COMMONWEALTH OF AUSTRALIA
Patents Act 1952-1969

CONVENTION APPLICATION FOR A PATENT

Hereby apply for the grant of a Patent for an invention entitled:

AMIDES OF CYCLOMETHYLEN-1, 2-BICARBOXYLIC ACIDS HAVING THERAPEUTICAL ACTIVITY, PROCESSES FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM

which is described in the accompanying complete specification. This application is a Convention application and is based on the application numbered 20172 A/88 for a patent or similar protection made in Italy on 12th April 1988.

Our address for service is Messrs. Edwd. Waters & Sons, Patent Attorneys, 50 Queen Street, Melbourne, Victoria, Australia.

DATED this 11th day of April 1989

LABORATORI GUIDOTTI SPA

by

Ian A. Scott
Registered Patent Attorney

To:
THE COMMISSIONER OF PATENTS.
COMMONWEALTH OF AUSTRALIA
Patents Act 1952-1969
DECLARATION IN SUPPORT OF A CONVENTION APPLICATION FOR A PATENT OR PATENT OF ADDITION

In support of the Convention Application made by

LABORATORI GUIDOTTI SPA

(hereinafter referred to as the applicant) for a Patent
for an invention entitled:

AMIDES OF CYCLOMETHYLEN-1, 2-BICARBOXYLIC ACIDS HAVING THERAPEUTICAL ACTIVITY, PROCESSES FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM

I, (1) Socrate Guidetti, General Manager and sole Administrator of Laboratori Guidotti SPA of Via Trieste 40, 56100 Pisa, Italy do solemnly and sincerely declare as follows:

1. I am authorised by the applicant for the patent to make this declaration on its behalf.

2. The basic application as defined by Section 141 of the Act was made on the 12th day of April 1988, by Laboratori Guidotti Spa

3. Luigi Turbanti, Via Nazario Sauro 5A PISA
Guido Cerbai Via Brodolini 10 PISA
Marco Criscuoli Piazza Cannicci 26 SCANDICCI (Firenze)

are the actual inventors of the invention and the facts upon which the applicant is entitled to make the application are as follows:

The applicant is the assignee of would, if a patent were granted on an application made by the actual inventors be entitled to have the patent assigned to it

4. The basic application referred to in paragraph 2 of this Declaration was the first application made in a Convention country in respect of the invention the subject of the application.

DECLARED at PISA, Italy · LABORATORI GUIDOTTI SPA, 3rd day of April 1989

Signature:
The present invention relates to a series of novel amides of cyclomethylene-1,2-bicarboxylic acids with amino-hydroxamic acid having anti-hypertension activity, to the processes for their preparation and to the pharmaceutical compositions containing them.

1. Amides of cyclomethylene-1,2-dicarboxylic acids, having the formula:

\[
\begin{align*}
R^3 & \quad -O-N \quad R^1 \quad R^2 \\
\text{C-CH=}(\text{CH}_2)_m & \quad -N-C-A \\
\end{align*}
\]

wherein

A represents

\[
\begin{align*}
\text{COOH} & \quad \text{COOH} \\
\end{align*}
\]

R\(^1\) represents -H, -CH\(_3\), -CH\(_2\)-CH\(_3\), -CH(CH\(_3\))\(_2\), -CH\(_2\)-O

\[
\begin{align*}
\text{CH}_2-\text{CH}_2- & \quad \text{CH}_2-\text{CH}_2- \\
\end{align*}
\]

R\(^2\) represents -H, CH\(_3\), -CH\(_2\)-CH\(_3\), -CH(CH\(_3\))\(_2\), -CH\(_2\)-CH\(_2\)-CH\(_3\), -CH\(_2\)-CH(CH\(_3\))\(_2\)

\[
\begin{align*}
\text{CH}_2-\text{CH}_2- & \quad \text{CH}_2-\text{CH}_2- \\
\end{align*}
\]

R\(^3\) represents -H, -CH\(_3\), -C\(_5\)H\(_4\), -C-CH\(_3\), -C-C\(_6\)H\(_5\)
R_5^* represents $-\text{H}, -\text{CH}_3, -\text{C}_2\text{H}_5, -\text{CH}_2-\text{C}_6\text{H}_5, -\text{HC}-\text{O}-\text{C}-\text{Z}$

\[Y = -\text{H}, -\text{CH}_3, -\text{CH}(\text{CH}_3)_2 \]

\[Z = -\text{H}, -\text{CH}_3, -\text{C}(\text{CH}_3)_3, -\text{CH}(\text{C}_2\text{H}_5)_2, \]

\[R_4^* = R_5^*, -\text{C-Z} \]

m is 0 or 1 and n is an integer varying between 0 and 3.
Complete Specification for the invention entitled:

AMIDES OF CYCLOMETHYLEN-1, 2-BICARBOXYLIC ACIDS HAVING THERAPEUTICAL ACTIVITY, PROCESSES FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM

The following statement is a full description of this invention, including the best method of performing it known to us:

1.
The present invention relates to a series of novel amides of cyclomethylen-1,2-bicarboxylic acids with amino-hydroxamic acid having anti-hypertension activity, to the processes for their preparation and to the pharmaceutical compositions containing them.

The compounds of the present invention are represented by the following general formula:

\[
R^4-N-R^1-R^2-N-C-A
\]

wherein

- \(A \) represents \(\text{.
 } \) \(\text{.
 } \) \(\text{.
 } \)

- \(R^1 \) represents \(-H, \text{-CH}_3, \text{-CH}_2-\text{CH}_3, \text{-CH(CH}_3)_2, \text{-CH}_2-\text{CH}_2-\text{CH}_3, \text{-CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3, \text{-CH}_2-\text{CH}_2-C_6\text{H}_5, \text{-C}_6\text{H}_5; \)

- \(R^2 \) represents \(-H, \text{-CH}_3, \text{-CH}_2-\text{CH}_3, \text{-CH(CH}_3)_2, \text{-CH}_2-\text{CH}_2-\text{CH}_3, \text{-CH}_2-\text{CH}_2-C_6\text{H}_5, \text{-C}_6\text{H}_5; \)

- \(R^3 \) represents \(-H, \text{-CH}_3, \text{-C}_3\text{H}_5, \text{-C}_3\text{H}_7, \text{-C}_6\text{H}_5, \text{-C}_6\text{H}_5; \)

- \(R^5 \) represents \(-H, \text{-CH}_3, \text{-C}_3\text{H}_5, \text{-CH}_2-C_6\text{H}_5, \text{-HC-O-C-Z} \)

- \(Y = -H, \text{-CH}_3, \text{-CH(CH}_3)_2 \)

- \(Z = -H, \text{-CH}_3, \text{-C(CH}_3)_3, \text{-CH(CH}_2)_2 \)

- \(R^4 = R^5, \text{-C-Z} \)

\(m \) is 0 or 1 and \(n \) is an integer varying between 0 and 3.

More specifically the compounds of the present invention consist of a se-
ries of amides of cyclomethylen-1,2-bicarboxylic acids having cis or trans configuration, bonded to the primary or secondary amino group of an aminohydroxamic acid.

The compounds of the invention are endowed, on the basis of the results of the in vitro tests, with an inhibiting action against ACE (the enzyme by which angiotensin I is converted into the powerful endogenous pressure agonist angiotensin II) and with an anti-hypertension activity, to be considered as related to the former one, which is revealed for some compounds in the spontaneously hypertensive rat and particularly in the animal, either awake or anesthetized affected by hypertension induced from angiotensin I.

