21.

Figure 2 shows the apparatus 20 in a type A arrangement. This arrangement comprises a feed unit 21 including a pair of feed rollers 29, 30 engageable with opposite surfaces of the fly strips 12. The feed unit 21 includes a pair of feed rollers 29, 30 engageable with opposite surfaces of the fly strips 12.
exposed stringer tape 15 and driven by a suitable drive source (not shown) to rotate in unison for feeding the chain 10 along the combined path both at a first speed and thereafter at a second speed lower than the first speed as portions of the interengaged rows of coupling elements 13 approaches the gap-forming device 22.

The first and second straight paths 23, 24 are inclined with respect to one another so that the direction of movement of the successive fly strips 12 is shifted at the turning point 25 so as to provide temporarily a relatively large space between confronting ends 12a, 12b of an adjacent pair of the folded fly strips 12 when the confronting ends 12a, 12b arrive at the turning point 25.

A sensor assembly 31 is disposed adjacent to the turning point 25 for detecting portions of the rows of coupling elements 13 to be removed by the gap-forming device 22. The sensor assembly 31 includes a pair of first and second sensors 32, 33 of the photoelectric type. The first photoelectric sensor 32 spans the path of movement of the upstanding unsewn side of the folded fly strips 12 at the turning point 25. The second photoelectric sensor 33 spans the path of movement of the upstanding unsewn side of the folded fly strips 12 at a point which is spaced a predetermined distance D (Figures 3 and 4) upstream from the turning point 25. Each of the photoelectric sensor 32, 33 includes a
light projector 34, 35 and a photoelectric cell 36, 37 disposed in alignment with the light projector 34, 35 across the path of movement of the upstanding unsewn side of the folded fly strips 12.

The photoelectric cell 36 of the first sensor 32 produces a first signal pulse each time the trailing end 12b of a one of the fly strips 12 passes the sensor 32 to allow the light beam to reach the photoelectric cell 36. The cell 36 also produces a second signal pulse each time the loading end 12a of the next succeeding fly strip 12 arrives at the sensor 32 to block the light beam. The photoelectric cell 37 of the second sensor 33 produces only a first signal pulse each time the trailing end 12b of said one fly strip 12 passes the sensor 33. The first signal pulse and the second signal pulse produced by the first sensor 32 indicates respectively the departure of the trailing end 12b from the turning point 25, and the arrival of the leading end 12a at the turning point 25. The second sensor 33 is positionally adjustable so as to vary the distance D (Figures 3 and 4) depending on the length of the element-free space 11 formed by the punch 27.

The apparatus 20 further includes a stopper 38 controlled by the sensor assembly 31 and operatively connected to the feed unit 21 and the gap-forming device 22 for controlling their operations in
accordance with instructions from the sensor assembly 31. The stopper 38 includes a pair of first and second counters 39, 40 operatively connected to each of the feed rollers 29, 30 for counting the number of revolutions of the feed rollers 29, 30 to thereby measure the amount of forward movement of the chain 10 by the rollers 29, 30.

The first counter 39 is also connected in circuit with the photodetector 36 of the sensor 32, upon receipt of a first signal pulse from the sensor 32, it starts to count the number of revolutions of the rollers 29, 30 until the number of counted revolutions becomes equal to a predetermined figure present or registered in the counter 39. The predetermined figure means that the chain 10 has advanced by the distance L (Figures 3 and 4) after the sing of the trailing end 12b of each fly strip 12. When the predetermined figure is reached, the counter 39 issues an output signal pulse to the feed unit 21 for interrupting its operation. This output signal pulse is also given to the gap-forming device 22 for initiating the operation of the punch 27.

The second counter 40 is connected in parallel to the photodetectors 36, 37 of the sensors 32, 33. The counter 40 has the same structure and function as the first counter 39 with the exception that it is activated only when a second signal indicative of the
arrival of the leading end 12a is received from the first sensor 32, subsequent to the concurrent receipt of first signal pulses from the first and second sensors 32, 33. The predetermined figure registered in the counter 40 means that the leading end 12a of the fly strip 12 has advanced by the distance L after having been sensed by the first sensor 32. Each of the first and second counters 39, 40 also produces a signal pulse at a suitable time before the predetermined figure is reached. This signal pulse is given to the feed unit 21 to switch the speed of feeding from the first speed to the second speed lower than the first speed.

A pair of feed-out rollers 41, 42 is disposed on the second path 24 downstream of the gap-forming unit 22 for discharging the gapped slide fastener chain 10 from the apparatus 20. The rollers 41, 42 are driven to rotate in synchronism with the feed rollers 29, 30.

