COMMONWEALTH OF AUSTRALIA

Patents Act 1952

APPLICATION FOR A PATENT

We, ICI AUSTRALIA LIMITED, of 1 Nicholson Street, Melbourne, Victoria, Australia, hereby apply for the grant of a Patent for an invention entitled:

"COMPOUNDS AND COMPOSITIONS"

which is described in the accompanying provisional specification.

Our address for service is: Patents Section, ICI Australia Limited, 1 Nicholson Street, Melbourne, Victoria, Australia.

DATED this 15 day of July 1983

ICI AUSTRALIA LIMITED
By its Duly Authorized Officer

R.C. Hinton

To: The Commissioner of Patents

alkyl wherein the alkyl group is substituted with from one to three substituents selected from the group consisting of hydroxyl, halogen, C₁ to C₆ alkoxy
In support of the Application made by ICI AUSTRALIA LIMITED for a patent for an invention entitled:—

Compounds and Compositions

1. Roy Cyril HINTON of ICI House, 1 Nicholson Street, Melbourne, Victoria, 3000, Australia, do solemnly and sincerely declare as follows:—

2. I am authorised by ICI AUSTRALIA LIMITED, the applicant for the patent to make this declaration on its behalf.

3. Keith Geoffrey WATSON of 36 Medway Street, Box Hill North, Victoria 3129; Graham John BIRD of 10 Alfred Street, North Melbourne, Victoria 3051 and Graeme John FARQUHARSON of 10 Steane Street Kew, Victoria 3101 are the actual inventors of the invention and the facts upon which ICI AUSTRALIA LIMITED is entitled to make the application are as follows:—

The said ICI AUSTRALIA LIMITED is the assignee of the said actual inventor(s).

Declared at Melbourne this 3rd day of July 1984

R.C HINTON, Duly Authorised Officer of ICI AUSTRALIA LIMITED

To: The Commissioner of Patents

R1 is selected from the group consisting of: hydrogen; C1 to C6 alkyl; C2 to C6 alkenyl; C2 to C6 alkynyl; substituted C1 to C6 alkyl wherein the alkyl group is...
This invention relates to organic compounds having biological activity and in particular to organic compounds having herbicidal properties and plant growth regulating properties, to processes for the preparation of such compounds, to intermediates useful in the preparation of such compounds and to herbicidal compositions and processes utilizing such compounds and to plant growth regulating compositions and processes utilizing such compounds.

"CO- wherein Y is selected from hydroxy.
1. A compound of formula I

\[\begin{align*}
(W)_m & \left(\begin{array}{c}
\text{OR}^1 \\
\text{R}^4 \\
\text{C} \\
\text{R}^3 \\
\text{N-OR}^2
\end{array} \right) \end{align*} \]

wherein:

W, which may be the same or different, are selected from the group consisting of:

- the groups \(R^5 \text{CO-} \) and \(R^5 \text{CS-} \) wherein \(R^5 \) is selected from the group consisting of: \(C_2 \) to \(C_6 \) alkenyl; \(C_2 \) to \(C_6 \) alkynyl; benzyl; phenyl; the groups \(C_1 \) to \(C_6 \) alkyl, \(C_2 \) to \(C_6 \) alkenyl, \(C_2 \) to \(C_6 \) alkynyl, benzyl and phenyl wherein each group is substituted with from one to three substituents selected from the group consisting of halogen, hydroxy, nitro, cyano, \(C_1 \) to \(C_6 \) alkoxy, \(C_1 \) to \(C_6 \) alkylthio, carboxy, (\(C_1 \) to \(C_6 \) alkoxy) carbonyl, \(C_2 \) to \(C_6 \) alkanoyl, amino, \(N-(C_1 \) to \(C_6 \) alkyl)amino, and \(N,N-di(C_1 \) to \(C_6 \) alkyl)amino; and the acetal, hemiacetal, oxime, imine and Schiff base derivatives of the group \(R^5 \text{CO-} \);

- the groups \(Y-\text{CO-} \) and \(Y-\text{CS-} \) wherein \(Y \) is selected from hydroxy, mercapto, \(C_1 \) to \(C_6 \) alkylthio and the group \(\text{MO-} \) and \(\text{MS-} \) wherein \(M \) is an organic or an inorganic cation; and

