CONVENTION APPLICATION FOR STANDARD PATENT OR A STANDARD PATENT OF ADDITION

We, STERLING DRUG INC.,
of 90 Park Avenue, New York,
New York, United States of America
hereby apply for the grant of a standard patent
for an invention entitled
"1,6-NAPHTHYRIDIN DERIVATIVES USEFUL AS CARDIOTONICS, AND PREPARATION THEREOF"

which is described in the accompanying complete specification.

DETAILS OF BASIC APPLICATION(S)
Number(s) of Basic Application(s) 521,293
Name(s) of Invention Country(ies) in which Basic Application(s) was/were filed United States of America (respectively)
Date(s) of Basic Application(s) 8th August, 1983. (respectively)

My/Our address for service is:
C/- Springson & Ferguson
PATENT ATTORNEYS
ST. MARTINS TOWER
31 MARKET STREET
SYDNEY, NEW SOUTH WALES
AUSTRALIA

Dated this THIRTIETH day of JULY 1984.
STERLING DRUG INC.

By: Registered Patent Attorney 12/83

To: The Commissioner of Patents

ABSTRACT
4-R'-5-Q-1,6-naphthyridin-2(1H)-ones (I), where R' is hydrogen or methyl and Q is hydroxymethyl, 1-hydroxyethyl alkanoxyloxyethyl or 1-alkanoxyloxyethyl, are produced
COMMONWEALTH OF AUSTRALIA
PATENTS ACT 1952-1969

DECLARATION IN SUPPORT OF A CONVENTION APPLICATION
FOR A PATENT OR ADDITION THEREOF

In support of the Convention application made by

STERLING DRUG INC., a corporation organized under the laws of the State of Delaware, United States of America, of 90 Park Avenue, New York, State of New York, United States of America.

for a patent / patent of addition / for an invention entitled:

"1,6-NAPHTHRIDIN DERIVATIVES USEFUL AS CARDIOTONICS, AND PREPARATION THEREOF"

I, James H. Luther, Senior Vice President, General Counsel of 1175 York Avenue, New York, New York, United States of America do solemnly and sincerely declare as follows:

1. I am the applicant for the patent / patent of addition
 (or, in the case of an application by a body corporate)
 I am authorized by STERLING DRUG INC.

the applicant for the patent / patent of addition / to make this declaration on its behalf.

2. The basic application as defined by Section 141 of the Act was made in the United States of America on the 8th day of August 1983, by George Yohe Lesher and Baldev Singh

3. I am / we are the actual inventor(s) of the invention referred to in the basic application
 (or, where a person other than inventor is applicant)
 George Yohe Lesher and Baldev Singh, both citizens of the United States of America, respectively of:
 R.D. 1, (Box 268), Miller Road and 3 Blue Mountain Trail, both in East Greenbush, State of New York, United States of America

I am / we are the actual inventors of the invention and the facts upon which I rely / we rely on the said Company is entitled to make the application are as follows:

The Applicant Company is the assignee of the said invention from the actual inventors

4. The basic application referred to in paragraph 2 of this Declaration was the first application made in a convention country in respect of the invention the subject of the application.

Declared at New York, NY this 16 day of July 1984

To: THE COMMISSIONER OF PATENTS
COMMONWEALTH OF AUSTRALIA.

[Full signature of Declarant—no initials]
James Howard Luther
Claim

1. A compound having the formula

or acid-addition salt thereof, where \(R' \) is hydrogen or methyl, and \(Q \) is hydroxymethyl, \(1 \)-hydroxyethyl, alkanoyloxymethyl or \(1 \)-alkanoyloxyethyl.

6. A compound having the formula

or acid-addition salt thereof, where \(R' \) is hydrogen or methyl and \(Q' \) is methyl or ethyl.

A-3. 4,5-Dimethyl-1,6-naphthyridin-2(1H)-one

Following the procedure described in Example A-1 but using in place of 5-acetyl-6-(2-dimethylaminoethyl)-2(1H)-pyridinone a molar equivalent quantity of 5-
Complete Specification for the invention entitled:

"1,6-NAPHTHYRIDIN DERIVATIVES USEFUL AS CARDIOTONICS, AND PREPARATION THEREOF"

The following statement is a full description of this invention, including the best method of performing it known to me/us:

STERLING DRUG INC.
90 Park Avenue, New York, New York, United States of America

GEORGE YOHE LESHER and BALDEV SINGH

Spruson & Ferguson, Patent Attorneys, St. Martins Tower
31 Market Street, Sydney, New South Wales 2000, Australia
ABSTRACT

4-R'-5-Q-1,6-naphthyridin-2(1H)-ones (I), where R' is hydrogen or methyl and Q is hydroxymethyl, 1-hydroxyethyl alkanoyloxymethyl or 1-alkanoyloxyethyl, are produced by first reacting 4-R'-5-acetyl (or n-propanoyl)-6-[2-(di-lower-alkylamino)-2(1H)-pyridinone [III] with hydroxylamine or salt thereof to produce 4-R'-5-Q'-1,6-naphthyridin-2(1H)-one-6-oxide (II), where R' is defined as above and Q' is methyl or ethyl; next reacting II with an alkanolic anhydride to produce I where Q is alkanoyloxymethyl or 1-alkanoyloxyethyl; and, then hydrolyzing said alkanoyloxymethyl or -ethyl compound to produce I where Q is hydroxymethyl or 1-hydroxyethyl. Also shown is the cardiotonic use of II and I where Q is hydroxymethyl, 1-hydroxyethyl or alkanoyloxymethyl.
This invention relates to 5-hydroxymethyl-1,6-naphthyridin-2(1H)-ones, alkanoate esters thereof, 5-methyl (or ethyl)-1,6-naphthyridin-2(1H)-one 6-oxides, and the cardiotonic use thereof.