For the treatment for the several forms of arterial hypertension ACE-inhibiting drugs are known and widely used, which are also employed for the treatment of the congestive cardiac decompression.

The first and main ACE-inhibiting drug has been and is the 1-(3-mercapto-2-methyl-propionyl)-1-pyrrolidin 2-carboxylic acid, also known with the non chemical name (DCI) of captopril and having the formula:

![Formula](image)

Presently, besides captopril, other ACE-inhibiting agents used in pharmaceutical field on worldwide scale are enalapril and lysinopril.

It is believed that the therapeutical action of these compounds takes mainly place through the inhibition of the conversion enzyme of angiotensin I, both plasmatic and of determined tissue systems, with the attendant reduction of the levels of the powerful endogenous pressure antagonist angiotensin II.

On the other side, owing to the fact that the ACE-inhibition causes also the metabolism of bradykinin to be reduced, the increase of the levels of this vasodilating and diuretic agent might partially explain the anti-hypertension action of the subject drugs.
In the cases of hypertension combined with low levels of angiotensin II, the effect of the ACE inhibitors might be attributed to an indirect action owing to the interference with the neurogenic vasalconstriction (by which the nervous-sympatic transmission is made easier).

The compounds of the present invention are distinguished with respect to the above compounds and with respect to the other ACE-inhibitors disclosed in the literature since their carboxylic end portion (probably capable of interacting with determined active centers of the ACE enzymes) consists of an amide of a cyclomethylen-1,2-bicarboxylic acid (formula IIIa) whereas in all the known ACE-inhibitors this portion consists of an amide of cyclic or linear aminoacids (formulae IIIb and c).

Owing to this chemical feature which is common to all the compounds of the invention, these compounds, besides the novelty, possess with a self-evident structural originality feature with respect to the known compounds, by which these compounds are endowed with original characteristics also as regards the pharmaco-therapeutical properties.

From the pharmacological point of view the compounds of the invention are endowed, as already mentioned, with an ACE-inhibiting action which has been evaluated in the in vitro tests, which, in the test of functional activity, gives place to a readily appearing and long lasting anti-hypertension effect.

Another object of the present invention are the processes for the preparation of the compounds of formula (I).

According to a first process cyclomethylen-1,2-bicarboxylic acid, particularly its acidic portion, is condensed with an amino derivative.
having an alkyl or benzyl substituted hydroxamic group.

The condensation product, in turn, if the substituting group is benzyl, undergoes a catalytic hydrogenation for the removal of the benzyl group and thus obtain a compound of formula (I) wherein R_3^3 and R_4^4 are hydrogen. Within this process the condensation step can be carried out in two ways, namely:

method a) through the reaction of said amino derivative with the anhydride of the cyclomethylene-1,2-bicarboxylic acid,

method b) through the reaction of said amino derivative with the bicarboxylic acid in the presence of a condensating agent. The latter is of known type and preferably is either ethyl-N’-3-dimethyl-amino-propyl/carbodiimide (WSC) or dicyclohexylcarbodiimide (DCC).

According to a second process the condensation is carried out starting from amino esters as in the first process, whereby the corresponding amido derivatives are prepared and then converted into the corresponding hydroxamic derivative by reaction with hydroxylamine or N-alkylhydroxylamine, wherein alkyl means methyl and ethyl.

In this case too, both methods, (a) and (b), of condensation, as above mentioned, are foreseen.

Lastly, according to a third process useful for the preparation of the compounds of the invention of formula (I), wherein $m=1$, the anhydride of the bicarboxylic acid or the cyclomethylene-1,2-bicarboxylic acid itself are directly condensed with the amino-hydroxamic acid.

According to a fourth process, an alkyl monoester of a cyclomethylene-1,2-bicarboxylic acid is condensed with an amino derivative having an hydroxamic group protected with a benzyl group. The resulting amidoester is alternatively:

c) catalically hydrogenated to remove the benzyl group, leading to the compounds of formula (I) wherein R_5^5 = methyl, ethyl;

d) subjected to alkaline hydrolysis and subsequent catalytic hydrogenation to obtain the compounds of formula (I) wherein $R_3^3=R_4^4=R_5^5=H$.
The amidohydroxamic acids obtained according to the processes as above shortly defined in turn may to be used as the starting compounds for the preparation of further derivatives encompassed by the general formula (I), through the reaction with an anhydride of formula:

\[(Z-C-)_2O\]

wherein Z has the already stated meaning, leading to the compounds of formula (I) wherein R³ and/or R⁴ represent

\[Z-C-\]

If, on the contrary, the amido intermediate obtained before the removal of the protecting benzyl group is reacted with an acyloxy-methyl halide, an intermediate is obtained which, upon being catalytically hydrogenated for the removal of the benzyl group, leads to a derivative of formula (I) wherein

\[R^5 = HC-O-C-Z\]

in which Y and Z have the above indicated meanings. Lastly, if a compound of formula (I) wherein \(R^5 = \text{CH}_3\), \(C_2\text{H}_5\), \(C_6\text{H}_5-\text{CH}_2\), is reacted with an acyloxy-methyl halide and from the resulting intermediate compound the protecting group at the starting esterified carboxylic function is removed, there are obtained the compounds of formula (I) wherein

\[R^4 = HC-O-C-Z\]

The following schemes illustrate synthetically the above defined processes.
Scheme 4

\[
\begin{align*}
&\text{CH}_2-\text{COOH} + \text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \rightarrow \text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^1 \text{COOR}^7 \rightarrow \\
&\text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^1 \text{COOH}^7 + \text{H}^+ \rightarrow \text{HO-HN-R}^1 \text{R}^2 \text{COOR}^7 \\
&\text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^1 \text{COOR}^7 + \text{OH}^{-} \rightarrow \text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^2 \text{COOH} \rightarrow \\
&\text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^2 \text{COOR}^7 + \text{H} \rightarrow \text{HO-HN-R}^1 \text{R}^2 \text{COOR}^7
\end{align*}
\]

Scheme 5

\[
\begin{align*}
&\text{HO-N}^1 \text{R}^1 \text{R}^2 \text{N}^1 \text{N}^2 \text{COOH} + \text{Z-C-O-N}^1 \text{R}^1 \text{R}^2 \text{O} \rightarrow \\
&\text{Z-C-O-N}^1 \text{R}^1 \text{R}^2 \text{O} \text{COOR}^7 \rightarrow \text{Z-C-O-N}^1 \text{R}^1 \text{R}^2 \text{O} \text{COOH} \rightarrow \\
&\text{Z-C-O-N}^1 \text{R}^1 \text{R}^2 \text{O} \text{COOR}^7 \rightarrow \text{Z-C-O-N}^1 \text{R}^1 \text{R}^2 \text{O} \text{COOH} \rightarrow \\
&\text{H}^+ \rightarrow \text{HO-HN-R}^1 \text{R}^2 \text{COOR}^7
\end{align*}
\]

Scheme 6

\[
\begin{align*}
&\text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOH} + \text{R}^5 \text{Halogen} \rightarrow \text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOR}^7 \rightarrow \\
&\text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOH} + \text{R}^5 \rightarrow \text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOR}^7 \rightarrow \\
&\text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOH} + \text{R}^5 \rightarrow \text{C}_6\text{H}_5-\text{CH}_2-\text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOR}^7
\end{align*}
\]

Scheme 7

\[
\begin{align*}
&\text{HO-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOR}^7 + \text{R}^5 \text{Halogen} \rightarrow \text{R}^5 \text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOR}^7 \rightarrow \\
&\text{R}^5 \text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOR}^7 + \text{R}^5 \rightarrow \text{R}^5 \text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOR}^7 \rightarrow \\
&\text{R}^5 \text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOR}^7 + \text{R}^5 \rightarrow \text{R}^5 \text{O-HN-R}^1 \text{R}^1 \text{N}^1 \text{N}^2 \text{COOR}^7
\end{align*}
\]

where \(m, n, R^1, R^2, R^3, R^4, R^5 \) are as above defined

and \(R^6 = -\text{CH}_2-\text{C}_6\text{H}_5, -\text{CH}_3, -\text{C}_2\text{H}_5 \)

\(R^7 = \text{H}, -\text{CH}_3, -\text{C}_2\text{H}_5 \)
In the carrying out of the first process, the condensation step can be carried out in a solvent selected among water, aliphatic alcohols, such as for example methanol, ethanol, butanols, and chlorinated aliphatic solvents, such as methylene chloride, chloroform, dichloroethanes and at a temperature of between -5°C and 60°C, care being taken of operating at low temperature (between -5°C and the room temperature) when the reaction solvent is water or an aqueous mixture.

