PATENT OR A STANDARD PATENT OF ADDITION

Full name(s) of Applicant(s)

OE Ossberger-Turbinenfabrik GmbH & Co

Address(es) of Applicant(s)
of 8832 Weissenburg
Federal Republic of Germany

 hereby apply for the grant of a standard patent
for an invention entitled

"CROSS-FLOW TURBINE"

which is described in the accompanying complete specification.

DETAILS OF BASIC APPLICATION(s)

Number(s) of Basic Application(s)
P 33 27 457.6

Name(s) of Convention Country(ies) in which Basic Application(s) was/were filed
Federal Republic of Germany

Date(s) of Basic Application(s)
29 July 1983 (respectively)

My/Our address for service is:

C/- Spruon & Ferguson
PATENT ATTORNEYS
ST. MARTINS TOWER
31 MARKET STREET
SYDNEY, NEW SOUTH WALES
AUSTRALIA

Dated this TWENTY-SEVENTH day of JULY 1984

By: Ossberger-Turbinenfabrik GmbH & Co

To: The Commissioner of Patents

Registered Patent Attorney 12/83
Declarant(s) of Applicant(s) of Ossberger-Turbinenfabrik GmbH & Co

Otto-Rieder-Str. 7, (Postfach 425)
8832 Weissenburg, W. Germany

Do solemnly and sincerely declare as follows:

1. I am/We are the applicant(s) for the patent
 (or, in the case of an application by a body corporate)

2. The basic application(s) as defined by Section 141 of the Act was/were made
 in Federal Republic of Germany
 on July 29, 1983 (No. P 33 27 457.6)
 by Ossberger-Turbinenfabrik GmbH & Co

3. I am/We are the actual inventor(s) of the invention referred to in the basic application(s)
 (or where a person other than the inventor is the applicant)

 a) Dr. Karl-Friedrich Ossberger
 Otto-Rieder-Str. 7, (Postfach 425)
 8832 Weissenburg, W. Germany

 b) Peter Partzsch
 Am Bergwaldtheater 4 (or Postfach 425)
 8832 Weissenburg, W. Germany
 (respectively)

 is/are the actual inventor(s) of the invention and the facts upon which the applicant(s) is/are entitled to make the application are as follows:
 by assignments of
 a) July 1, 1972
 b) April 1, 1973
 to the applicant from the actual inventors.

4. The basic application(s) referred to in paragraph 2 of this Declaration was/were the first application(s) made in a Convention country in respect of the invention(s) the subject of the application.

Declared at Weissenburg this 17th day of July 1984

Ossberger-Turbinenfabrik GmbH & Co
Otto-Rieder-Str. 7
8832 Weissenburg, W. Germany

To: The Commissioner of Patents
1. A cross-flow turbine comprising a casing, a runner rotatably mounted in the casing and having a flow pattern such that the water flows substantially radially from the outside to the inside of the runner, past the center of the runner in spaced relationship thereto and then substantially radially from the inside to the outside of the runner, the flow entering the runner in an impact-free manner, a flow passage in the casing comprising an inlet area and an outlet area, with the runner being disposed in the casing flow passage, a guide vane pivotally mounted in the inlet area to close the inlet area by engaging opposite casing walls when in a closing position and dividing the inlet area in a pair of inlet passages when in its other positions, an admission tube connected to said inlet area, and a discharge tube connected to said outlet area, which discharge tube extends vertically and is formed to be a draft tube, characterized in that, with said admission tube (16) extending horizontally, the casing flow passage (10) and the guide vane (20) are arranged such that the resultant of the flow entering the runner (2) is inclined downwardly under an angle (a) of substantially 30° to 50°, preferably 40° with respect to the horizontal and the resultant of the flow leaving the runner (2) is directed substantially vertically.
Ossberger-Technenfabrik GmbH & Co

8832 Weissenburg, West Germany

KARL-FRIEDRICH OSSBERGER and PETER PARTZSCHE

Spruson & Ferguson, Patent Attorneys, St. Martins Tower
31 Market Street, Sydney, New South Wales 2000, Australia