Chemical Abstracts 72, 12,615d (1970) is reproduced as follows: "Chemotherapeutics. IV. 1,6-Naphthyridine N-oxides. Takahashi Torizo; Hamada Yoshiki; Takeuchi Isao; Uchiyama Hideko (Fac. Pharm., Meijin Univ., Nagoya, Japan). Yakugaku Zasshi 1969, 89(9), 1260-5 (Japan). Various reaction conditions were examined for the formulation of I, II, III, and IV by the application of hydrogen peroxide to 1,6-naphthyridine in HOAc soln.

I

II

III

IV

Ir, uv, NMR, and mass spectra of these four compds. were measured to detect their structure, which was detd. by chem. methods such as redn. with Raney Ni. Antibacterial action of I, II, and III was examined."
2-Hydroxy-3-methyl-1,6-naphthyridine, the tautomeric form of 3-methyl-1,6-naphthyridin-2(1H)-one, was reportedly prepared by Ogata et al. [Chem. Pharm. Bull. 20, 2264 (1972)] in two steps by first photocyclization of N-(4-pyridinyl)methacrylamide to produce 1,2,3,4-tetrahydro-3-methyl-2-oxo-1,6-naphthyridine and then dehydrogenating said tetrahydro compound by heating it in acetic acid.

The present invention resides in a 4-R'-5-Q-1,6-naphthyridin-2(1H)-one having the Formula I

![Chemical Structure]

or acid-addition salt thereof, where R' is hydrogen or methyl, and Q is hydroxymethyl, 1-hydroxyethyl, alkanoyloxymethyl or 1-alkanoyloxyethyl. The compounds of Formula I where Q is hydroxymethyl, 1-hydroxyethyl or alkanoyloxymethyl are useful as cardiotonic agents, as determined by standard pharmacological evaluation procedures; and, the compounds of Formula I where Q is 1-alkanoyloxyethyl are useful as intermediates for preparing the compounds of Formula I where Q is 1-hydroxyethyl.

A cardiotonic composition for increasing cardiac contractility comprises a pharmaceutically acceptable inert carrier and, as the active component thereof, a cardiotonically effective amount of 4-R'-5-Q-1,6-naphthyridin-2(1H)-one having Formula I, where R' is hydrogen or methyl and Q is hydroxymethyl, 1-hydroxyethyl or alkanoyloxymethyl, or a pharmaceutically acceptable acid-addition salt thereof.

One can increase cardiac contractility in a patient requiring such treatment by administering orally or parenterally in a solid or liquid dosage form to such patient a cardiotonically effective amount of 4-R'-5-Q-
1,6-naphthyridin-2(1H)-one having Formula I, where R' is hydrogen or methyl and Q' is hydroxymethyl, 1-hydroxyethyl or alkanoyloxymethyl, or pharmaceutically acceptable acid-addition salt thereof.

Another aspect of the invention resides in a 4-R'-5-Q'-1,6-naphthyridin-2(1H)-one-6-oxide having the Formula II

\[
\text{II}
\]

or acid-addition salt thereof, where R' is hydrogen or methyl and Q' is methyl or ethyl. The compounds of Formula II are intermediates for preparing compounds of Formula I and also are useful as cardiotonic agents, as determined by standard pharmacological evaluation procedures.

A cardiotonic composition for increasing cardiac contractility comprises a pharmaceutically acceptable inert carrier and, as the active component thereof, a cardiotonically effective amount of 4-R'-5-Q'-1,6-naphthyridin-2(1H)-one-6-oxide having Formula II, where R' and Q' are defined as in Formula II, or pharmaceutically acceptable acid-addition salt thereof.

One can increase cardiac contractility in a patient requiring such treatment by administering orally or parenterally in a solid or liquid dosage form to such patient a cardiotonically effective amount of 4-R'-5-Q'-1,6-naphthyridin-2(1H)-one-6-oxide having Formula II, where R' and Q' are defined as in Formula II, or pharmaceutically acceptable acid-addition salt thereof.

By reacting 4-R'-5-acetyl(or n-propanoyl)-6-[2-{di-lower-alkylamino}ethenyl]-2(1H)-pyridinone having Formula III...
where \(Q' \) is methyl or ethyl, \(R' \) is hydrogen or methyl, and \(R_1 \) and \(R_2 \) are each lower-alkyl, with hydroxylamine or salt thereof one can produce \(4-R'-5-Q'-1,6-\)
naphthyridin-2(1H)-one-6-oxide having Formula II.

By reacting \(4-R'-5-Q'-1,6-\)naphthyridin-2(1H)-one-6-oxide of Formula II with an alkanonic anhydride one can produce, when \(Q' \) is methyl, the compound of Formula I where \(Q \) is alkanoyloxymethyl or, when \(Q' \)
is ethyl, the compound of Formula I where \(Q \) is 1-alkanoyloxyethyl, and by hydrolyzing said compound of Formula I where \(Q \) is alkanoyloxymethyl or 1-alkanoyloxyethyl produce respectively the compound of Formula I where \(Q \) is hydroxymethyl or 1-hydroxyethyl.

Preferred embodiments having Formula I are those where \(R' \) is hydrogen and \(Q \) is hydroxymethyl or alkanoyloxymethyl, alkanoyl having from one to six carbon atoms.