Operation of the apparatus 20 thus constructed is as follows: The slide fastener chain 10 is fed in the direction of the arrow shown in Figure 2 along the combined path by means of the feed rollers 29, 30, with the successive fly strips 12 folded by the deflector 28 about the stitching 16 (Figure 1) to such an extent that the unsewn side of the fly strips 12 lies at a right angle to the general plane of the stringer tapes 14, 15. Since the first and second straight paths 23,
24 of the combined path are inclined with respect to one another for shifting the direction of movement of fly strips 12, a relatively large space is temporarily provided between the confronting ends 12b, 12a of an adjacent pair of the fly strips 12 when the same confronting ends 12b, 12a arrive at the turning point 25. More specifically, when the two adjacent fly strips 12 define between their confronting ends 12b, 12a a very narrow space 18 (Figure 1), upon arrival of the confronting ends 12b, 12a at the turning point 25, the space 18 is temporarily enlarged into a substantially V-shape as shown in Figures 2 and 3 at 18a. Likewise, a relatively wide space 17 (Figure 1) defined between the confronting ends 12b, 12a is temporarily further enlarged as at 17a shown in Figure 4. The temporarily enlarged space 17a, 18a allows passage of the light beam from the light projector 34 as soon as the trailing end 12b of a preceding one of the two adjacent fly strips 12 passes over the turning point 25, thereby activating the photoelectric cell 36 so as to produce a first signal pulse indicative of the departure of the same trailing end 12b from the turning point 25.

With such a condition shown in Figures 2 and 3, the V-shaped space 18a allows only passage of the light beam from the light projector 34, thereby activating the photoelectric cell 36. The light beam from the
projector 35 is blocked by the upstanding unsewn side of the next succeeding fly strip 12. Upon receipt of a first signal pulse from the photoelectric cell 36, the first counter 39 starts to count the number of revolutions of the rollers 29, 30 until the number of counted revolutions corresponds to a predetermined figure registered in the counter 39. When the predetermined figure is reached, the counter 39 issues an output signal pulse to the feed unit 21 so as to interrupt its operation. At that time, the trailing end 12b of the preceding fly strip 12 has advanced from the position of Figure 3 by the distance L, i.e. the trailing end 12b is located beneath the center O of the punch 27. Substantially at the same time, the output signal pulse of the counter 39 is also given to the gap-romping device 22 to initiate the operation of the punch 27 for removing a portion of the intermeshed rows of coupling elements 13, thereby providing an element-free space 11 in the chain. The element-free space 11 thus formed extends transversely across the confronting ends 12b, 12a of the two adjacent fly strips 12.

Another detecting condition is shown in Figure 4 in which a wide space 17a is provided between the confronting ends 12b, 12a of two adjacent fly strips 12 when the same confronting ends 12b, 12a arrive at the turning point 25, the longitudinal extent of the space
Such end detection is achieved by first folding the fly strips about a line of stitching to

17a being much larger than the distance D between the photoelectric cells 36, 37. As soon as the trailing end 12b of a preceding one of the two fly strips 12 passes over the turning point 25, the light beams from both the projectors 34, 35 are allowed to reach the corresponding photoelectric cells 36, 37 whereupon a pair of first signal pulses is issued from the cells 36, 37, respectively, to the first and second counters 39, 40. Upon receipt of one of the first signal pulse, the first counter 39 is activated and thereafter successive steps of operation are achieved in the same manner as described above with respect to the formation of the element free space 11 at the confronting ends 12b, 12a defining therebetween the very small space 18. The obtained element-free space 11 (Figure 1) extends transversely across the trailing end 12b of the preceding fly strip 12 but it terminates short of the leading end 12a of the succeeding fly strip 12.

With continued movement of the chain 10, the leading end 12a of the succeeding fly strip 12 closes the photoelectric cell 36 whereupon the cell 36 issues a second signal pulse to the second counter 40 to activate the latter. When the leading end 12a of the succeeding fly strip 12 has been advanced through the distance L from the position of Figure 4, the second counter 40 produces an output signal pulse by means of which the feeding of the chain 10 is interrupted and
the operation of the punch 27 is initiated. The resultant element-free space 11 extends transversely across the leading end 12a of the succeeding fly strip 12. The speed of feeding of the chain 10 is changed from the high speed to the low speed before the sensed trailing and leading ends 12b, 12a arrive at the gap-forming device 22 in response to the signal pulse issued from the respective counters 39, 40 to the feed unit 21.
when the chain has advanced through said first distance after said sensing of the trailing and leading ends; and removing the thus detached portions of the

THE CLAIMS

1. continuous fly strips
 5 the slide rows of co steps of:
 (a) slide fast
 10 gap-forming
 the stitch rows of co
 (b) of coupling
 15 station by
large space
 pair of the
 arrive at a
distance up
extent of the
predetermined

