COMMONWEALTH OF AUSTRALIA
Patents Act
APPLICATION FOR A PATENT

(x) We (y) E.R. SQUIBB & SONS, INC.

3 4 5 6 1 / 7 8

of (z) Lawrenceville-Princeton Road, Princeton, New Jersey 08540, United States of America.

hereby apply for the grant of a Patent for an invention entitled

(d) "MERCAPTOALKYSULFONYL PROLINE DERIVATIVES, AND RELATED COMPOUNDS"

which is described in the accompanying (e) complete specification.

(Note: The following paragraph applies only to Convention applications)

This application is a Convention application based on the basic application(s) for a patent or similar protection identified by number, country, and filing date as follows:

(f) No. 789,466 United States of America 21 April, 1977.

Address for Service:

PHILLIPS ORMONDE AND FITZPATRICK
Patent and Trade Mark Attorneys
267 Collins Street
Melbourne 3000 Australia
Telephone (03) 614 1944
Telex 345116

Dated (g) 28th March, 1978.

(h) PHILLIPS ORMONDE & FITZPATRICK
Attorneys for:
E.R. SQUIBB & SONS, INC.

Note: No legalization or other witness required.
DECLARATION FOR A PATENT APPLICATION

In support of the (a) convention application made by (b) E.R. SQUIBB & SONS, INC., a corporation duly organized and existing under the laws of the State of Delaware, United States of America, having its offices at Lawrenceville-Princeton Road, Princeton, New Jersey, United States of America, (hereinafter called "applicant") for a patent (c) for an invention entitled (d)

3 4 5 6 1 /78

MERCAPTOALKYLSULFONYL PROLINE DERIVATIVES AND RELATED COMPOUNDS

1. (e) George J. Kooser of Princeton, New Jersey, United States of America,

do solemnly and sincerely declare as follows:

1. I am authorized to make this declaration on behalf of the applicant(s).

EDWARD WILLIAM PETRILLO, Jr., chemist; citizen of the United States of America, residing at 433 Sked Street, Pennington, New Jersey, United States of America

2. (f) is/are the actual inventor(s) of the invention and the facts upon which the applicant is entitled to make the application are as follows:

The said E.R. SQUIBB & SONS, INC., is the assignee of the said

EDWARD WILLIAM PETRILLO, Jr.

3. The basic application(s) for patent or similar protection on which the application is based is/are identified by country, filing date, and basic applicant(s) as follows:

(b) In: United States of America on: April 21, 1977

By: EDWARD WILLIAM PETRILLO, Jr.; chemist; citizen of the United States of America, residing at 433 Sked Street, Pennington, New Jersey, United States of America,

4. The basic application(s) referred to in paragraph 3 hereof was/were the first application(s) made in a Convention country in respect of the invention the subject of the application.

Declared at (a) Princeton, N.J., U.S.A.,

Dated (b) March 16, 1978

E.R. SQUIBB & SONS, INC.

To: The Commissioner of Patents

PHILLIPS ORMONDE & FITZPATRICK
Patent and Trade Mark Attorneys
Melbourne, Australia
The compounds are useful hypotensive agents particularly angiotensin dependent hypertension.

CLAIM

1. A compound of the formula

\[
\begin{align*}
\text{R}_2 & \quad \text{O} \quad \text{H}_2\text{C} \quad \text{CH}_2 \quad \text{S} \\
\text{R}_1 & \quad \text{S} \quad \text{CH}_2 \quad \text{CH} \quad \text{S} \quad \text{N} \quad \text{S} \quad \text{N} \quad \text{COOR} \\
\text{O} &
\end{align*}
\]

wherein \(\text{R} \) and \(\text{R}_2 \) each is hydrogen or lower alkyl;
\(\text{R}_1 \) is hydrogen, lower alkanoyl or benzoyl; and
\(m \) is 2 or 3.
The following statement is a full description of this invention, including the best method of performing it known to applicant(s):
This invention relates to new mercaptoalkylsulfonyl proline derivatives and related compounds which have the formula

\[
\begin{align*}
\text{R}_2 & \text{O} \quad \text{H}_2\text{C} - (\text{CH}_2)_m \\
\text{R}_1\text{-S-CH}_2\text{-CH} - \text{S} & \quad \text{N} - \text{CH} \quad \text{COOR} \\
\end{align*}
\]

R and \(\text{R}_2 \) each is hydrogen or lower alkyl.