Preferred embodiments having Formula II are those where \(R' \) is hydrogen.

The term "alkanoyl" as used herein, e.g., in the definition \(Q \) as alkanoyloxymethyl or 1-alkanoylyethyl, means alkanoyl radicals having from one to eight carbon atoms which can be arranged as straight or branched chains, illustrated by formyl, acetyl, propionyl (n-propanoyl), butyryl (n-butanoyl), isobutyryl (2-methyl-n-propanoyl), caproyl (n-hexanoyl), capryloyl (n-octanoyl), and the like.

The term "lower-alkyl" as used herein, e.g., as the meaning for \(R_1 \) or \(R_2 \) in Formula III, means alkyl radicals having from one to four carbon atoms which can be arranged as straight or branched chains, illustrated by methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl
where Q' is methyl or ethyl, R' is hydrogen or methyl, and R₁ and R₂ are each lower-alkyl, with hydroxylamine or salt thereof one can produce 4-R'-5-Q'-1,6-
naphthyridin-2(1H)-one-6-oxide having Formula II.

By reacting 4-R'-5-Q'-1,6-naphthyridin-2(1H)-one-6-oxide of Formula II with an alkanoic anhydride one can produce, when Q' is methyl, the compound of Formula I where Q is alkanoyloxymethyl or, when Q' is ethyl, the compound of Formula I where Q is 1-alkanoyloxyethyl, and by hydrolyzing said compound of Formula I where Q is alkanoyloxymethyl or 1-alkanoyloxyethyl produce respectively the compound of Formula I where Q is hydroxymethyl or 1-hydroxyethyl.

Preferred embodiments having Formula I are those where R' is hydrogen and Q is hydroxymethyl or alkanoyloxymethyl, alkanoyl having from one to six carbon atoms.

Preferred embodiments having Formula II are those where R' is hydrogen.

The term "alkanoyl" as used herein, e.g., in the definition Q as alkanoyloxymethyl or 1-alkanoyloxyethyl, means alkanoyl radicals having from one to eight carbon atoms which can be arranged as straight or branched chains, illustrated by formyl, acetyl, propionyl (n-propanoyl), butyryl (n-butanoyl), isobutyryl (2-methyl-n-propanoyl), cinnamoyl (n-hexanoyl), caprylyl (n-octanoyl), and the like.

The term "lower-alkyl" as used herein, e.g., as the meaning for R₁ or R₂ in Formula III, means alkyl radicals having from one to four carbon atoms which can be arranged as straight or branched chains, illustrated by methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl
and isobutyl.

The compounds of the invention having Formulas I and II are useful both in the free base form and in the form of acid-addition salts, and both forms are within the purview of the invention. The acid-addition salts are simply a more convenient form for use; and in practice, use of the salt form inherently amounts to use of the base form. The acids which can be used to prepare the acid-addition salts include preferably those which produce, when combined with the free base, pharmaceutically acceptable salts, that is, salts whose anions are relatively innocuous to the animal organism in pharmaceutical doses of the salts, so that the beneficial cardio-tonic properties inherent in the free base of the cardio-tonically active compounds of the invention are not vitiated by side effects ascribable to the anions. In practicing the invention, it is convenient to use the free base form or the hydrochloric acid-addition salt; however, other appropriate pharmaceutically acceptable salts within the scope of the invention are those derived from mineral acids such as sulfuric acid, phosphoric acid and sulfamic acid; and organic acids such as acetic acid, citric acid, lactic acid, tartaric acid, methanesulfonic acid, ethanesulfonic acid, benzensulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, quinic acid, and the like, which give the sulfate, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclohexyl-sulfamate and quinate, respectively.

The acid-addition salts of said basic compounds are prepared either by dissolving the free base in aqueous or aqueous-alcohol solution or other suitable solvents containing the appropriate acid and isolating the salt by evaporating the solution, or by reacting the free base and acid in an organic solvent, in which case the salt separates directly or can be obtained by concentra-
and isobutyl.

The compounds of the invention having Formulas I and II are useful both in the free base form and in the form of acid-addition salts, and both forms are within the purview of the invention. The acid-addition salts are simply a more convenient form for use; and in practice, use of the salt form inherently amounts to use of the base form. The acids which can be used to prepare the acid-addition salts include preferably those which produce, when combined with the free base, pharmaceutically acceptable salts, that is, salts whose anions are relatively innocuous to the animal organism in pharmaceutical doses of the salts, so that the beneficial cardio-tonic properties inherent in the free base of the cardio-tonically active compounds of the invention are not vitiated by side effects ascribable to the anions. In practicing the invention, it is convenient to use the free base form or the hydrochloric acid-addition salt; however, other appropriate pharmaceutically acceptable salts within the scope of the invention are those derived from mineral acids such as sulfuric acid, phosphoric acid and sulfamic acid; and organic acids such as acetic acid, citric acid, lactic acid, tartaric acid, methanesulfonylic acid, ethanesulfonic acid, benzensulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, quinic acid, and the like, which give the sulfate, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclohexyl-

sulfamate and quinate, respectively.

The acid-addition salts of said basic compounds are prepared either by dissolving the free base in aqueous or aqueous-alcohol solution or other suitable solvents containing the appropriate acid and isolating the salt by evaporating the solution, or by reacting the free base and acid in an organic solvent, in which case the salt separates directly or can be obtained by concentra-
tion of the solution.