25 end of a pair of slides from

0
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. A method of forming element-free spaces in a continuous slide fastener chain at ends of successive fly strips sewn by at least one line of stitching to the slide fastener chain having a pair of intermeshed rows of coupling elements, said method comprising the steps of:

 (a) intermittently feeding a continuous ungapped slide fastener chain longitudinally through a gap-forming station, with the fly strips folded about the stitching to such an extent that the interengaged rows of coupling elements are fully exposed;

 (b) detecting portions of the intermeshed rows of coupling elements to be removed at said gap-forming station by

 (1) temporarily providing a relatively large space between confronting ends of an adjacent pair of the folded fly strips when the confronting ends arrive at a first point which is spaced a first distance upstream from said gap-forming station,

 (2) determining whether the longitudinal extent of the thus provided space is larger than a predetermined distance,

 (3) sensing the departure of the trailing end of a preceding one of the adjacent pair of the fly strips from said first point regardless of said determination of the longitudinal extent of the space,
and

(4) thereafter sensing the arrival of the leading end of the succeeding fly strip at said first point only when the longitudinal extent of the space is larger than said predetermined distance;

(c) stopping the feeding of the chain when the chain has advanced through said first distance after said sensing of the trailing and leading ends; and

(d) removing the thus detached portions of the intermeshed rows of coupling elements at said gap-forming station while the chain is at rest.

2. A method according to claim 1, said feeding including the step of feeding the chain both at a first speed and thereafter at a second speed lower than said first speed as said detected portions approach said gap-forming station.

3. An apparatus for forming element-free spaces in a continuous slide fastener chain at ends of successive fly strips sewn by at least one line of stitching to the slide fastener chain having a pair of intermeshed rows of coupling elements, said apparatus comprising:

(a) a power-driven feed unit for intermittently feeding a continuous ungapped slide fastener chain with the successive fly strips sewn thereto, along a combined path including a pair of straight paths joined at a fixed turning point;
(b) a deflector disposed on said combined path and extending along said pair of straight paths across said turning point for folding the fly strips, as they pass said deflector, to such an extent that the intermeshed rows of coupling elements are fully exposed;

(c) said first and second straight paths being inclined with respect to one another for shifting the direction of movement of the fly strips at said turning point so as to provide temporarily a relatively large space between confronting ends of an adjacent pair of the folded fly strips;

(d) a sensor assembly disposed adjacent to said fixed turning point for determining whether the longitudinal extent of said space is larger than a predetermined distance and for first sensing the departure of the trailing end of a preceding one of the adjacent pair of the fly strips from said turning point, regardless of the determined longitudinal extent of said space, and thereafter sensing the arrival of the leading end of the succeeding fly strip at said turning point only when the longitudinal extent of said space is larger than said predetermined distance;

(e) a stopper under the control of said sensor assembly and operatively connected to said feed unit for interrupting its feeding when the chain has advanced through a first distance after the sensing of
between their confronting ends 12b, 12a, while the remaining ones of the fly strips 12 have been attached end to end in substantially abutting relation with only a very small space 18 between their confronting ends.

- 20 -

the trailing and leading ends; and

(f) a power-driven gapping device disposed on one of said pair of straight paths at said first distance downstream from said fixed turning point and operatively controlled by said stopper for removing portions of the intermeshed rows of coupling elements while the chain is at rest.

4. An apparatus according to claim 3, said sensor assembly comprising a first sensor spanning the path of movement of the folded fly strips at said fixed turning point, and a second sensor spanning the path of movement of the folded fly strips at a point spaced upstream from said fixed turning point by said predetermined distance.

5. An apparatus according to claim 4, said first sensor producing a first signal pulse each time said trailing end is sensed by said first sensor and a second signal pulse each time said leading end is sensed by said first sensor, said second sensor producing a third signal pulse each time said trailing end is sensed by said second sensor, said stopper comprising a first counter operatively connected to said first sensor and activated by said first signal pulse, and a second counter operatively connected to both said first and second sensors and activated only when it receives said second signal pulse subsequent to the receipt of said first and third signal pulse.
6. An apparatus for forming element-free spaces in a continuous slide fastener chain at ends of successive fly strips substantially as hereinbefore described with reference to the accompanying drawings.

7. A method for forming element-free spaces in a continuous slide fastener chain at ends of successive fly strips substantially as hereinbefore described with reference to the accompanying drawings.

Dated this 27th day of November 1984.

YOSHIDA KOGYO K.K.

Patent Attorneys for the Applicant

F.B. RICE & CO.
DRAWINGS
The apparatus 20 further includes a stopper 38 controlled by the sensor assembly 31 and operatively connected to the feed unit 21 and the gap-forming device 22 for controlling their operations in initiating the set to the photo 33. The cour as the first activated onl
right angle to the general plane of the stringer tapes 11, 12, 13, 14, 15. Since the first and second straight paths 17, 18 from the photo