\(\text{R}_1 \) is hydrogen, lower alkanoyl or benzoyl.

m is 2 or 3.

In formula I, the lower alkyl groups represented by R and \(\text{R}_2 \) are straight or branched chain aliphatic hydrocarbon groups having up to seven carbon atoms, for example, methyl, ethyl, propyl, isopropyl, butyl, sec.butyl, t-butyl and the like. The \(\text{C}_1\text{-C}_4 \) members and especially the \(\text{C}_1\text{-C}_2 \) members are preferred.

The lower alkanoyl groups represented by \(\text{R}_1 \) are the acyl radicals of the lower fatty acids (up to seven carbons) such as acetyl, propionyl, butyryl, isobutyryl and the like. Those having up to four carbons are preferred. Acetyl is especially preferred.
Preferred embodiments of this invention are those compounds of formula I wherein \(m \) is 2, \(R \) and \(R_2 \) each is hydrogen and \(R_1 \) is hydrogen or lower alkanoyl, especially hydrogen or acetyl.

The compounds of this invention are produced by the following sequence of reactions.

Proline or pipecolic acid, preferably in the form of a lower alkyl ester in which the acyl group is easily removed, e.g., the t-butyl ester, is made to react with a haloalkyl-sulfonyl halide of the formula

\[
\text{(II)} \quad R_2^2 \quad \text{hal-CH}_2^2 \text{-CH-SO}_2^2 \text{-hal}
\]

wherein hal represents halogen, preferably chlorine or bromine, in the presence of an organic base like triethylamine, \(N,N \)-dimethylaniline, \(N \)-methylmorpholine or the like and in an inert organic solvent like dichloromethane, ether, tetrahydrofuran, dioxane or the like. This coupling reaction yields a compound of the formula

\[
\text{(III)} \quad R_2^2 \quad \text{H}_2^2 \text{C} \quad \text{--(CH)}_{2m} \quad \text{CH}_2^2 \text{=CH-SO}_2^2 \text{-N} \quad \text{-- C} \quad \text{-- COO-alkyl}
\]

Reaction of the compound of formula III with a compound of the formula

\[
\text{(IV)} \quad R_1^1 \quad \text{SH}
\]

in the presence of an organic base like those referred to above and in an organic solvent like ether, tetrahydrofuran, dioxane, or the like, yields a product of the formula

\[
\text{(V)} \quad R_2^2 \quad \text{H}_2^2 \text{C} \quad \text{--(CH)}_{2n} \quad \text{R}_1^1 \text{-S-CH}_2^2 \text{-CH-SO}_2^2 \text{-N} \quad \text{-- CH} \quad \text{-- COO-alkyl}
\]

Treatment of the product of formula V with trifluoro-
acetic acid and anisole, when the alkyl group is t-butyl removes the ester group and yields the free acid of formula I, i.e., wherein R is hydrogen.

Treatment of the product of formula V with sodium or potassium hydroxide in water or a lower alcohol, when the alkyl group is methyl or other lower alkyl group, and R\textsubscript{1} is lower alkanoyl or benzoyl, removes the ester group and the R\textsubscript{1} group and yields, after acidification, the free acid of formula I, i.e., wherein R and R\textsubscript{1} are hydrogen.

Preferably, the thiol of formula IV is one in which R\textsubscript{1} is lower alkanoyl or benzoyl, e.g., thiolacetic acid, thiolbenzoic acid or the like with the result that R\textsubscript{1} in the product of formula V is lower alkanoyl or benzoyl. A product of formula I wherein R\textsubscript{1} is hydrogen is obtained by treating the product of formula V, either before or after the removal of the ester group, if desired, with ammonia or concentrated ammonium hydroxide solution.