In turn the step of catalytic hydrogenation is carried out in aliphatic alcohols, such as methanol or ethanol, with hydrogen at room pressure and temperature in the presence of a standard catalyst such as Pd onto carbon.

In the carrying out of the second process, the condensation is carried out under with the same aforementioned conditions, whereas the next reaction with hydroxylamine contemplates the use of alcohols as water and the solvent and takes place at room temperature.

For the third process the condensation is carried out in aqueous alkaline environment at a temperature not higher than 40°C and normally at room value.

Considering now the scheme 4, the first step takes place under the same conditions already indicated for the first process (scheme 1), method (b).

The catalytic hydrogenation is likewise carried out, whereas for the alternative involving an alkalyne hydrolysis, the conditions thereof must be mild (namely room temperature, two hour time, water as the solvent).

The schemes 5, 6 and 7, relate to the preparation of derivatives of formula (I) starting from end or intermediate compounds of the processes of the schemes 1 to 4, account being taken of the indicated meanings of the substitution groups.

More particularly in the scheme 5 there are prepared derivatives of formula (I) O-acylated at the hydroxamic group; in this case the reaction with the anhydride is carried out at low temperature (lower than 20°C) at least in the initial part, in the presence of catalytic amounts of
4- N,N'-dimethylamino pyridine.

In the schemes 6 and 7 the reaction with the acyloxy-methyl halide is carried out at low temperature (lower than 20°C) at least in the initial part, in anhydrous environment and under nitrogen.

The following examples illustrate the preparation of a few compounds according to the invention; it is meant that these examples have no limiting purpose.

Melting points were taken on a Kofler melting point apparatus and are uncorrected.

All compounds had I.R. and 1HNMR spectra consistent with their assigned structures and had elemental analyses within ±0.4% of the calculated values except where noted.

Some solvents and reagents were indicated with commonly used abbreviations: THF=tetrahydrofuran, DCC=dicyclohexylcarbodiimide, ACOEt=ethylacetate, WSC=ethyl-N'-(3-dimethylaminopropyl)/carbodiimide.

EXAMPLE 1

Cis-2[N-/2-(hydroxyamino)-2-oxoethyl]aminocarbonyl-cyclohexanecarboxylic acid.

To a solution of 1.2 g (4.07 mmoles) of O-benzyl-aminoacetohydroxamic acid trifluoroacetate in 30 ml of H$_2$O 1.0 ml of 4N NaOH are added, causing the precipitation of a crystalline product.

This suspension is added under stirring at room temperature with 0.628 g (4.07 mmoles) of 1,2-cyclohexanedicarboxylic anhydride and with 1.02 ml of 4N NaOH, portionwise, over a time of 1 hour so that the reaction mixture is maintained at pH 1.0 throughout all the addition time. The reaction mixture having opalescent aspect is maintained under stirring at room temperature for 2 hours and then, after filtration, the clear solution is made acidic at pH 1 with 10% HCl under cooling with ice, thus giving place to the precipitation of the O-benzylic amido derivative in form of ivory crystals, 0.9 g, yield 66%, m.p. 141-143°C.

0.7 g (2.09 mmoles) of this O-benzylic intermediate, dissolved in 45 ml of ethanol are hydrogenated at room pressure and temperature in the
presence of 10% Pd onto carbon. The calculated amount of hydrogen, 51 ml, is absorbed in about 4 hours. The ethanol solution, after filtration of the catalyst, is evaporated to dryness and the residue consisting of hygroscopic crystals is purified by crystallization from acetone leading to the expected amido derivative, 0.27 g yield 53%, m.p. 133-135°C. (with decomposition).

EXAMPLE 2

Trans-2\{N-2-(hydroxyamino)-2-oxoethyl\}-N-ethylaminocarbonyl-7-cyclohexanecarboxylic acid.

A solution of 6 g (45.7 mmoles) of ethyl ethyl-aminoacetate in 130 ml of methylene chloride is added under stirring at 5°C with 7.05 g (45.7 mmoles) of trans-1,2-cyclohexanedicarboxylic anhydride and the resulting solution is maintained at room temperature for 20 hours. After a number of washings with 40 ml of 5% HCl and with two portions of 40 ml of saturated aqueous solution of sodium chloride, the reaction solution is dehydrated on anhydrous sodium sulphate and evaporated to dryness under vacuum to get 13 g (yield: 99%) of a chromatographically pure, white solid residue, consisting of the trans-2\{N-2-(hydroxyamino)-2-oxoethyl\}-N-ethylaminocarbonyl-7-cyclohexanecarboxylic acid.

The solution of 6 g (21.03 mmoles) of this acid in 30 ml of methanol is added under stirring at 5°C with 2.77 g (69.4 mmoles) of NaOH in 30 ml of methanol, and then, with 1.6 g (23.1 mmoles) of hydroxylamine hydrochloride. The resulting suspension is reacted under vigorous stirring at 15°C for 4 hours, then the reaction mixture is evaporated to dryness, under vacuum at room temperature to obtain 9.8 g of resinous, colorless residue. This residue is dissolved through stirring in 10 ml of water and the clear solution is made acidic up to pH 2 with 6N HCl, salted up to saturation with sodium chloride and lastly extracted with portions of 20 and 10 ml of ethyl acetate. The combined organic extracts are dehydrated on MgSO₄, and evaporated to
dryness under vacuum to obtain 5.59 g of colorless crystalline residue. This product is taken with 50 ml of chloroform, and the resulting suspension is filtered under vacuum and the residue is treated with 90 ml of 1,2-dichloroethane to form a suspension which is maintained at rest at room temperature.

By filtration under vacuum 4.58 g are obtained (yield: 80%) of the expected product, as colorless crystals m.p. 137-139°C (Kofler).

EXAMPLE 3

Cis-2-(N-2-benzyl-3-(hydroxyamino)-3-oxopropy1amino)carbonyl-cyclohexanecarboxylic acid

A solution of 4 g (20.0 mmoles) of 2-benzyl-3-amino-propionic-hydroxamic acid (prepared by reaction of the methylester of 2-benzyl-3-amino-propionic acid with hydroxylamine) in 70 ml of H₂O and 6 ml of 4N NaOH, is added, under stirring and at the temperature of 20-25°C, simultaneously, over 1 hour, with 3.1 g (20.0 mmoles) of 1,2-cyclohexanedicarboxylic anhydride and 4 ml of 4N NaOH maintaining the mixture at pH 11 for the whole addition time.