Although pharmaceutically acceptable salts of said basic compounds are preferred, all acid-addition salts are within the scope of our invention. All acid-addition salts are useful as sources of the free base form even if the particular salt per se is desired only as an intermediate product as for example when the salt is formed only for purposes of purification or identification, or when it is used as an intermediate in preparing a pharmaceutically acceptable salt by ion exchange procedures.

The molecular structures of the compounds of the invention were assigned on the basis of evidence provided by infrared, nuclear magnetic resonance and mass spectra, by the correspondence of calculated and found values for the elementary analyses, and, by their method of preparation.

The manner of making and using the instant invention will now be generally described so as to enable a person skilled in the art of pharmaceutical chemistry to make and use the same, as follows.

The reaction of 4-\(R'\)-5-acetyl(or n-propanoyl)-6-[2-(di-lower-alkylamino)ethenyl]-2(1H)-pyridinone (III) with hydroxylamine or salt thereof to produce 4-\(R'\)-5-Q'-1,6-naphthyridin-2(1H)-one-6-oxide (II) is run by mixing the reactants at room temperature or warming the mixture up to about 100°C. if necessary to effect dissolution and reaction. The reaction is conveniently run using hydroxylamine hydrochloride in water or in aqueous medium containing other water-miscible solvents, e.g., acetic acid, methanol, or in aqueous hydrochloric acid, e.g., 6N HCl, and preferably isolating II as its hydrochloride salt.

The conversion of 4-\(R'\)-5-Q'-1,6-naphthyridin-2(1H)-one-6-oxide (II) to 4-\(R'\)-5-Q-1,6-naphthyridin-2(1H)-one (I) is carried out by heating II with an alkanoic anhydride, preferably using excess anhydride as solvent.
if necessary. The reaction temperature can range from about 70°C. to 150°C., preferably about 90°C. to 150°C. Said reaction produces the esters of Formula I where Q is alkanoyloxyethyl or 1-alkanoyloxyethyl. The corresponding alcohols (I where Q is hydroxymethyl or 1-hydroxyethyl) are prepared by hydrolyzing said esters, preferably by heating with aqueous alkali.

The above intermediate 4-R'-5-acetyl(or n-propanoyl)-6-[2-(di-lower-alkylamino)ethenyl]-2(lH)-pyridinones (III), which are disclosed and claimed in copending Application Serial No. filed were prepared by reacting 4-R'-5-acetyl(or n-propanoyl)-6-methyl-2(lH)-pyridinone with di-(lower-alkyl)formamide di-(lower-alkyl) acetal by mixing the reactants at about 35 to 100°C.

The preparation of the intermediate 4-R'-5-acetyl(or n-propanoyl)-6-methyl-2(lH)-pyridinones, which are disclosed and claimed in said above application are described in the following two paragraphs.

The preparation of 5-acetyl(or n-propanoyl)-6-methyl-2(lH)-pyridinone or 5-acetyl(or n-propanoyl)-4,6-dimethyl-2(lH)-pyridinone is carried out by heating at about 100°C. to 150°C. 2-(RCO)-1-methyl-ethenamine (R is lower-alkyl) with a lower-alkyl, preferably methyl or ethyl, 2-propynoate or 2-butynoate, respectively, with or without a suitable solvent.

The intermediate 2-(RCO)-1-methyl-ethenamines are generally known compounds which are prepared by conventional means, as illustrated hereinbelow in the specific exemplary disclosure.

The following examples will further illustrate the invention without, however, limiting it thereto.

A. 4-R'-5-Q'-1,6-NAPHTHYRIDIN-2(lH)-ONE-6-OXIDES

A-1. 5-Ethyl-1,6-naphthyridin-2(lH)-one-6-oxide - A mixture containing 35 g of 5-acetyl-6-(2-dimethylaminoethenyl)-2(lH)-pyridinone, 21 g of hydroxylamine hydrochloride and 200 ml of water was
stirred at room temperature for 5 hours and allowed to stand at room temperature overnight (about 15 hours). The yellow crystalline product was collected and dried in vacuo at 95°C. The mother liquor was concentrated to dryness and the solid residue was treated with 50 ml of water. Additional crystalline product was collected, washed with ethanol and dried in vacuo at 95°C. The combined crystalline product, 5-ethyl-1,6-naphthyridin-2(1H)-one-6-oxide as its hemihydrate melted at 262-264°C. with decomposition. The mother liquor yielded another 2.4 g of product, m.p. 260-262°C.

Acid-addition salts of 5-ethyl-1,6-naphthyridin-2(1H)-one-6-oxide are conveniently prepared by adding to a mixture of 1 g of 5-ethyl-1,6-naphthyridin-2(1H)-one-6-oxide in about 20 ml of aqueous methanol the appropriate acid, e.g., methanesulfonic acid, concentrated sulfuric acid, concentrated phosphoric acid, to a pH of about 2 to 3, chilling the mixture after partial evaporation and collecting the precipitated salt, e.g., dimethanesulfonate, sulfate, phosphate, respectively. Also, the acid-addition salt is conveniently prepared in aqueous solution by adding to water with stirring a molar equivalent quantities each of 5-ethyl-1,6-naphthyridin-2(1H)-one-6-oxide and the appropriate acid, e.g., lactic acid or hydrochloric acid, to prepare respectively the lactate or hydrochloride salt of 5-ethyl-1,6-naphthyridin-2(1H)-one-6-oxide in aqueous solution.