Complete Specification for the invention entitled:
"CROSS-FLOW TURBINE"
Abstract

It is disclosed a cross-flow turbine having a casing flow passage, the inlet of which is divided by a pivoted guide vane to form a pair of inlet passages. A horizontally extending admission passage is connected to the casing flow passage at the inlet side thereof, and a vertically extending discharge passage formed as a draft tube is connected to the casing flow passage at the outlet side thereof. The inlet of the casing flow passage and the guide vane are arranged such that inlet flow to the runner is directed downwards under an angle of about 40° with respect to the horizontal, and the outlet flow from the runner is directed substantially vertically. The outlet area of the casing flow passage is provided with a pair of side spaces on both sides of the runner resulting in an increased cross-section conforming to the cross-section of the draft tube. Both side spaces are vented from atmosphere by a single venting valve such that suction pressure in the draft tube may not exceed a predetermined value.
CROSS-FLOW TURBINE

10. The present invention relates to a cross-flow turbine comprising a casing, a runner rotatably mounted in the casing and having a flow pattern such that the water flows substantially radially from the outside to the inside of the runner, past the center of the runner in spaced relationship thereto and then substantially radially from the inside to the outside of the runner, the flow entering the runner in an impact-free manner, a flow passage in the casing comprising an inlet area and an outlet area, with the runner being disposed in the casing flow passage, a guide vane pivotally mounted in the inlet area to close the inlet area by engaging opposite casing walls when in a closing position and dividing the inlet area in a pair of inlet passages when in its other positions, an admission tube connected to said inlet area, and a discharge tube connected to said outlet area, which discharge tube extends vertically and is formed to be a draft tube.

Cross-flow turbines of this type are known, e.g. from applicants' German Patents 707,839, 815,780, and 895,279. With these cross-flow turbines the admission tube extends substantially vertically. In order to obtain an impact-free flow entrance to the runner, the guide vane and the inlet area of the casing flow passage direct the flow such that
the resultant of the flow entering the runner has a substantially vertical component. This results in the flow leaving the runner having a substantial horizontal velocity component resulting in flow turbulence and corresponding flow losses.

Also with horizontal flow admission (see e.g. German Patent 178.228) it has not been possible to avoid a flow pattern with the flow leaving the runner having a substantial horizontal velocity component.

From German Patents 347.271, 383.134, and 388.530, there have become known cross-flow turbines wherein the flow leaving the runner at least theoretically extends in a vertical direction. Since, however, these cross-flow turbines do not have a guide vane, it is believed that in practice it is not possible to have the flow leave the runner in a substantially vertical direction.

Accordingly, it is an object of the present invention to provide a cross-flow turbine having reduced flow losses in the outlet area of the casing flow passage.

According to the present invention, a cross-flow turbine of the type as identified above is characterized in that, with said admission tube extending horizontally, the casing flow passage and the guide vane are arranged such that the resultant of the flow entering the runner is inclined downwardly under an angle α of substantially 30° to 50°, preferably 40° with respect to the horizontal and the resultant of the flow leaving the runner is directed substantially vertically.

With such a cross-flow turbine the flow leaves the runner in a substantially vertical direction even though a
horizontally extending admission tube is used. The invention provides for a reduction of flow turbulence in the outlet area of the casing flow passage and accordingly results in an increase of flow efficiency.

With cross-flow turbines of the above type the draft tube should be of a relatively large cross-section. In order to increase the cross-section of the casing flow passage to that of the draft tube, it has become known (e.g. from German Patent 815,780) to provide the outlet area of the casing flow passage with an arcuate side space at the side of the runner remote from the admission tube. Such side space is vented from atmosphere via a resiliently biased valve such that suction pressure within the draft tube may not exceed a predetermined value so that the water level within the draft tube will not rise above the lowest point of the runner.

Since with the cross-flow turbine of the present invention the flow leaves the runner in a substantially vertical direction, the outlet area of the casing flow passage may have a cross-section increase on both sides of the runner. In a preferred embodiment of the present invention, there is provided a second side space increasing the cross-section of the casing flow passage on the side of the runner opposite said first side space. Preferably, such second side space is also vented from atmosphere in order to avoid flow turbulences in this area.