After 2 hours of stirring at 20-25°C, the mixture is made acidic to pH 1 with 10% HCl and extracted with CHCl₃. The CHCl₃ is evaporated and the residue of ivory color is crystallized from acetone obtaining the expected compound in white crystalline form, 1.48g, yield 26.6%, m.p. 171-175°C.

EXAMPLE 4

cis-2-(N-(2-hydroxyamino)-2-oxoethyl)-N-methylamino)carbonyl-cyclohexanecarboxylic acid.

To a stirred solution of cis-cyclohexanedicarboxylic anhydride (1.60 g, 10.4 mmol) in dichloromethane (20 mL), under nitrogen, was added a solution of O-benzyl sarcosin hydroxamic acid trifluoroacetate (3.08 g, 10.0 mmol) and triethylamine (3.0 mL, 21.5 mmol) in dichloromethane (30 mL), and the mixture was washed with cold 5% HCl(10ox2), neutralized with 10% NaHCO₃ and dried with MgSO₄. The solvent was evaporated under reduced pressure and the residue was crystallized from acetone/ether to give the
"O-benzylic amide" intermediate (3.40 g, 95%) as white crystals, m.p. 130°C. This compound (2.35 g, 6.75 mmol) was hydrogenated in methanol (30 mL) in presence of 10%Pd/C for 2 h. After evaporation of the solvents under reduced pressure at 5°C, the product was taken up in dichloromethane to give the title compound (1.25 g, 71%) as white crystals: m.p. 131-133°C.

EXAMPLE 5
Cis-2-[(2-hydroxyamino)-2-oxoethyl]-N-phenylamino-carbonyl]-cyclohexancarboxylic acid.
A solution of 1.32 g (33 mmoles) of NaOH in 32 ml of methanol, is added under stirring at a temperature of 10°C, with 3.19 g (10 mmoles), of cis-2-[(2-methoxy-2-oxoethyl]-N-phenylamino-carbonyl]-cyclohexancarboxylic acid (prepared from the anhydrate of the cis-1,2-cyclohexanedicarboxylic acid and methyl N-phenyl-aminoacetate according to a process like that disclosed in the example 2), and then with 0.764 g (11 mmoles) of hydroxylamine hydrochloride. The resulting suspension is maintained under stirring at 15°C for 6 hours, then at rest for the night. After evaporation up to dryness under vacuum, the residue is taken with 55 ml of water, the suspension is treated with "norite", filtered and lastly made acidic in cool situation with 10% HCl up to pH 3. The resinous precipitate is extracted with two portions of 60 ml of methylene chloride and the combined organic extracts are washed with water saturated with sodium chloride, dehydrated onto anhydrous sodium sulphate and evaporated under vacuum to give 2.7 g (yield 84%) of a colorless resinous solid residue. The latter is purified by dissolution in 27 ml of acetone, from which it precipitates again through extended resting at 0°C leading to the expected compound as colorless crystals, m.p. 160-161°C.

EXAMPLE 6
Trans-2-[(2-hydroxyamino)-2-oxoethyl]-N-methylamino-carbonyl]-cyclopentancarboxylic acid.
1.16 g (7.34 mmoles) of trans-1.2-cyclopentanedicarboxylic acid are solubilized in a solution of H₂O/t-butanol. The solution is added with 1.42 g
(7.34 mmole) of 0-benzyl-N-methyl-aminoacetohydroxamic acid and then the pH is adjusted to 4.5 with 1N NaOH. 1.30 g (7.34 mmole) of WSC are added as portions maintaining the pH at 4.5. After 22 hours of stirring at room temperature, the reaction solution is extracted three times with CHCl₃. By evaporating the chloroform solution the O-benzylic amido derivative is obtained in form of white crystals, 1.15 g, (yield 47%). The thus obtained product is dissolved in 10 ml of methanol and catalytically hydrogenated at 20°C at room pressure in the presence of 10% Pd on carbon, whereby the expected compound is obtained in form of white crystals m.p. 107-111°C, 0.7 g, yield 83%.

The compounds which are hereinafter listed have been prepared according to the previous examples but for sake of shortness their descriptions are not repeated, the chemical parameters of the same compounds being only reported.

In the further examples which follow, the examples 7, 8, 9, 10, 11, 12, and 13 have been carried out by repeating examples 4, starting from the suitable reactants.

The examples 14, 15 and 16, in turn, have been carried out by respectively repeating the example 1, 5 and 2.

EXAMPLE 7

trans-(1R,2R)-2-L-2-(hydroxyamino)-2-oxoethyl-7N-ethylamino-7-carbonyl-7-cyclohexanecarboxylic acid.

To a stirred solution of 2.0 g (11.6 mmol) of (1R,2R)(-)-1,2-cyclohexane-dicarboxylic acid and 1.52 g (11.6 mmol) of ethyl N-ethylaminoacetate in 60 mL of THF at 50°C were added 2.38 g (11.6 mmol) of DCC. The solution was stirred at 50°C 2h and at room temperature overnight. The precipitated di-cyclohexylurea was filtered off, and the solvent was evaporated. The residual oil was dissolved in CH₂Cl₂ washed with water (10 mL) then with 15 mL of aqueous 5% NaHCO₃.

The aqueous extract was washed with CH₂Cl₂ (10 mL), was acidified with 6N HCl, then was extracted with 20 mL of CH₂Cl₂, and the extracts were dried (Na₂SO₄) and evaporated to give the "amido-ester" intermediate: 1.9 g,
58% yield, oily crystals.

This intermediate was treated with hydroxylamine hydrochloride according to the procedure described in the Example 2, to give 1.38 g (87%) of pure title compound as a white solid: $\alpha^\circ_D = 10.7 \ (C \ 1.5 \ ethanol)$.

EXAMPLE 8

Cis-2(2-N,2-phenylethyl)-2-(hydroxyamino)-2-oxoethyl-7-N-methylamino-7-carbonyl-7-cyclohexanecarboxylic acid.

To a stirred solution of 1.24 g (8.0 mmol) of cis-cyclohexanedicarboxylic anhydride in 50 mL of CH$_2$Cl$_2$ were slowly added at room temperature 100 mL of a CH$_2$Cl$_2$ solution containing 2.24 g (8.0 mmol) of O-benzyl-2-methylamino-4-phenyl-butanehydroxamic acid and 0.81 g (8.0 mmol) of triethylamine. The reaction mixture was then stirred for 5 h at room temperature. The CH$_2$Cl$_2$ was evaporated at reduced pressure and the residue was dissolved in aqueous 5% NaOH; acidification of this solution with concentrated HCl afforded 2.5 g (68%) of the "O-benzylic amide" intermediate, which was hydrogenated in 20 mL of methanol, with 0.24 g of 10%(Pd/C) at room pressure and temperature for 2 h.

After filtration of the catalyst, evaporation of the solvent in vacuo gave a residue which was dissolved in 10 mL of hot acetone, the acetic solution was allowed to cool and the precipitated first crop (0.1 g) was filtered off. The solution was allowed to stand 4 days at 0°C when a second crop of crystals began to precipitate; the solid was collected by filtration (0.27 g) and was treated with hot acetone (20 mL) under stirring for half a hour. The hot suspension was filtered obtaining a white solid (m.p. 165-169°C) corresponding to one of two racemic compounds defined by title chemical name.

The acetic filtrate was evaporated to give a residue which recrystallized from CHCl$_3$ gave a white solid (m.p. 137-139°C) corresponding to the other racemic compound defined by the title chemical name.