Also, 5-ethyl-1,6-naphthyridin-2(1H)-one-6-oxide as its hydrochloride salt is conveniently prepared following the procedure described in the second paragraph of Example C-2 using a molar equivalent quantity of 6-(2-dimethylaminoethenyl)-5-(n-propanoyl)-2(1H)-pyridinone in place of 5-acetyl-6-(2-dimethylaminoethenyl)-2(1H)-pyridinone.

A-2. 5-Methyl-1,6-naphthyridin-2(1H)-one-6-oxide, m.p. 272-273°C. with decomposition, can be pro-
duced following the procedure described in Example A-1 using in a molar equivalent quantity of 5-acetyl-6-(2-dimethylaminoethyl)-2(1H)-pyridinone in place of 6-(2-dimethylaminoethenyl)-5-(n-propanoyl)-2(1H)-pyridinone.

5-Methyl-1,6-naphthyridin-2(1H)-one-6-oxide as its hydrochloride was prepared as follows: A mixture containing 68 g of 5-acetyl-6-(2-dimethylaminoethyl)-2(1H)-pyridinone, 68 g of hydroxylamine hydrochloride in 150 ml of 6N aqueous hydrochloric acid was warmed on a steam bath until dissolution resulted. The reaction solution was heated for about 20 minutes and then allowed to stand at room temperature overnight. The separated product was collected, dried and found to melt at 244-245°C. Additional product was obtained by concentrating the mother liquor to dryness, dissolving the residue in boiling methanol, allowing the solution to cool, collecting the precipitate and drying it in a vacuum oven. The combined product, 5-methyl-1,6-naphthyridin-2(1H)-one-6-oxide, m.p. 244-245°C., weighed 56 g.

Other acid-addition salts of 5-methyl-1,6-naphthyridin-2(1H)-one-6-oxide are conveniently prepared by adding to a mixture of 1 g of 5-methyl-1,6-naphthyridin-2(1H)-one-6-oxide in about 20 ml of aqueous methanol the appropriate acid, e.g., methanesulfonic acid, concentrated sulfuric acid, concentrated phosphoric acid, to a pH of about 2 to 3, chilling the mixture after partial evaporation and collecting the precipitated salt, e.g., dimethanesulfonate, sulfate, phosphate, respectively. Also, the acid-addition salt is conveniently prepared in aqueous solution by adding to water with stirring molar equivalent quantities each of 5-methyl-1,6-naphthyridin-2(1H)-one-6-oxide and the appropriate acid, e.g., lactic acid or hydrochloric acid, to prepare respectively the lactate or hydrochloride salt of 5-methyl-1,6-naphthyridin-2(1H)-one-6-oxide in aqueous solution.
A-3. 4,5-Dimethyl-1,6-naphthyridin-2(1H)-one

Following the procedure described in Example A-1 but using in place of 5-acetyl-6-(2-dimethylaminoethenyl)-2(1H)-pyridinone a molar equivalent quantity of 5-acetyl-6-(2-dimethylaminoethenyl)-4-methyl-2(1H)-pyridinone (obtained by following the procedure described in Example D-1 of our above application but using in place of 5-acetyl-6-methyl-2(1H)-pyridinone a molar equivalent quantity of 5-acetyl-4,6-dimethyl-2(1H)-pyridinone), it is contemplated that 4,5-dimethyl-1,6-naphthyridin-2(1H)-one can be obtained.

B. 4-R'-5-Q-1,6-NAPHTHYRIDIN-2(1H)-ONES

B-1. 5-[(1-Hydroxyethyl)l,6-naphthyridin-2(1H)-one - A solution containing 23 g of 5-ethyl-1,6-naphthyridin-2(1H)-one-6-oxide hemihydrate and 150 ml of concentrated hydrochloric acid was evaporated on a rotary evaporator to produce a solid residue which was dried in an oven at 80-85°C. The residue was treated with 400 ml of acetic anhydride and the mixture was heated on a steam bath with stirring for 24 hours. The reaction mixture was cooled to room temperature and the solid that separated was collected, washed with chloroform and dried at 95°C, to yield 5.7 g of a mixture consisting primarily of 5-(1-hydroxyethyl)-1,6-naphthyridin-2(1H)-one and its acetate, namely, 5-[(1-acetyloxy)ethyl]-1,6-naphthyridin-2(1H)-one. The mother liquor was concentrated on a rotary evaporator to dryness to yield 15.4 g of said mixture of products. The two mixtures of solid products were combined and treated with 25 ml of 35% aqueous sodium hydroxide solution and 100 ml of water. The resulting aqueous mixture was heated on a steam bath with stirring for 4 hours, acidified with acetic acid and concentrated on a rotary evaporator to dryness. The residue was dissolved in 50 ml of methanol and chromatographed using 200 g of silica gel in a 500 ml sintered glass funnel using ether containing up to 20% of methanol. The eluants containing 20% methanol in ether were combined.
and evaporated to dryness. The resulting solid residue was recrystallized from isopropyl alcohol and dried in an oven at 90-95°C. to yield 3.8 g of product 5-(1-hydroxyethyl)-1,6-naphthyridin-2(1H)-one, m.p. 210-212°C. The mother liquor yielded another 6.8 g of crude product.