The proline and pipecolic acid esters are produced as described in German Offenlegungsschrift 2 703 828 corresponding to Belgian Patent 851361 granted August 11, 1977.

The asterisks in formula I indicate asymmetric carbon atoms (the carbon atom bearing R\textsubscript{2} is asymmetric wherein R\textsubscript{2} is other than hydrogen). Preferred are those compounds wherein the proline or pipecolic acid portion of the molecule is in the L-form.

Additional experimental details are provided in the illustrative examples which follow below.
The compounds of this invention are angiotensin converting enzyme inhibitors and are useful as hypotensive agents, particularly for the reduction of angiotensin dependent hypertension. By administering a composition containing one or a combination of angiotensin converting enzyme inhibitors of this invention to a hypertensive mammal, it intervenes in the renin + angiotensin I + angiotensin II sequence and the hypertension is reduced or alleviated.

A single dose, or preferably two to four divided daily doses, provided on a basis of about 1 to 1000 mg. per kilogram per day and especially about 10 to 200 mg. per kilogram per day is appropriate to bring about a reduction in elevated blood pressure. The animal model experiments described by Engel., Proc. Soc. Exp. Biol. Med. 143, 483 (1973) provide a valuable guide.

The composition is preferably administered orally, but it can also be administered subcutaneously, intramuscularly, intravenously or intraperitoneally. The compound or compounds of formula I can be formulated as tablets, capsules or elixirs for oral administration. Sterile solutions or suspensions can be used for parenteral use.

About 50 to 1500 mg. of a compound or compounds of formula I can be compounded with a physiologically acceptable vehicle, carrier, excipient, binder, preservative, stabilizer, flavor, etc., in a conventional unit dosage form as called for by accepted pharmaceutical practice. The amount of active substance is selected so as to provide a dosage in the range indicated.

The following examples are illustrative of the invention and represent preferred embodiments. All temperatures are in
degrees Celsius.

Example 1

1-[[2-(Acetylthio)ethyl]sulfonyl]-L-proline

a) 1-(Vinylsulfonyl)-L-proline t-butyl ester

L-Proline t-butyl ester (6.9 g. 0.04 mol.) and triethylamine (14 ml., 0.1 mol.) are dissolved in 200 ml. of dichloromethane and stirred in an ice bath while 2-chloroethanesulfonyl chloride (8.2 g., 0.05 mol.) in 100 ml. of dichloromethane is added over 20 minutes. After stirring 2 hours, the mixture is washed with 5% potassium bisulfate solution, saturated sodium bicarbonate solution and brine, then evaporated in vacuo. The semi-solid residue is chromatographed on 350 ml. silica gel using 1:1 ethyl acetate/hexane as eluant. The main fraction, comprising 1-(vinylsulfonyl)-L-proline t-butyl ester is crystallized from ether/hexane, m.p. 84-87°C (7.1 g., 68%).

b) 1-[[2-(Acetylthio)ethyl]sulfonyl]-L-proline t-butyl ester

1-(Vinylsulfonyl)-L-proline t-butyl ester (5.0 g., 0.0192 mol.), triethylamine (2.8 ml., 0.02 mol.) and thiolacetic acid (1.43 ml., 0.02 mol.) are mixed in 100 ml. of ether and allowed to stand overnight. The mixture is washed with 5% potassium bisulfate solution, saturated sodium bicarbonate solution and brine, then evaporated in vacuo to a yellow oil. The procedure is repeated using half of the above quantities of triethylamine and thiolacetic acid. Workup as in part a affords the crude product, 1-[[2-(acetylthio)ethyl]-sulfonyl-L-proline t-butyl ester, which is filtered through a short silica gel column and crystallized from ether/hexane, m.p. 46-50°C (2.9 g., 45%)
c) 1-[(2-Acetylthio)ethyl]sulfonyl]-L-proline

The t-butyl ester from part b (2.9 g., 0.0086 mol.) is dissolved in 15 ml. of anisole and 45 ml. of trifluoroacetic acid and let stand 1 hour. The mixture is evaporated in vacuo to a gummy residue which is taken up in ethyl acetate and treated with a large volume of hexane. The supernatant is decanted, and the procedure repeated. The resulting semi-solid is crystallized from ethyl acetate-hexane, m.p. 63-67° (1.9 g., 78%). [α]D = -59.3, c=1.076, dimethylformamide.