EXAMPLE 9

Cis-([1S,2R]-2(2-N,2-(hydroxyamino)-2-oxoethyl-7-N-methylamino-7-carbonyl)-
2-methoxycarbonyl-[1R,2S]-cyclohexanecarboxylic acid was obtained following the literature Mohr et al., Helv.Chim.Acta, 1983, 66, 2501.

\[\alpha_{578}^{20} = +4.23^\circ \ (C=5.5, \text{ethanol}); \text{o.p.} = 63.1\%
\]

A sample of half ester (2.7 g, 14.5 mmol) was dissolved in THF (10 mL) and cooled at 0°C. A solution of O-benzylsarcosinhydroxamic acid trifluoroacetate (4.47 g, 14.5 mmol) and triethylamine (2 mL, 14.5 mmol) in CHCl₃ (10 mL), 1-hydroxy-benzotriazol (16–20% water, 2.45 g, 14.5 mmol) in THF (20 mL) and dicyclohexylcarbodiimide (3.29 g, 14.65 mmol) in THF (15 mL) were added successively. The solution was stirred at 0°C for 1 h and at room temperature overnight. After filtration of dicyclohexylurea and evaporation of solvents, the residue was dissolved in AcOEt. After filtration of residual dicyclohexylurea, the solution was washed with water (2 x 20 mL), 10% citric acid (3 x 20 mL), water (20 mL), 5% NaHCO₃ (3 x 20 mL) and water (20 mL). The organic layer was dried over MgSO₄ and evaporated in vacuo. The oil was purified by flash-chromatography (AcOEt/petroleum-ether=80/20). The oily product (2.55 g, 45%) showed \[\alpha_{578}^{20} = +14.89^\circ \ (C=6.2, \text{ethanol}) \]. The oil (2.27 g, 6.27 mmol) was dissolved in 1M aqueous NaOH (50 mL) and the mixture was stirred two hours at room temperature. The solution was acidified with 10% HCl at 0°C and extracted with CHCl₃ (3 x 30 mL). The organic layer was extracted with 5% NaHCO₃ (3 x 20 mL), the basic solution was acidified with 10% HCl at 0°C and extracted with CHCl₃ (3 x 20 mL). The organic layer was dried over MgSO₄ and evaporated in vacuo. The residue crystallized from aceton, giving a white solid (1.42 g, 65%); m.p. 110-113°C; \[\alpha_{578}^{20} = -12.7^\circ \ (C=5.0, \text{Ethanol}) \]. The preceding compound (0.82 g, 2.36 mmol) was hydrogenated with 10% Pd on charcoal (100 mg) in methanol (40 mL) and, after filtration, the solvent was evaporated in vacuo. The residue crystallized from methanol/ether giving a white solid (300 mg, 50%); m.p. 127-128°C, \[\alpha_{578}^{20} = +26.1^\circ \ (C=1.5, \text{Ethanol}) \].

EXAMPLE 10

Cis-2/\[\text{[1]-benzyl-2-(methoxyamino)-2-oxoethyl-N-methylamino-carbonyl}]/cyclohexanecarboxylic acid.
To a stirred suspension of 1.28 g (8.32 mmol) of cis-cyclohexanedicarboxylic anhydride in 50 ml of CH$_2$Cl$_2$ were added dropwise 120 mL of a CH$_2$Cl$_2$ solution containing 2 g (8.3 mmol) of N-methyl-O-methyl-phenylalanyl-hydroxamic acid (formate salt) and 0.84 g (8.32 mmol) of triethylamine, and the mixture was stirred at room temperature for 5h. The reaction mixture was washed twice with 5% HCl and with water, and then was extracted with 10% aqueous NaHCO$_3$. The extracts were cooled and acidified with concentrated HCl to give a solid which was recrystallized from methanol to yield the title compound as white crystals, m.p. 168-171°C.

EXAMPLE 11

Trans-2[Z,N-Z2-(N'-hydroxy-N'-methylamino)-2-oxoethyl]-N-ethylamino7 carbonyl7-cyclohexanecarboxylic acid.

To a stirred solution of 4.28 g (15 mmol) of trans-2[Z,N-Z2-(ethoxy)-2-oxoethyl]-N-ethylamino7 carbonyl7-cyclohexane- -carboxylic acid (the "amido ester" intermediate described in the Example 2) in 21 mL of methanol at 5°C were added 2.0 g (49.5 mmol) of NaOH dissolved in 21 mL of methanol and then 1.38 g (16.5 mmol) of N-methyl-hydroxylamine hydrochloride. After the mixture was stirred at 10°C for 4 h, the solvent was removed in vacuo and the residue was dissolved in 10 ml of water and 10 mL of ethyl acetate. The stirred mixture was slowly acidified with 5% HCl, the organic layer was separated and the aqueous solution was extracted again with 10mL of ethyl acetate. The extracts were dried (Na$_2$SO$_4$) and the solvent was distilled under reduced pressure to leave a residue which, recrystallized from ether, gave 3.4g (79%) of the title compound as a white solid, m.p. 132°C.

EXAMPLE 12

Methyl-cis-2[Z,N-[2-(hydroxyamino)-2-oxoethyl]-N-methylamino7 carbonyl7-cyclohexanecarboxylate.

2-methoxycarbonyl-cyclohexanecarboxylic acid (1.5 g, 8.06 mmol) was dissolved in CH$_2$Cl$_2$ (10 mL) and a solution of O-bensyl-sarcosin-hydroxamic acid-trifluoroacetate (2.48 g, 8.06 mmol) and triethylamine (1.1 mL, 8.06 mmol) in CH$_2$Cl$_2$ (10 mL) was added. The solution was cooled at 0°C and di-
cyclohexylcarbodiimide (1.66 g, 8.06 mmol) in CH$_2$Cl$_2$ (20 mL) was added with rapid stirring. After half hour at 0°C, the mixture was stirred at room temperature for 3 hours and the resulting dicyclohexylurea (DCU) was removed by filtration. After evaporation of the solvent, the residue was dissolved in AcOEt and, after filtration of residue DCU, was washed successively with water (30 mL), 10% citric acid (30x20 mL), water (30 mL), 5% NaHCO$_3$ (3x20 mL) and water (30 mL). The organic layer was dried over MgSO$_4$ and evaporated in vacuo. An oily product was obtained (1.85 g, 62%). The preceding compound (1.57 g, 4.34 mmol) was hydrogenated in methanol (50 mL) with 10% Pd on charcoal (0.15 g). After filtration of the catalyst, the solution was evaporated in vacuo and the oil was crystallized from aceton/diethylether. A white solid was obtained (0.71 g, 60%): m.p. 101-102°C.

EXAMPLE 13

Trans-2-[(N-[2-(acetyloxyamino)-2-oxoethyl]-N-ethylamino)carbonyl]-cyclohexanecarboxylic acid.

To a stirred suspension of 2.0 g (7.3 mmol) of trans-2-[(N-[2-(hydroxyamino)-2-oxoethyl]-N-ethylamino)carbonyl]-cyclohexanecarboxylic acid (Example 2) in 20 mL of CH$_2$Cl$_2$ at 5°C were added 2.1 g (21.2 mmol) of acetic anhydride and then dropwise 1.48 g (14.7 mmol) of triethylamine. The obtained solution was then added with 0.04 g (0.36 mmol) of 4-N,N'-dimethylamino-pyridine and stirred at room temperature 3 h.

The reaction mixture was washed with 2x10 mL of aqueous 5% HCl, then with saturated aqueous NaCl (10 mL), dried (CaCl$_2$), and the solvent was evaporated. The residual oil was washed with ether and recrystallized from ether-CH$_2$Cl$_2$ (2:1) to give the title compound as white crystals m.p. 140-141°C.