- the groups \(R^6R^7\text{NCO-} \) and \(R^6R^7\text{NCS-} \) wherein \(R^6 \) and \(R^7 \) are independently selected from the group consisting of: hydrogen; \(C_1 \) to \(C_6 \) alkyl; substituted \(C_1 \) to \(C_5 \)

\(*\text{(II)}/28\)
alkyl, wherein the alkyl group is substituted with from one to three substituents selected from the group consisting of hydroxy, halogen, C₁ to C₆ alkoxy and phenyl; C₁ to C₆ alkenyl; C₁ to C₆ alkynyl; carboxyl; (C₁ to C₆ alkoxy)carbonyl; C₁ to C₆ alkylsulfonyl; benzoyl; benzenesulfonyl; the groups substituted benzoyl and substituted benzenesulfonyl wherein in each group the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, hydroxy, nitro, cyano, C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, (C₁ to C₆ alkoxy)carbonyl, C₂ to C₆ alkanoyl, amino, N-(C₁ to C₆ alkanoyl)amino and N,N-di(C₁ to C₆ alkanoyl)amino; or R⁸ and R⁹ together form a 5 to 7 membered heterocyclic ring;

X, which may be the same or different, are independently selected from the group consisting of: halogen; nitro; cyano; C₁ to C₆ alkyl; C₁ to C₆ alkoxy substituted with a substituent selected from the group consisting of halogen, nitro, hydroxy, C₁ to C₆ alkenyl and C₁ to C₆ alkynyl; C₂ to C₆ alkenyl; C₁ to C₆ alkynyl; hydroxy; C₁ to C₆ alkoxy; C₁ to C₆ alkoxy substituted with a substituent selected from halogen and C₁ to C₆ alkoxy; C₂ to C₆ alkenyloxy; C₂ to C₆ alkynyloxy; C₂ to C₆ alkanoyl-oxo; (C₁ to C₆ alkoxy)carbonyl; C₁ to C₆ alkylthio; C₁ to C₆ alkylsulfinyl; C₁ to C₆ alkylsulfonyl; sulfamoyl; N-(C₁ to C₆ alkyl)sulfamoyl; N,N-di(C₁ to C₆ alkyl)sulfamoyl; benzyloxy; substituted benzyloxy wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, C₁ to C₆ alkenyl, C₁ to C₆ alkoxy and C₁ to C₆ haloalkyl; the group NR₈R₉ wherein R₈ and R₉ are independently selected from the group consisting of hydrogen, C₁ to C₆ alkenyl, C₂ to C₆ alkanoyl, benzoyl and benzyl; the groups formyl and C₂ to C₆ alkanoyl and the oxime, imine and Schiff base derivatives thereof;
R\(^1\) is selected from the group consisting of: hydrogen; C\(_1\) to C\(_6\) alkyl; C\(_2\) to C\(_6\) alkenyl; C\(_2\) to C\(_6\) alkynyl; substituted C\(_1\) to C\(_6\) alkyl wherein the alkyl group is substituted with a substituent selected from the group consisting of C\(_1\) to C\(_6\) alkoxy, C\(_1\) to C\(_6\) alkylthio, phenyl and substituted phenyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C\(_1\) to C\(_6\) alkyl, C\(_1\) to C\(_6\) haloalkyl, C\(_1\) to C\(_6\) alkoxy and C\(_1\) to C\(_6\) alkylthio; C\(_1\) to C\(_6\) alkyl sulfonyl; benzenesulfonyl; substituted benzenesulfonyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C\(_1\) to C\(_6\) alkyl, C\(_1\) to C\(_6\) haloalkyl, C\(_1\) to C\(_6\) alkoxy and C\(_1\) to C\(_6\) alkylthio; an acyl group; and an inorganic or organic cation;