Example 2

1-[(2-Mercaptoethyl)sulfonyl]-L-proline

1-[(2-Acetylthio)ethyl]sulfonyl]-L-proline (640 mg., 0.0023 mol.) is dissolved in 5 ml. of water and 5 ml. of concentrated ammonia and stirred 1 hour under nitrogen. The solution is acidified with concentrated hydrochloric acid, extracted with ethyl acetate, and the extracts are washed with brine, dried (MgSO4) and evaporated to an oily residue which is applied to a 75 ml. silica gel column. Elution with 10% acetic acid/benzene affords a main fraction which is crystallized from chloroform/hexane, to obtain 440 mg. (81%) of 1-[(2-mercaptoethyl)sulfonyl]-L-proline, m.p. 99-101° [α]D = -64.3°, c=1.16, dimethylformamide.

Example 3

1-[(2-(Benzoylthio)ethyl)sulfonyl]-L-proline

By substituting thiolbenzoic acid for thiolacetic acid in the procedure of Example 1b, and then submitting the product to the procedure of Example 1c, 1-[(2-(benzoylthio)ethyl)sulfonyl]-L-proline is obtained.
Example 4

1-[[2-(Acetylthio)ethyl]sulfonyl]-L-pipecolic acid

a) 1-(Vinylsulfonyl)-L-pipecolic acid

By substituting L-pipecolic acid t-butyl ester for the L-proline t-butyl ester in the procedure of Example 1a, 1-(vinylsulfonyl)-L-pipecolic acid t-butyl ester is obtained.

b) 1-[[2-(Acetylthio)ethyl]sulfonyl]-L-pipecolic acid

By substituting 1-(vinylsulfonyl)-L-pipecolic acid t-butyl ester for the 1-(vinylsulfonyl)-L-proline t-butyl ester in the procedure of Example 1b, and then submitting the product to the procedure of Example 1c, 1-[[2-(acetylthio)ethyl]sulfonyl]-L-pipecolic acid t-butyl ester and 1-[[2-(acetylthio)ethyl]sulfonyl]-L-pipecolic acid are obtained.

Example 5

1-[(2-Mercaptoethyl)sulfonyl]-L-pipecolic acid

By substituting 1-[(2-acetylthio)ethyl]sulfonyl]-L-pipecolic acid for the 1-[(2-acetylthio)ethyl]sulfonyl]-L-proline in the procedure of Example 2, 1-[(2-mercaptoethyl)sulfonyl]-L-pipecolic acid is obtained.

Example 6

1-[[2-(Benzoylthio)ethyl]sulfonyl]-L-pipecolic acid

By substituting 1-(vinylsulfonyl)-L-pipecolic acid t-butyl ester for the 1-(vinylsulfonyl)-L-proline t-butyl ester in the procedure of Example 3, 1-[[2-benzoylthio)ethyl]-sulfonyl]-L-pipecolic acid is obtained.

Example 7

1-[[2-(Acetylthio)-1-methylethyl]sulfonyl]-L-proline

a) 1-(2-Propenylsulfonyl)-L-proline t-butyl ester

By substituting 1-chloro-2-propanesulfonyl chloride for the 2-chloroethanesulfonyl chloride in the procedure of
Example 1a, 1-(2-propenylsulfonyl)-L-proline t-butyl ester is obtained.

b) 1-[(2-(Acetythio)-1-methylethyl)sulfonyl]-L-proline

By substituting 1-(2-propenylsulfonyl)-L-proline t-butyl ester for the 1-(vinylsulfonyl)-L-proline t-butyl ester in the procedure of Example 1b, and then submitting the product to the procedure of Example 1c, 1-[(2-(acetylthio)-1-methylethyl)sulfonyl]-L-proline t-butyl ester and 1-[(2-acetylthio)-1-methylethyl)sulfonyl]-L-proline are obtained.