EXAMPLE 14

Cis-2-[(N-1-methyl-2-(N'-acetoxy-N'-acetylamino)-2-oxoethyl]-N-methyl-aminocarbonyl]-cyclohexanecarboxylic acid.

To a solution of the example 4 compound (330 mg, 1.28 mmol), triethylamine (0.55 ml, 3.95 mmol) and N,N-dimethylaminopyridine (10 mg amount)
in dichloromethane (10 mL) stirred under nitrogen and cooled at 0°C, was added acetic anhydride (270 mg, 2.65 mmol). The mixture was allowed to warm at room temperature and an aliquot was checked with ferric trichloride to verify the complete acylation of the hydroxamic moiety. Then the mixture was washed with 10% HCl (2x10 mL), 5% NaHCO₃ (2x10 mL), water dried with MgSO₄. The solvent was removed under reduced pressure at room temperature and the crude product was crystallized from diethylether to give a white solid (306 mg, 70%): m.p. 108-109°C.

EXAMPLE 15
A mixture of the example 4 "O-benzylic amide" intermediate (4.5 g, 13 mmol) and triethylamine (1.8 mL, 13 mmol) dissolved in anhydrous THF (30 mL) was added dropwise under nitrogen, to a solution of iodomethylacetate (3.0 g, 15 mmol) in the same solvent (20 mL) cooled to -5°C. The mixture was stirred for 30 min and then allowed to warm at room temperature. The precipitated white solid was filtered off, and the filtrate was concentrated in vacuo. The residue was taken up in AcOEt (20 mL), washed with 5% NaCO₃ (2x20 mL), water and dried (MgSO₄).
The solvent was removed under reduced pressure to give the "O-benzylic acetoxy methyl" derivative (3.88 g, 71%) as a yellow viscous oil, which was hydrogenated (6 h) in THF (30 mL) in the presence of 10% Pd/C to give the title compound (quantitative amount) as a white glass.

EXAMPLE 16
To a stirred mixture of the example 12 compound (1 g, 3.6 mmol) and triethylamine (0.52 mL, 3.7 mmol) in anhydrous THF (25 mL) was added iodomethylacetate (0.74 g, 3.6 mmol) in the same solvent (10 mL) under nitrogen. The mixture was left at room temperature for 98 h. The precipitated solid was filtered off and most of the solvent was evaporated under reduced pressure. The residue was partitioned between dichloromethane and
cold 5% aqueous HCl, the organic layer was washed with 5% HCl, 10% NaH-CO$_3$, water and dried with MgSO$_4$.

The solvent was evaporated under reduced pressure to give the title compound (0.9 g, 79%) as a pale yellow oil.

In the further examples:
- the compounds 17, 18, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33 and 34 were prepared according to the Example 4 using the proper starting compounds;
- the compound 24 according to the Example 1;
- the compounds 25, 26, 36, 37, 38, 39, 40 and 41 according to the Example 2;
- the compound 42 according to the Example 10;
- the compounds 43, 44 and 45 according to the Example 11;
- the compound 35 according to Example 8.

EXAMPLE 17
Cis-2\([\text{N-}\{3-(\text{hydroxyamino})-3-\text{oxopropyl}\}]\text{amino}\text{carbonyl}\text{-cyclohexane-carboxylic acid.}
White crystals, m.p. 145-148°C.

EXAMPLE 18
Cis-2\([\text{N-}\{1-\text{benzyl-2-(\text{hydroxyamino})-2-\text{oxoethyl}\}]\text{amino}\text{carbonyl}\text{-cyclohexane-carboxylic acid.}
White crystals, m.p. 115-118°C.

EXAMPLE 19
Cis-2\([\text{N-}\{1-(2-\text{phenylethyl})-2-(\text{hydroxyamino})-2-\text{oxoethyl}\}]\text{amino}\text{carbonyl}\text{-cyclohexanecarboxylic acid.}
White crystals, m.p. 83-85°C.

EXAMPLE 20
Cis-2\([\text{N-}\{1-(3-\text{phenylpropyl})-2-(\text{hydroxyamino})-2-\text{oxoethyl}\}]\text{amino}\text{carbonyl}\text{-cyclohexanecarboxylic acid.}
White crystals, m.p. 148-150°C.

EXAMPLE 21
Trans-2\([\text{N-}\{2-(\text{hydroxyamino})-2-\text{oxoethyl}\}]\text{N-methylamino}\text{carbonyl}\text{-cyclo-}
hexanecarboxylic acid.
White crystals, m.p. 172-174°C.

EXAMPLE 22
Cis-2\(\text{L}-2\text{-(phenylethyl)-2-(hydroxyamino)-2-oxoethylaminocarbonyl}\) cyclopentanecarboxylic acid.
White crystals, m.p. 147-148°C.

EXAMPLE 23
Cis-2\(\text{L}-1\text{-(3-phenylpropyl)-2-(hydroxyamino)-2-oxoethylaminocarbonyl}\) cyclopentanecarboxylic acid.
White crystals, m.p. 122-126°C.

EXAMPLE 24
Cis-2\(\text{L}-2\text{-(2-benzyl-3-(hydroxyamino)-3-oxopropylaminocarbonyl}\) cyclohexanecarboxylic acid.
Ivory crystals, m.p. 143-146°C.

EXAMPLE 25
Trans-2\(\text{L}-2\text{-(hydroxyamino)-2-oxoethylaminocarbonyl}\) cyclohexanecarboxylic acid.
White crystals, m.p. 151-152°C.

EXAMPLE 26
Cis-2\(\text{L}-2\text{-(hydroxyamino)-2-oxoethylaminocarbonylcyclohexane-}\)carboxylic acid.
White crystals, m.p. 172-174°C.

EXAMPLE 27
Cis-2\(\text{L}-1\text{-methyl-2-(hydroxyamino)-2-oxoethylaminocarbonylcyclohexane-}\)carboxylic acid.
Ivory crystals, m.p. 83-84°C.

EXAMPLE 28
Trans-2\(\text{L}-1\text{-methyl-2-(hydroxyamino)-2-oxoethylaminocarbonylcyclohexane-}\)carboxylic acid.
White crystals, m.p. 132-134°C.
-cyclohexanecarboxylic acid.
Viscous oil.

EXAMPLE 30
Trans-2\[N-(l-benzyl-2-(hydroxyamino)-2-oxoethyl\]N-methylamino\]carbonyl\]cyclohexanecarboxylic acid.
Ivory crystals, m.p. 144-147°C.

EXAMPLE 31
Trans-2\[N-(1-(2-phenylethyl)-2-(hydroxyamino)-2-oxoethyl\]N-methylamino\]carbonyl\]cyclohexanecarboxylic acid.
Viscous oil.

EXAMPLE 32
Cis-2\[N-(1-(3-phenylpropyl)-2-(hydroxyamino)-2-oxoethyl\]N-methylamino\]carbonyl\]cyclohexanecarboxylic acid.
White crystals, m.p. 192°C (dec.).

EXAMPLE 33
Trans-2\[N-(1-(3-phenylpropyl)-2-(hydroxyamino)-2-oxoethyl\]N-methylamino\]carbonyl\]cyclohexanecarboxylic acid.
White crystals, m.p. 150-155°C.

EXAMPLE 34
Cis-2\[N-(1-(2-phenylethyl)-2-(hydroxyamino)-2-oxoethyl\]N-methylamino\]carbonyl\]cyclopentanecarboxylic acid.
White crystals, m.p. 150-151°C.