Acid-addition salts of 5-(1-hydroxyethyl)-1,6-naphthyridin-2(1H)-one are conveniently prepared by adding to a mixture of 1 g of 5-(1-hydroxyethyl)-1,6-naphthyridin-2(1H)-one in about 20 ml of aqueous methanol the appropriate acid, e.g., methanesulfonic acid, concentrated sulfuric acid, concentrated phosphoric acid, to a pH of about 2 to 3, chilling the mixture after partial evaporation and collecting the precipitated salt, e.g., dimethanesulfonate, sulfate, phosphate, respectively. Also, the acid-addition salt is conveniently prepared in aqueous solution by adding to water with stirring molar equivalent quantities each of 5-(1-hydroxyethyl)-1,6-naphthyridin-2(1H)-one and the appropriate acid, e.g., lactic acid or hydrochloric acid, to prepare respectively the lactate or hydrochloride salt of 5-(1-hydroxyethyl)-1,6-naphthyridin-2(1H)-one in aqueous solution.

D-2. 5-Hydroxymethyl-1,6-naphthyridin-2(1H)-one - A mixture containing 5.0 g of 5-methyl-1,6-naphthyridin-2(1H)-one-6-oxide and 50 ml of acetic anhydride was stirred at room temperature for about 15 hours and then heated on a steam bath for about 1 hour. The reaction mixture was heated in vacuo and the remaining solid residue was taken up in 50 ml of water and about 5 ml of 6N aqueous hydrochloric acid. The resulting solution was heated on a steam bath for about 30 minutes and then allowed to stand overnight at room temperature. After tlc analysis indicated that the reaction was not yet completed, the reaction mixture was heated with stirring for another 90 minutes. To the reaction mixture was added 5 ml of concentrated hydrochloric acid and the mixture was heated with stirring for three more hours.
To the resulting reaction mixture was added solid potassium carbonate to make the mixture basic and the basic mixture (some solid had precipitated) was allowed to stand at room temperature. The separated solid was collected, recrystallized from water and dried at 60°C. over phosphorous pentoxide to yield 1.5 g of product, m.p. 292-295°C. with decomposition. Said 1.5 g of product was combined with another 9 g of product obtained in other corresponding runs and the combined material was heated with about 50 ml of water plus 20 ml of 6N hydrochloric acid. The hot mixture (small amount of solid undissolved) was filtered, the undissolved solid washed with about 10 ml of 6N hydrochloric acid and the combined filtrate and washings allowed to cool to room temperature and then chilled in an ice bath. The separated product was collected and dried in a vacuum oven to produce 5 g of 5-hydroxymethyl-1,6-naphthyridin-2(1H)-one as its monohydrochloride, m.p. 294-300°C. with decomposition.

Acid-addition salts of 5-hydroxymethyl-1,6-naphthyridin-2(1H)-one are conveniently prepared by adding to a mixture of 1 g of 5-hydroxymethyl-1,6-naphthyridin-2(1H)-one in about 20 ml of aqueous methanol the appropriate acid, e.g., methanesulfonic acid, concentrated sulfuric acid, concentrated phosphoric acid, to a pH of about 2 to 3, chilling the mixture after partial evaporation and collecting the precipitated salt, e.g., dimethanesulfonate, sulfate, phosphate, respectively. Also, the acid-addition salt is conveniently prepared in aqueous solution by adding to water with stirring a molar equivalent quantities each of 5-hydroxymethyl-1,6-naphthyridin-2(1H)-one and the appropriate acid, e.g., lactic acid or hydrochloric acid, to prepare respectively the lactate or hydrochloride salt of 5-hydroxymethyl-1,6-naphthyridin-2(1H)-one in aqueous solution.

B-3. 5-[(Acetyloxy)methyl]-1,6-naphthyridin-2(1H)-one - A mixture containing 38.2 g of 5-methyl-1,6-naphthyridin-2(1H)-one-6-oxide and 300 ml of acetic
anhydride was refluxed with stirring on a steam bath for 48 hours and then the reaction mixture was cooled to room temperature. The separated product was collected, recrystallized from dimethylformamide and dried in vacuo at 80°C. to produce 10.5 g of 5-[(acetyloxy)methyl]-1,6-naphthyridin-2(1H)-one as its hydrochloride, m.p. 162-165°C. with decomposition.

5-(Acetyloxy)methyl]-1,6-naphthyridin-2(1H)-one also is conveniently prepared by following the procedure described in Example B-4 below but using a molar equivalent quantity of acetic anhydride in place of n-hexanoic acid anhydride.

B-4. 5-[(n-Hexanoyloxy)methyl]-1,6-naphthyridin-2(1H)-one, alternatively named (1,2-dihydro-2-oxo-1,6-naphthyridin-5-yl)methyl n-hexanoate - A mixture containing 4.88 g of 4-diimethylaminopyridine, 4.28 g of 5-hydroxymethyl-1,6-naphthyridin-2(1H)-one monohydrochloride, 20 ml of triethylamine, 4.5 g of n-hexanoic acid anhydride and 20 ml of acetonitrile was refluxed for about 15 hours, allowed to cool and then chilled. The separated solid was collected and the filtrate was evaporated to dryness. The collected precipitate and the residue obtained by evaporating the filtrate to dryness were combined and taken up in about 250 ml of ether. The ether solution was washed successively with water and 10% aqueous potassium bicarbonate solution. The ether was distilled off in vacuo and, the residue was recrystallized from methanol and dried to produce 2.8 g of 5-[(n-hexanoyloxy)methyl]-1,6-naphthyridin-2(1H)-one, m.p. 158-159°C.

B-5. 5-Hydroxymethyl-4-methyl-1,6-naphthyridin-2(1H)-one - Following the procedure described in Example B-1 but using in place of 5-ethyl-1,6-naphthyridin-2(1H)-one-6-oxide a molar equivalent quantity of 4,5-dimethyl-1,6-naphthyridin-2(1H)-one-6-oxide, it is contemplated that 5-hydroxymethyl-4-methyl-1,6-naphthyridin-2(1H)-one can be obtained.
Following the procedure described in Example B-4 but using in place of n-hexanoic acid anhydride a molar equivalent quantity or excess of the appropriate alkanoic acid anhydride, it is contemplated that the compounds of Examples B-6 through B-10 can be obtained.