A preferred embodiment of the invention will be described in connection with the attached drawing showing a cross-section of a cross-flow turbine.

The cross-flow turbine shown in the drawing includes a runner having a plurality of circumferentially spaced
1 blades 4 of circular arc profile. The runner 2 mounted on a horizontal shaft 6 rotates in a casing flow passage 10 confined by a casing 8.

The casing flow passage 10 comprises an inlet area 12 and an outlet area 14. Connected to the inlet area 12 is a horizontally extending admission tube 16 of rectangular cross-section, while the outlet area 14 merges into a vertically extending discharge tube 18 being also of rectangular cross-section and serving as a draft tube.

In the inlet area 12 there is disposed a guide vane 20 adapted to be pivoted about a horizontal axis by means of a shaft 22. The guide vane 20 comprises a nose portion 24 and a trailing edge 26 inclined thereto for about 45°.

Guide vane 20 when in its fully open position (as shown in the drawing) divides inlet area 12 into a pair of inlet passages 12a and 12b. Inlet passage 12a is confined by the straight upper side 28 of the trailing edge 26 and a straight casing wall 30 associated therewith. Upper side 28 of trailing edge 26 and housing wall 30 each include with the horizontal an angle b of about 12° to 20°, preferably 16°. However, it is to be noted that upper side 28 of trailing edge 26 and housing wall 30 slightly converge with respect to each other so that inlet passage 12a is of slightly decreasing cross-section as seen in flow direction when guide vane 20 is in its fully open position.

Inlet passage 12b is confined by the straight lower side 32 of nose portion 24 and the opposed upper side 36 of a casing wall 34. The lower side 32 of nose portion 24 and the upper side 36 of casing wall 34 each include with the horizontal an angle c of about 40° to 50°, preferably 45° when guide vane 20 is in its fully open position. However, it is to be noted also in this case that inlet passage 12b
1 slightly converges as seen in flow direction to achieve a corresponding velocity increase of the flow.

Guide vane 20 is adapted to be adjusted from its fully open position (as shown in the drawing) through intermediate positions to a closing position at which trailing edge 26 engages casing wall 30 and nose portion 24 engages casing wall 34 to thereby close the inlet area 12.

Outlet area 14 comprises at the right side (as seen in the drawing) a side space 40 increasing the cross-section of the casing flow passage confined by an arcuate casing wall. On the left side (as seen in the drawing) there is a somewhat smaller side space 42 confined by the lower side of casing wall 34 and a vertical wall of casing 8. The side spaces 40, 42 increase the cross-section of casing flow passage 10 to the cross-section of discharge tube 18 which theoretically should be endless and in practice is twice the size of the entrance cross-section of inlet area 12.

To prevent the water level within discharge tube 18 from rising above the lowest point of runner 2, side space 40 is vented from atmosphere by a resiliently biased venting valve 46 so that suction pressure inside space 40 may not exceed a predetermined value.

While theoretically venting of side space 40 to maintain a predetermined water level in discharge tube 18 should be sufficient, practice has shown that turbulence losses in side space 42 caused by rotation of the runner may be reduced by also venting side space 42 from atmosphere. To this end side space 42 is connected to a conduit 48 which preferably is vented from atmosphere also via venting valve 46.
In operation water flows from admission tube 16 in horizontal direction into inlet area 12 where the water flow is divided by guide vane 20 extending across the whole width of the inlet area 12 into a pair of partial streams flowing through inlet passages 12a and 12b and being united downstream of trailing edge 26. The united stream enters the runner 2 in the area between trailing edge 26 and the lower end of casing wall 30. As shown by an arrow 50, the flow direction is such that the flow resultant includes with the horizontal an angle a of approximately 30° to 50°, preferably 40°. The geometry of the flow passages and the vanes 4 of runner 2 and the speed of runner 2 are chosen such that the flow enters runner 2 in a substantially impact free manner.

As indicated by a dotted line, the water stream flows through the interior of runner 2 in an off-center area and thereafter leaves the runner in the area of the lowest point of runner 2. At this point, the flow resultant is directed substantially downwards as indicated by an arrow 20.