EXAMPLE 35
Trans-2\[N-(l-benzyl-2-(hydroxyamino)-2-oxoethyl\]N-ethylamino\]carbonyl\]cyclohexanecarboxylic acid.
Two racemic compounds:
colorless crystals, m.p. 167-169°C
Ivory crystals, m.p. 96°C (dec.).

EXAMPLE 36
Trans-2\[N-(2-benzyl-3-(hydroxyamino)-3-oxopropyl\]N-ethylamino\]carbonyl\]cyclohexanecarboxylic acid.
White solid, m.p. 94°C.
EXAMPLE 37
Cis-2\([N-(3-(hydroxyamino)-3-oxopropyl)-N-ethylamino-carbonyl]-cyclohexane\) carboxylic acid.
Colorless crystals, m.p. 146-148°C.

EXAMPLE 38
Trans-2\([N-(3-(hydroxyamino)-3-oxopropyl)-N-ethylamino-carbonyl]-cyclohexanecarboxylic acid.\)
Colorless crystals, m.p. 148-150°C.

EXAMPLE 39
Cis-2\([N-(2-(hydroxyamino)-2-oxoethyl)-N-propylamino-carbonyl]-cyclohexane\) carboxylic acid.
Colorless crystals, m.p. 84-86°C.

EXAMPLE 40
Trans-2\([N-(2-(hydroxyamino)-2-oxoethyl)-N-propylamino-carbonyl]-cyclohexanecarboxylic acid.\)
Colorless crystals, m.p. 132-133°C.

EXAMPLE 41
Trans-2\([N-(2-(hydroxyamino)-2-oxoethyl)-N-(2-propyl)aminocarbonyl]-cyclohexanecarboxylic acid.\)
Colorless crystals, m.p. 131°C

EXAMPLE 42
Trans-2\([N-(1-benzyl-2-(methoxyamino)-2-oxoethyl)-N-methylamino-carbonyl]-cyclohexanecarboxylic acid.\)
White crystals, m.p. 100-102°C.

EXAMPLE 43
Cis-2\([N-(2-(N'-hydroxy-N'-methylamino)-2-oxoethyl)-N-methylamino-carbonyl]-cyclohexanecarboxylic acid.\)
White crystals, m.p. 144°C.

EXAMPLE 44
Trans-2\([N-(2-(N'-hydroxy-N'-methylamino)-2-oxoethyl)-N-ethylamino-carbonyl]-cyclohexanecarboxylic acid.\)
Colorless crystals, m.p. 129°C.
EXAMPLE 45

Trans-2[N-3-(N'-methyl-N'-hydroxyamino)-3-oxopropyl]-N-ethylamino]carbonyl-cyclohexanecarboxylic acid.

Viscous oil.

The ACE-inhibiting activity of the compounds of the invention has been evaluated by determining the inhibition of the hydrolysis of the ippuril-glycyl-glycine artificial substrate by the ACE contained in the rat serum. The IC50 values have been calculated by the regression analysis of the linear part of the log dose/percent inhibition curve.

In the following table the values of IC50 (nM) and ED50 i.v. of a group of compounds representative of the compounds of the invention have been reported.

Dose-dependent antihypertensive activity of selected compounds was calculated after intravenous administration to the anaesthetized ganglion-blocked rat. Inhibition of blood pressure increases induced by repeated i.v. injections of angiotensin I was measured and the ED50 values, reported in the table, were calculated at the time of maximum effect (1 min for all tested compounds).

Half-lives ($t_{1/2}$) of the antihypertensive action were also calculated and reported.
Antihypertensive activity

<table>
<thead>
<tr>
<th>No. Es.</th>
<th>IC\textsubscript{50} (nM)</th>
<th>E\textsubscript{D50} i.v.</th>
<th>t\textsubscript{1/2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1600</td>
<td>0.035</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.5</td>
<td>0.060</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>28000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>25(15)</td>
<td>0.113</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0.038</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>7.6</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>280</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>captopril</td>
<td>1.2</td>
<td>0.011</td>
<td>9</td>
</tr>
</tbody>
</table>

The compound 4, as every ACE-inhibiting agent, has not influenced, on the contrary, the pressure answer to angiotensin II, up to the dose of 1 mg kg \textsubscript{i,v}.

If account is taken of the fact that the compounds of the present invention show a very low acute toxicity, with L\textsubscript{D50} higher than 1000 mg/kg in the intravenous administration to the mice, it is evident that the compounds of the invention are suitable in an excellent manner for the therapeutical use, for which dosages of the same order of magnitude as captopril are foreseen.

The pharmaceutical compositions according to the invention, given the type of therapeutical use, are preferably in forms which can be ad-
ministered by oral route (tablets, capsules and the like); they contain as active principle, a compound of the invention of formula (I) together with the conventional carriers and excipients.

The preparation of the pharmaceutical forms is carried out with the standard techniques of the art.
pentane-1,2-dicarboxylic acid.
1.16 g (7.34 mmoles) of trans-1,2-cyclopentane-1,2-dicarboxylic acid are solubilized in a solution of H₂O/t-butanol. The solution is added with 1.42 g HCl, then was extracted with Na₂SO₄ and evaporated.

1. Amides of cycl

R -0

wherein

A represents

R¹ represents -H, -CH₂
R² represents -H, -CH₂
R³ represents -H, -CH₂
R⁴ represents -H, -CH₂
Y = Z =

R⁴ = R⁵, -C-Z

O
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. Amides of cyclomethylene-1,2-dicarboxylic acids, having the formula:

![Chemical Structure](image)

wherein

A represents

R\(^1\) represents \(-\text{H}, \ -\text{CH}\(_3\), \ -\text{CH}_2\text{-CH}_3, \ -\text{CH}(\text{CH}_3)_2, \ -\text{CH}_2\left(-\text{O}\right)_2\)

R\(^2\) represents \(-\text{H}, \ \text{CH}_3, \ -\text{CH}_2\text{-CH}_3, \ -\text{CH}(\text{CH}_3)_2, \ -\text{CH}_2\text{-CH}_2\text{-CH}_3, \ -\text{CH}_2\text{-CH}(\text{CH}_3)_2\)

R\(^3\) represents \(-\text{H}, \ -\text{CH}_3, \ -\text{C}_2\text{H}_5, \ -\text{C}-\text{C}_6\text{H}_5, \ -\text{C}_6\text{-H}_5\)

R\(^4\) = R\(^5\), \ -\text{C}-\text{Z}

Y = \(-\text{H}, \ -\text{CH}_3, \ -\text{CH}(\text{CH}_3)_2\)

Z = \(-\text{H}, \ -\text{CH}_3, \ -\text{C}(\text{CH}_3)_3, \ -\text{CH}(\text{C}_2\text{H}_5)_2, \)

-CH\(_2\), \
-
m is 0 or 1 and n is an integer varying between 0 and 3.

2. Cis-2//N-/2-(hydroxyamino)-2-oxoethyl/\textit{amino}/carbonyl-\textit{cyclohexane}-carboxylic acid.

Trans-2//N-/2-(hydroxyamino)-2-oxoethyl/-N-ethylamino/carbonyl/-cyclo-
hexanecarboxylic acid.

Cis-2//N-/2-(2-benzyl-3-(hydroxyamino)-3-oxopropyl/amino/carbonylcyclo-
hexanecarboxylic acid.

Cis-2//N-/2-(hydroxyamino)-2-oxoethyl/-N-methylamino/carbonyl/-cyclo-
hexanecarboxylic acid.

Cis-2//N-/2-(hydroxyamino)-2-oxoethyl/-N-phenylamino/carbonyl/-cyclo-
hexanecarboxylic acid.