R\(^2\) is selected from the group consisting of: C\(_1\) to C\(_6\) alkyl; C\(_2\) to C\(_6\) alkenyl; C\(_2\) to C\(_6\) haloalkenyl; C\(_2\) to C\(_6\) alkynyl; C\(_2\) to C\(_6\) haloalkynyl; substituted C\(_1\) to C\(_6\) alkyl wherein the alkyl group is substituted with a substituent selected from the group consisting of halogen, C\(_1\) to C\(_6\) alkoxy, C\(_1\) to C\(_6\) alkylthio, phenyl and substituted phenyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C\(_1\) to C\(_6\) alkyl, C\(_1\) to C\(_6\) haloalkyl, C\(_1\) to C\(_6\) alkoxy and C\(_1\) to C\(_6\) alkylthio;

R\(^3\) is selected from the group consisting of: C\(_1\) to C\(_6\) alkyl; C\(_1\) to C\(_6\) fluoroalkyl; C\(_2\) to C\(_6\) alkenyl; C\(_2\) to C\(_6\) alkynyl; and phenyl;

R\(^4\) is selected from the group consisting of: hydrogen; halogen; cyano; C\(_1\) to C\(_6\) alkyl; and (C\(_1\) to C\(_6\) alkoxy)-carbonyl;
m is selected from the integers 1 and 2;

n is selected from the integers 1 to 4; and

m + n is selected from the integers 3 to 5,
COMPLETE SPECIFICATION

(ORIGINAL)

FOP. OFFICE USE

Short Title:

Int. Cl.:

Application Number:
Lodged:

Complete Specification—Lodged:
Accepted:
Lapsed:
Published:

Priority:

Related Art:

30330/84

TO BE COMPLETED BY APPLICANT

Name of Applicant:
ICI AUSTRALIA LIMITED

Address of Applicant:
1 Nicholson Street, Melbourne, Victoria 3001
Australia

Actual Inventor:
Keith Geoffrey WATSON
Graham John BIRD
Graeme John FARQUHARSON

Address for Service:
Patents Section, ICI AUSTRALIA LIMITED, P.O. Box 4311
Melbourne, Victoria 3001

Complete Specification for the invention entitled:

COMPOUNDS AND COMPOSITIONS

The following statement is a full description of this invention including the best method of performing it known to me:

*Note: The description is to be typed in double spacing, pica type face, in an area not exceeding 250 mm in depth and 160 mm in width, on tough white paper of good quality and it is to be inserted inside this form.

Printed by: C. J. Thomson, Commonwealth Government Printer, Canberra
Herbicidal Cyclohexane-1,3-dione Derivatives

This invention relates to organic compounds having biological activity and in particular to organic compounds having herbicidal properties and plant growth regulating properties, to processes for the preparation of such compounds, to intermediates useful in the preparation of such compounds and to herbicidal compositions and processes utilizing such compounds and to plant growth regulating compositions and processes utilizing such compounds.

The use of certain cyclohexane-1,3-dione derivatives as grass herbicides is known in the art. For example, the "Pesticide Manual" (C.R. Worthing Editor, The British Crop Protection Council, 6th Edition 1979) describes the cyclohexane-1,3-dione derivative known commercially as alloxynid-sodium (methyl 3-(1-(allyloxymino)butyl)-4-hydroxy-6,6-dimethyl-2-oxocyclohex-3-ene carboxylate) and its use as a grass herbicide. This compound is disclosed in Australian Patent No 464 655 and its equivalents such as UK Patent No 1 461 170 and US Patent No 3 950 420.

More recently, at the 1980 British Crop

It has now been found that a new group of cyclohexan-1,3-dione derivatives which have a 5-phenyl substituent which is in turn substituted with three or more substituents, at least one of which is an acyl derivative, exhibit particularly useful herbicidal activity.