B-6. 5-[(n-Propanoyloxy)methyl]-1,6-naphthyridin-2(1H)-one, using n-propanoic acid anhydride.

B-7. 5-[(Formyloxymethyl)-1,6-naphthyridin-2(1H)-one, using a mixture of acetic anhydride and an excess of formic acid (mixture reacts to form a mixed anhydride of formic acid and acetic acid which acts as a formylating agent).

B-8. 5-[(2-Methyl-n-propanoyloxy)methyl]-1,6-naphthyridin-2(1H)-one, using 2-methyl-n-propanoic acid anhydride.

B-9. 5-[(n-Butanoyloxy)methyl]-1,6-naphthyridin-2(1H)-one, using n-butanolic acid anhydride.

B-10. 5-[(n-Octanoyloxy)methyl]-1,6-naphthyridin-2(1H)-one, using n-octanoic acid anhydride.

The following compound, 5-[(1-(acetyloxy)ethyl)-1,6-naphthyridin-2(1H)-one, which is outside the scope of the instant invention, was prepared for comparative purposes as follows: A mixture containing 6.8 g of 5-(1-hydroxyethyl)-1,6-naphthyridin-2(1H)-one and 50 ml of acetic anhydride was heated on a steam bath for 5 hours and then allowed to stand at room temperature overnight. The reaction mixture was concentrated on a rotary evaporator and the residue was chromatographed using 200 g of silica gel in a 500 ml sintered glass funnel and 5% methanol in ether to obtain a product which was recrystallized from isopropyl alcohol and dried in an oven at 80-85°C. to produce 4.1 g of 5-[(1-(acetyloxy)ethyl)-1,6-naphthyridin-2(1H)-one, m.p. 185-187°C.

The usefulness of the cardiotonically active compounds of Formulas I and II or pharmaceutically acceptable acid-addition salts thereof as cardiotonic agents is demonstrated by their effectiveness in standard pharma-
cological test procedures, for example, in causing a
significant increase in the contractile force of the
isolated cat or guinea pig atria and papillary muscle
and/or in causing a significant increase in the cardiac
contractile force in the anesthetized dog with low or
minimal changes in heart rate and blood pressure.
Detailed descriptions of these test procedures appear
When tested by the isolated guinea pig atria
and papillary muscle procedure, the cardiotonically
active compounds of Formulas I and II or pharmaceutically-
acceptably acid-addition salts thereof at doses of
1, 3, 10, 30 and/or 100 μg/ml, were found to cause
significant increases, that is, greater than 30%, in
papillary muscle force and significant increases, that
is, greater than 30%, in right atrial force, while
causing a lower percentage increase in right atrial
rate. For example, when tested at one or more said
dose levels by this procedure in said guinea pig test,
the compounds of the invention were found to cause
respective increases in papillary muscle force (PMF)
and right atrial force (RAF) given in Table A.

Table A

<table>
<thead>
<tr>
<th>Example</th>
<th>Dose μg/ml</th>
<th>RAR a</th>
<th>RAF b</th>
<th>PMF c</th>
<th>N d</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>10</td>
<td>20</td>
<td>65</td>
<td>47</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>20</td>
<td>48</td>
<td>33</td>
<td>3/5</td>
</tr>
<tr>
<td>A-2</td>
<td>100</td>
<td>11</td>
<td>22</td>
<td>45</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>38</td>
<td>56</td>
<td>56</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>63</td>
<td>195</td>
<td>96</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>78</td>
<td>321</td>
<td>120</td>
<td>3/5</td>
</tr>
<tr>
<td>B-2</td>
<td>10</td>
<td>22</td>
<td>41</td>
<td>73</td>
<td>6/10</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>26</td>
<td>110</td>
<td>143</td>
<td>3/5</td>
</tr>
<tr>
<td>B-3</td>
<td>1</td>
<td>15</td>
<td>38</td>
<td>58</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>26</td>
<td>110</td>
<td>143</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>41</td>
<td>269</td>
<td>196</td>
<td>3/5</td>
</tr>
</tbody>
</table>
continuation of Table A

<table>
<thead>
<tr>
<th>Example</th>
<th>Dose (μg/ml)</th>
<th>Percentage Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RAR<sup>a</sup></td>
<td>RAF<sup>b</sup></td>
</tr>
<tr>
<td>B-4</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>35</td>
</tr>
</tbody>
</table>

a) Right atrial rate.
b) Right atrial force.
c) Papillary muscle force.
d) Number of preparations.

5-[1-((Acetyloxy)ethyl)1,6-naphthyridin-2(1H)-one, which is outside the scope of the instant invention, was found to be inactive when tested at 10, 30 and 100 μg/ml in said guinea pig test.

When tested by said anesthetized dog procedure, the cardiotonically active compounds of Formulas I and II at doses of 0.10, 0.30, 1.0 and/or 3.0 mg/kg administered intravenously were found to cause significant increases, that is, 25% or greater, in cardiac contractile force or cardiac contractility with lower changes in heart rate and blood pressure. For example, when tested at one or more of said dose levels by this procedure, the compounds of Examples A-1, A-2, B-2, B-3 and B-4 were found to cause increases of about 27% to 226% in contractile force and lower changes in heart rate and blood pressure, the contractile force increases at 0.30 mg/kg i.v. for the compounds of Examples A-1, A-2, B-2, B-3 and B-4 being 77%, 53%, 50%, 109% and 42%, respectively.