In the inlet passage 12a the flow resultant is downwardly inclined under an angle b of about 12° to 20°, preferably 15° with respect to the horizontal, while the flow resultant in inlet passage 12b is upwardly inclined under an angle c of about 40° to 50°, preferably 45° with respect to the horizontal. This geometry results in the desired flow pattern of the flow entering and leaving runner 2.

When guide vane 20 is in its intermediate positions under partial load conditions, the flow pattern at least theoretically is the same.

Due to this flow pattern, in particular due to the vertical outlet flow, and due to the double venting of the outlet area there is a reduction of turbulence losses in the outlet area 14 resulting in an increased flow efficiency.
What is claimed is:

1. A cross-flow turbine comprising a casing, a runner rotatably mounted in the casing and having a flow pattern such that the water flows substantially radially from the outside to the inside of the runner, past the center of the runner in spaced relationship thereto and then substantially radially from the inside to the outside of the runner, the flow entering the runner in an impact-free manner, a flow passage in the casing comprising an inlet area and an outlet area, with the runner being disposed in the casing flow passage, a guide vane pivotally mounted in the inlet area to close the inlet area by engaging opposite casing walls when in a closing position and dividing the inlet area in a pair of inlet passages when in its other positions, an admission tube connected to said inlet area, and a discharge tube connected to said outlet area, which discharge tube extends vertically and is formed to be a draft tube, characterized in that, with said admission tube (16) extending horizontally, the casing flow passage (10) and the guide vane (20) are arranged such that the resultant of the flow entering the runner (2) is inclined downwardly under an angle (a) of substantially 30° to 50°, preferably 40° with respect to the horizontal and the resultant of the flow leaving the runner (2) is directed substantially vertically.

2. The cross-flow turbine of claim 1, in which the guide vane comprises a leading nose portion and a trailing edge extending obliquely thereto, characterized in that when the guide vane (24, 20) is in its fully open position the upper side (28) of said trailing edge (26) and an associated casing wall (30) confining one (12a) of said pair of inlet passages are inclined downwardly under an angle (b) of about 12° to 20°, preferably 16°, with respect to the horizontal as seen in the flow direction.
3. The cross-flow turbine of claim 2, characterized in that when the guide vane (20) is in its fully open position the lower side (32) of said nose portion (24) and an associated casing wall (34) confining the other (12b) of said pair of inlet passages are inclined upwardly under an angle of about 40° to 50°, preferably 45° with respect to the horizontal as seen in the flow direction.

4. The cross-flow turbine of any of the preceding claims, in which the outlet area of said casing flow passage comprises a first side space increasing the cross-section of the casing flow passage at the side of the runner remote from said admission tube, characterized in that the outlet area (14) of said casing flow passage (10) comprises a second side space (42) increasing the cross-section of said casing flow passage (10) on the side of the runner (2) opposite to said first side space (40).

5. The cross-flow turbine of claim 4, characterized in that said second side space (42) is confined by the lower side (44) of a casing wall (34) inclined upwardly and extending to the periphery of the runner (2), the upper side (36) of said casing wall together with said guide vane (24) confining one (12b) of said pair of inlet passages.

6. The cross-flow turbine of claim 5, characterized in that the lower side (44) of said casing wall (34) is inclined with respect to the horizontal under an angle (d) of about 50° to 70°, preferably 60°.

7. The cross-flow turbine of claim 5 or claim 6, in which the first side space is vented from atmosphere by a resiliently biassed venting valve to maintain a pre-
determined suction pressure, characterized in that said second side space (42) is also vented from atmosphere to maintain a predetermined suction pressure therein.

The cross-flow turbine of claim 7, characterized in that said second side space (42) is connected to said venting valve (46) of said first side space (40) by means of a conduit (48).

DATED this TWENTY-SEVENTH day of JULY 1984

Ossberger-Turbinenfabrik GmbH & Co

Patent Attorneys for the Applicant

SPRUSON & FERGUSON
the inclined guide runner (2) is directed substantially vertically.
Complete Specification for the invention entitled:
"CROSS-FLOW TURBINE"

The following statement is a full description of this invention, including the best method of performing it known to me/us:

[Diagram of cross-flow turbine with labeled parts]