Accordingly the invention provides a compound of formula I:

\[
\begin{align*}
& \text{Wherein:} \\
&W, \text{ which may be the same or different, are selected from the group consisting of:} \\
& \text{the groups } R^5 \text{Co- and } R^5CS- \text{ wherein } R^5 \text{ is selected from the group consisting of: } C_2 \text{ to } C_6 \text{ alkyl, } C_2 \text{ to } C_6 \text{ alkynyl, benzyl, phenyl; the groups } C_1 \text{ to } C_6 \text{ alkyl, } \\
& C_2 \text{ to } C_6 \text{ alkynyl, } C_2 \text{ to } C_6 \text{ alkenyl, benzyl and phenyl wherein each group is substituted with from one to} \\
& \text{three substituents selected from the group consisting} \\
& \text{allylcarbonyl; chloromethylcarbonyl; 2-chloroethylcarbonyl; methylthiomethylcarbonyl; ethoxycarbonyl-} \\
& \text{thiocarbonyl; N,N-dimethylcarbamoyl; N,N-dimethylthiocarbamoyl.}
\end{align*}
\]
of halogen, hydroxy, nitro, cyano, C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, carboxy, (C₁ to C₆ alkoxy) carbonyl, C₂ to C₆ alkanoyl, amino, N-(C₁ to C₆ alkyl)amino, and N,N-di(C₁ to C₆ alkyl)amino; and the acetal, hemiacetal, oxime, imine and Schiff base derivatives of the group R⁵-CO-;

the groups Y-CO- and Y-CS- wherein Y is selected from hydroxy, mercapto, C₁ to C₆ alkylthio and the group MO- and MS- wherein M is an organic or an inorganic cation; and

the groups R⁶R⁷NCO- and R⁶R⁷NCS- wherein R⁶ and R⁷ are independently selected from the group consisting of: hydrogen; C₁ to C₆ alkyl; substituted C₁ to C₆ alkyl wherein the alkyl group is substituted with from one to three substituents selected from the group consisting of hydroxy, halogen, C₁ to C₆ alkoxy and phenyl; C₁ to C₆ alkanoyl; carboxy; (C₁ to C₆ alkoxy)carbonyl; C₁ to C₆ alkylsulfonyle; benzyol; benzenesulfonyle; the groups substituted benzyol and substituted benzenesulfonyle wherein in each group the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, hydroxy, nitro, cyano, C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, (C₁ to C₆ alkoxy)carbonyl, C₂ to C₆ alkanoyl, amino, N-(C₁ to C₆ alkyl)amino and N,N-di(C₁ to C₆ alkyl)amino; or R⁶ and R⁷ together form a 5 to 7 membered heterocyclic ring;

X, which may be the same or different, are independently selected from the group consisting of: halogen; nitro; cyano; C₁ to C₆ alkyl; C₁ to C₆ alkyl substituted with a substituent selected from the group consisting of halogen, nitro, hydroxy, C₁ to C₆ alkoxy and C₁ to C₆ alkylthio; C₂ to C₆ alkenyl; C₂ to C₆ alkynyl; hydroxy; C₁
oxy; (C₁ to C₆ alkoxy)carbonyl; C₁ to C₆ alkylthio; C₁ to C₆ alkylsulfinyl; C₁ to C₆ alkylsulfonyl; sulfamoyl; N-(C₁ to C₆ alkyl)sulfamoyl; N,N-di(C₁ to C₆ alkyl)sulfamoyl; benzyloxy; substituted benzyloxy wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, C₁ to C₆ alkyl, C₁ to C₆ alkoxy and C₁ to C₆ haloalkyl; the group NR₈R₉ wherein R₈ and R₉ are independently selected from the group consisting of hydrogen, C₁ to C₆ alkyl, C₂ to C₆ alkanoyl, benzoyl and benzyl; the groups formyl and C₂ to C₆ alkanoyl and the oxime, imine and Schiff base derivatives thereof;

R¹ is selected from the group consisting of: hydrogen; C₁ to C₆ alkyl; C₂ to C₆ alkenyl; C₂ to C₆ alkynyl; substituted C₁ to C₆ alkyl wherein the alkyl group is substituted with a substituent selected from the group consisting of C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, phenyl and substituted phenyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy and C₁ to C₆ alkylthio; C₁ to C₆ alkyl sulfonyl; benzenesulfonyl; substituted benzenesulfonyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy and C₁ to C₆ alkylthio; an acyl group; and an inorganic or organic cation;