Example 8

1-[(2-Mercapto-1-methylethyl)sulfonyl]-L-proline

By substituting 1-[(2-(Acetythio)-1-methylethyl)sulfonyl]-L-proline for the 1-[(2-(acetylthio)ethyl)sulfonyl]-L-proline in the procedure of Example 2, 1-[(2-mercapto-1-methylethyl)sulfonyl]-L-proline is obtained.

Example 9

1-[(2-(Benzoylthio)-1-methylethyl)sulfonyl]-L-proline

By substituting 1-(2-propenylsulfonyl)-L-proline t-butyl ester for the 1-(vinylsulfonyl)-L-proline t-butyl ester in the procedure of Example 3, 1-[(2-(benzoylthio)-1-methylethyl)sulfonyl]-L-proline is obtained.

Example 10

1-[(2-(Acetythio)-1-methylethyl)sulfonyl]-L-pipeolic acid

a) 1-(2-Propenylsulfonyl)-L-pipeolic acid t-butyl ester

By substituting 1-chloro-2-propanesulfonyl chloride for the 2-chloroethanesulfonyl chloride and L-pipeolic acid t-butyl ester for L-proline t-butyl ester in the procedure of Example 1a, 1-(2-propenylsulfonyl)-L-pipeolic acid t-butyl ester is obtained.
b) 1-[[2-(Acetyltliio)-1-methylethyl]sulfonyl]-L-pipelicolic acid

By substituting 1-(2-propenylsulfonyl)-L-pipelicolic acid t-butyl ester for the 1-(vinylsulfonyl)-L-proline t-butyl ester in the procedure of Example 1b, and then submitting the product to the procedure of Example 1c, 1-[[2-(acetyltliio)-1-methylethyl]sulfonyl]-L-pipelicolic acid t-butyl ester and 1-[[2-(acetyltliio)-1-methylethyl]sulfonyl]-L-pipelicolic acid are obtained.

Example 11

10 1-[[2-(Merkapto-1-methylethyl) sulfonyl]-L-pipelicolic acid

By substituting 1-[[2-(acetyltliio)-1-methylethyl]-sulfonyl]-L-pipelicolic acid for the 1-[[2-(acetyltliio)ethyl]-sulfonyl]-L-proline in the procedure of Example 2, 1-[[2-merkapto-1-methylethyl]sulfonyl]-L-pipelicolic acid is obtained.
The claims defining the invention are as follows:

1. A compound of the formula

\[
\begin{align*}
R_2 & \quad O \quad H_2 C \quad (C H_2)_m \\
R_1 & \quad S \quad C H_2 \quad C H \quad S \quad N \quad C H \quad C O R
\end{align*}
\]

wherein \(R \) and \(R_2 \) each is hydrogen or lower alkyl;
\(R_1 \) is hydrogen, lower alkanoyl or benzoyl; and
\(m \) is 2 or 3.

2. A compound as in Claim 1 wherein \(R \) is hydrogen.

3. A compound as in Claim 1 wherein \(m \) is 2.

4. A compound as in Claim 1 wherein \(m \) is 3.

5. A compound as in Claim 1 wherein \(R \) and \(R_2 \) each is hydrogen.

6. A compound as in Claim 1 wherein \(m \) is 2, \(R \) and \(R_2 \) each is hydrogen and \(R_1 \) is hydrogen or lower alkanoyl.

7. A compound as in Claim 6 wherein the lower alkanoyl group is acetyl.

8. The L-form of the compound of Claim 6.

9. A compound as in Claim 6 wherein \(R_1 \) is hydrogen.

10. The L-form of the compound of Claim 9.

11. A compound as in Claim 1 wherein \(R \) and \(R_2 \) each is hydrogen, \(R_1 \) is benzoyl and \(m \) is 2.

12. A compound as in Claim 1 wherein \(R \), \(R_1 \) and \(R_2 \) each is hydrogen and \(m \) is 3.

PHILLIPS ORMONDE & FITZPATRICK
Attorneys for:
E.R. SQUIBB & SONS, INC.