In clinical practice the cardiotonically active compound of Formula I or II or salt thereof will normally be administered orally or parenterally in a wide variety of dosage forms. Solid compositions for oral administration include compressed tablets, pills, powders and granules. In such solid compositions, at least one of the active compounds is admixed with at
least one inert diluent such as starch, calcium carbonate, sucrose or lactose. These compositions may also contain additional substances other than inert diluents, e.g., lubricating agents, such as magnesium stearate, talc, and the like.

Liquid compositions for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs containing inert diluents commonly used in the art, such as water and liquid paraffin. Besides inert diluents such compositions may also contain adjuvants, such as wetting and suspending agents, and sweetening, flavoring, perfuming and preserving agents. According to the invention, the compounds for oral administration also include capsules of absorbable material, such as gelatin, containing said active component with or without the addition of diluents or excipients.

Preparations for parenteral administration include sterile aqueous, aqueous-organic, and organic solutions, suspensions and emulsions. Examples of organic solvents or suspending media are propylene glycol, polyethylene glycol, vegetable oils such as olive and injectable organic ester such as ethyl oleate. These compositions can also contain adjuvants such as stabilizing, preserving, wetting, emulsifying and dispersing agents.

They can be sterilized, for example by filtration through a bacterial-retaining filter, by incorporation of sterilizing agents in the compositions, by irradiation or by heating. They can also be manufactured in the form of sterile solid compositions which can be dissolved in sterile water or some other sterile injectable medium immediately before use.

The percentage of active component in the said composition and method for increasing cardiac contractility can be varied so that a suitable dosage is obtained. The dosage administered to a particular patient
is variable, depending upon the clinician's judgement using as the criteria: the route of administration, the duration of treatment, the size and condition of the patient, the potency of the active component and the patient's response thereto. An effective dosage amount of active component can thus only be determined by the clinician considering all criteria and utilizing his best judgement on the patient's behalf.
CLAIMS
The claims defining the invention are as follows:

1. A compound having the formula

 ![Chemical Structure](image)

 or acid-addition salt thereof, where \(R' \) is hydrogen or methyl, and \(Q \) is hydroxymethyl, 1-hydroxyethyl, alkanoyloxymethyl or 1-alkanoyloxyethyl.

2. A compound according to claim 1, where \(R' \) is hydrogen and \(Q \) is hydroxymethyl or alkanoyloxymethyl, alkyl having from one to six carbon atoms.

3. 5-Hydroxymethyl-1,6-naphthyridin-2(1H)-one according to claim 1.

4. 5-[(Acetyloxy)methyl]-1,6-naphthyridin-2(1H)-one according to claim 1.

5. A process for preparing a compound according to claim 1, which comprises reacting a compound of the formula

 ![Chemical Structure](image)

 with an alkanolic anhydride to produce when \(Q' \) is methyl the compound of Formula I where \(Q \) is alkanoyloxymethyl or when \(Q' \) is ethyl the compound of Formula I where \(Q \) is 1-alkanoyloxyethyl and, if desired, hydrolyzing said compound obtained where \(Q \) is alkanoyloxymethyl or 1-alkanoyloxyethyl to produce respectively the compound of Formula I where \(Q \) is hydroxymethyl or 1-hydroxyethyl, and, if desired, converting a free base obtained to an acid-addition salt thereof.

6. A compound having the formula

 ![Chemical Structure](image)
or acid-addition salt thereof, where R' is hydrogen or methyl and Q' is methyl or ethyl.

7. A process for preparing a compound according to claim 6, which comprises reacting a compound having the formula

\[\begin{align*}
\text{Q'} & \text{C} \\
\text{R} & \text{O} \\
\text{R}_1 & \text{NCH=CH} \\
\text{R}_2 & \text{H}
\end{align*} \]

where Q' is methyl or ethyl, R' is hydrogen or methyl, and R₁ and R₂ are each lower alkyl, with hydroxylamine or salt thereof, and, if desired, converting a free base obtained to an acid-addition salt thereof.

8. A cardiotonic composition for increasing cardiac contractility, said composition comprising a pharmaceutically acceptable inert carrier and, as the active component thereof, a cardiotonically effective amount of a compound according to claim 1 where Q is hydroxymethyl, 1-hydroxyethyl or alkanoyloxymethyl or a compound according to any one of claims 2-4 and 6, or a pharmaceutically acceptable acid-addition salt of any one of said compounds.

9. A method for increasing cardiac contractility in a patient requiring such treatment which comprises administering orally or parenterally in a solid or liquid dosage form to such patient a cardiotonically effective amount of a compound according to claim 1 where Q is hydroxymethyl, 1-hydroxyethyl or alkanoyloxymethyl or a compound according to any one of claims 2-4 and 6, or a pharmaceutically acceptable acid-addition salt of any one of said compounds.

10. A compound according to claim 1 or 6 substantially as herein described with reference to any one of the examples.

11. A cardiotonic composition substantially as herein described.

12. A process for preparing a compound according to claim 1 or 6 substantially as herein described with reference to any one of the examples.

13. A compound when prepared by the process according to any one of claims 5, 9 and 12.
DATED this TWENTY-SEVENTH day of JULY 1984

STERLING DRUG INC.

Patent Attorneys for the Applicant
SPRUSON & FERGUSON
END