R² is selected from the group consisting of: C₁ to C₆

TABLE 1 - continued
alkyl wherein the alkyl group is substituted with a substituent selected from the group consisting of halogen, C\textsubscript{1} to C\textsubscript{6} alkoxy, C\textsubscript{1} to C\textsubscript{6} alkylthio, phenyl and substituted phenyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C\textsubscript{1} to C\textsubscript{6} alky1, C\textsubscript{1} to C\textsubscript{6} haloalkyl, C\textsubscript{1} to C\textsubscript{6} alkoxy and C\textsubscript{1} to C\textsubscript{6} alkylthio;

R\textsubscript{3} is selected from the group consisting of: C\textsubscript{1} to C\textsubscript{6} alkyl; C\textsubscript{1} to C\textsubscript{6} fluoroalkyl; C\textsubscript{2} to C\textsubscript{6} alkenyl; C\textsubscript{2} to C\textsubscript{6} alkynyl; and phenyl;

R\textsubscript{4} is selected from the group consisting of: hydrogen; halogen; cyano; C\textsubscript{1} to C\textsubscript{6} alkyl; and (C\textsubscript{1} to C\textsubscript{6} alkoxy)-carbonyl;

m is selected from the integers 1 and 2;

n is selected from the integers 1 to 4; and

m + n is selected from the integers 3 to 5.

When in the compound of formula I X is chosen from the groups formyl and C\textsubscript{2} to C\textsubscript{6} alkanoyl and the oxime, imine and Schiff base derivatives thereof, the nature of the oxime, imine and Schiff base derivatives is not narrowly critical. Although not intending to be bound by theory, it is believed that in the plant the (substituted) imine group may be removed to give the corresponding compound of formula I in which X is formyl or C\textsubscript{2} to C\textsubscript{6} alkanoyl. Suitable values for the groups formyl and C\textsubscript{2} to C\textsubscript{6} alkanoyl and the oxime, imine and Schiff base derivatives thereof include groups of the
formula -C(R\textsubscript{10})=NR\textsubscript{11} wherein R\textsubscript{10} is chosen from hydrogen and C\textsubscript{1} to C\textsubscript{5} alkyl, and R\textsubscript{11} is chosen from hydrogen, C\textsubscript{1} to C\textsubscript{6} alkyl, phenyl, benzyl, hydroxy, C\textsubscript{1} to C\textsubscript{6} alkoxy, phenoxy and benzyloxy.

When in the compound of formula I R\textsubscript{1} is chosen from acyl the nature of the acyl group is not narrowly critical. Although not intending to be bound by theory, it is believed that when R\textsubscript{1} is acyl the acyl group may be removed in the plant by hydrolysis to give the corresponding compound of formula I in which R\textsubscript{1} is hydrogen. Suitable acyl groups include: alkanoyl, for example C\textsubscript{2} to C\textsubscript{6} alkanoyl; aryl, for example benzoyl and substituted benzoyl wherein the benzene ring is substituted with from one to three substituents chosen from the group consisting of halogen, nitro, cyano, C\textsubscript{1} to C\textsubscript{6} alkyl, C\textsubscript{1} to C\textsubscript{6} haloalkyl, C\textsubscript{1} to C\textsubscript{6} alkoxy and C\textsubscript{1} to C\textsubscript{6} alkylthio; and heteroaroyl, for example 2-furoyl, 3-furoyl, 2-thenoyl and 3-thenoyl.

When in the compound of formula I R\textsubscript{1} is chosen from an inorganic or organic cation the nature of the cation is not narrowly critical. Although not intending to be bound by theory, it is believed that when R\textsubscript{1} is a cation the cation may be removed in the plant to give a compound of formula I wherein R\textsubscript{1} is hydrogen. Suitable inorganic cations include the alkali and alkaline earth metal ions, heavy metal ions including the transition metal ions, and the ammonium ion. Suitable organic cations include the cation R\textsubscript{12}R\textsubscript{13}R\textsubscript{14}R\textsubscript{15}N+ wherein R\textsubscript{12}, R\textsubscript{13}, R\textsubscript{14} and R\textsubscript{15} are independently chosen from the group consisting of: hydrogen; C\textsubscript{1} to C\textsubscript{10} alkyl; substituted C\textsubscript{1} to C\textsubscript{10} alkyl wherein the alkyl group is substituted with a substituent chosen from the group consisting of hydroxy, halogen and C\textsubscript{1} to C\textsubscript{6} alkoxy; phenyl; benzyl; and the groups substituted phenyl and substituted benzyl wherein the benzene ring is substituted with from one to three substituents.
chosen from the group consisting of halogen, nitro, cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy and C₁ to C₆ alkylthio.