Trans-2//N-/2-(hydroxyamino)-2-oxoethyl/-N-methylamino/carbonyl/-cyclo-
pentanecarboxylic acid.

Trans-(1R,2R)-2//N-/2-(hydroxyamino)-2-oxoethyl/N-ethylamino/carbonyl/-
-cyclohexanecarboxylic acid.

Cis-2//N-/1-(2-phenylethyl)-2-(hydroxyamino)-2-oxoethyl/-N-methylamino/
carbonyl/-cyclohexanecarboxylic acid.

Cis-(1S,2R)-2//N-/2-(hydroxyamino)-2-oxoethyl/-N-methylamino/carbonyl/-
cyclohexanecarboxylic acid.

Trans-2//N-/2-(N'-hydroxy-N'-methylamino)-2-oxoethyl/-N-ethylamino/
carbonyl/-cyclohexanecarboxylic acid.

Methyl-cis-2//N-/2-(hydroxyamino)-2-oxoethyl/-N-methylamino/carbonyl/-
cyclohexanecarboxylate.

Trans -2//N-/2-(acetyloxyamino)-2-oxoethyl/-N-ethylamino/carbonyl/-
cyclohexanecarboxylic acid.

Cis-2//N-/1-methyl-2-(N'-acetoxy-N'-acetylamino)-2-oxoethyl/-N-methyl-
amino/carbonyl/-cyclohexanecarboxylic acid.

Acetoxy methyl cis-2//N-/1-methyl-2-(hydroxyamino-2-oxoethyl/-N-methyl-
amino/carbonyl/cyclohexanecarboxylate.

Methyl cis-2//N-/1-methyl-2-(acetoxyethyloxy)amino-2-oxoethyl/-N-methyl
amino/carbonyl/-cyclohexanecarboxylate.
Cis-2//N-/3-(hydroxyamino)-3-oxopropyl/amino/carbonyl/-cyclohexane-
carboxylic acid.
Cis-2//N-/1-benzyl-2-(hydroxyamino)-2-oxoethyl/amino/carbonyl/-cyclohexane-
carboxylic acid.
Cis-2//N-/1-(2-phenylethyl)-2-(hydroxyamino)-2-oxoethyl/amino/carbonyl/
cyclohexanecarboxylic acid.
Cis-2//N-/1-(3-phenylpropyl)-2-(hydroxyamino)-2-oxoethyl/amino/carbonyl/
cyclohexanecarboxylic acid.
Trans-2//N-/2-(hydroxyamino)-2-oxoethyl/-N-methylamino/carbonyl/
cyclohexanecarboxylic acid.
Cis-2//N-(l-(2-phenylethyl)-2-(hydroxyamino)-2-oxoethyl/amino/carbonyl/
cyclopentanecarboxylic acid.
Cis-2//N-/1-(3-phenylpropyl)-2-(hydroxyamino)-2-oxoethyl/amino/carbonyl/
cyclopentanecarboxylic acid.
Cis-2//N-/2-benzyl-3-(hydroxyamino)-3-oxopropyl/amino/carbonyl/cyclo-
pentanecarboxylic acid.
Trans-2//N-/2-(hydroxyamino)-2-oxoethyl/-N-phenylamino/carbonyl/
cyclohexanecarboxylic acid.
Cis-2//N-/1-methyl-2-(hydroxyamino)-2-oxoethyl/-N-methylamino/carbonyl/
cyclohexanecarboxylic acid.
Trans-2//N-/1-methyl-2-(hydroxyamino)-2-oxoethyl/-N-methylamino/carbonyl/
cyclohexanecarboxylic acid.
Cis-2//N-/1-benzyl-2-(hydroxyamino)-2-oxoethyl/-N-methylamino/carbonyl/
cyclohexanecarboxylic acid.
Trans-2//N-/1-benzyl-2-(hydroxyamino)-2-oxoethyl/-N-methylamino/
carbonyl/-cyclohexanecarboxylic acid.
Cis-2//N-/1-(2-phenylethyl)-2-(hydroxyamino)-2-oxoethyl/-N-methylamino/
3. A process for the preparation of the compounds of claim 3, characterized by comprising the following steps:

(i) condensation of an amino derivative, containing a hydroxamic group, having the formula:

\[
\begin{align*}
R^1 & \text{-} \text{OH} \\
C & \text{-} (\text{CH}_2) \text{-} \text{NH} \\
R^2 & \text{-} \text{N} \\
\end{align*}
\]
wherein \(R^1, R^2, \) and \(m \) have the meanings indicated in claim 1, and \(R^3 \) represents H or a protecting group, with a cyclomethylene 1,2-carboxylic acid having the formula:

\[
\begin{array}{c}
\text{COOH} \\
\text{COOH} \\
\end{array}
\]

\[
(\text{CH}_2)_n
\]

wherein \(n \) has the meaning already indicated in claim 1, or a derivative thereof and

(ii) removal of the protecting group \(R^3 \), if different from H, from the amido derivative resulting from said condensation.

4. A process according to claim 3, characterized in that said protecting group is benzyl.

5. A process according to claim 3, characterized in that said condensation is carried out with an anhydride of the desired cyclomethylene-1,2-bicarboxylic acid.

6. A process according to claim 3, characterized in that said condensation with said cyclomethylene-1,2-bicarboxylic acid is carried out in the presence of a condensating agent.

7. A process according to claim 6, characterized in that said condensating agent is ethyl-N'-/3-dimethylaminopropyl/carbodiimide.

8. A process according to claim 3, characterized in that said removal of said protecting group is carried out by catalytic hydrogenation.

9. A process according to claim 3, characterized in that said condensation is carried out in a solvent selected among water, aliphatic alcohols and chlorinated aliphatic solvents, at a temperature of between \(-5^\circ C\) and 60°C.

10. A process according to claim 9, characterized in that in the case of a water solvent the reaction temperature is of between \(-5^\circ C\) and the room
11. A process according to claim 9, characterized in that said chlorinated aliphatic solvents are selected in the group comprising methylene chloride, chloroform and dichloroethanes.

12. A process according to claim 8, characterized in that said catalytic hydrogenation is carried out in an aliphatic alcohol, with hydrogen at room temperature and pressure in the presence of a standard hydrogenation catalyst.

13. A process according to claim 3, characterized in that when $R^3=H$, said condensation is carried out in an alkaline aqueous environment at a temperature not higher than 40°C, preferably at room temperature.

14. A process for the preparation of the compounds of claim 1, characterized by comprising the following steps:

(i) condensation of an amino ester of formula:

$$\text{H}_3\text{COOC}-\text{CH}-(\text{CH}_2)_m-\text{NH}$$

wherein R_1, R_2 and m have the above meanings, with a cyclomethylen-1,2-bicarboxylic acid having the formula:

$$\text{COOH}$$

$$(\text{CH}_2)_n\text{COOH}$$

wherein n has the already stated meaning, or a derivative thereof, and

(ii) the resulting amido derivative is reacted with hydroxylamine to give the desired compound of formula (I).

15. A process according to claim 13, characterized in that said condensation is carried out under the condition of each of the claims 5, 6, 7, 9, 10, 11.

16. A process according to claim 13, characterized in that the reaction with hydroxylamine is carried out in a solvent selected among water, alcohols and their mixtures and at room temperature.

DATED this 11th day of April 1989.

LABORATORI GUIDOTTI SPA

EDWD. WATERS & SONS
PATENT ATTORNEYS
50 QUEEN STREET
MELBOURNE. VIC. 3000.
END