The compounds of the invention may exist in two isomeric forms as shown, below wherein Ø represents the group

\[\text{(W)}_{m} \text{(X)}_{n} \]

\[\text{OR}^{1} \quad \text{N-OR}^{2} \quad \text{OR}^{1} \quad \text{N-OR}^{2} \]

\[\text{Ia} \quad \text{Id} \]

It should be recognized that when R₁ is hydrogen the compounds of the invention may exist in any one of four tautomeric forms as shown below wherein Ø represents the group

\[\text{(W)}_{m} \text{(X)}_{n} \]

(viii) a mixture of an acid halide of formula XV and the corresponding acid of formula XIV; or

(viii) with an alkali or alkaline earth metal hydride
In the compound of formula I suitable values for the substituent W include:

10 the group R^5-CO- wherein: R^5 is selected from the group consisting of: C_2 to C_6 alkenyl; C_2 to C_6 alkynyl; phenyl; the groups C_1 to C_6 alkyl, C_2 to C_6 alkenyl, C_2 to C_6 alkynyl and phenyl wherein each group is substituted with at least one substituent selected from the group consisting of halogen, hydroxy, nitro, cyano, C_1 to C_6 alkoxy, C_1 to C_6 alkylthio, (C_1 to C_6 alkoxy)carbonyl, amino, N-(C_1 to C_6 alkyl)amino, and N,N-di(C_1 to C_6 alkyl)amino; and the acetal, hemiacetal, oxime, imine and Schiff base derivatives of the group R^5-CO-;
the group Y-CO- wherein Y is selected from hydroxy, mercapto, C1 to C6 alkylthio and the group NO- and M5- wherein M is an organic or an inorganic cation;

the group R6R7NCO- wherein R6 and R7 are independently selected from the group consisting of:
hydrogen, C1 to C6 alkyl; and substituted C1 to C6 alkyl wherein the alkyl group is substituted with at least one substituent selected from the group consisting of hydroxy, halogen, C1 to C6 alkoxy and phenyl.

Preferred compounds of the invention include those compounds of formula I wherein:

W, which may be the same or different, are selected from the group consisting of:

the groups R5CO- and R5CS- wherein R5 is selected from the group consisting of: C2 to C6 alkenyl; benzyl; phenyl; and the groups C1 to C6 alkyl, benzyl and phenyl wherein each group is substituted with from one to three substituents selected from the group consisting of halogen, hydroxy, nitro, cyano, C1 to C6 alkoxy, C1 to C6 alkylthio, carboxy, (C1 to C6 alkoxy)carbonyl and C2 to C6 alkanoyl;

the group YCO- and YCS- wherein Y is selected from the group consisting of hydroxy, mercapto and C1 to C6 alkylthio; and

the groups R6R7NCO- and R6R7NCS- wherein R6 and R7 are independently selected from the group consisting of: hydrogen; C1 to C6 alkyl; C1 to C6 alkanoyl; carboxy; (C1 to C6 alkoxy)carbonyl; C1 to C6 alkylsulfonyl; benzoyl; benzenesulfonyl; or the group
R^6R^7N is a 5 to 7 membered heterocyclic ring selected from piperidine, morpholine and pyrrolidine;

X, which may be the same or different, are independently selected from the group consisting of halogen, C_1 to C_6 alkyl, C_1 to C_6 haloalkyl, C_1 to C_6 alkoxy, C_1 to C_6 alkylthio, formyl, C_2 to C_6 alkanoyl, and the group of the formula -C(R^{10})=NR^{11} wherein R^{10} is selected from hydrogen and C_1 to C_5 alkyl and R^{11} is selected from hydroxy and C_1 to C_6 alkoxy;

R^{1} is selected from the group consisting of: hydrogen; C_2 to C_6 alkanoyl; benzoyl and substituted benzoyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, C_1 to C_6 alkyl and C_1 to C_6 alkoxy; benzenesulfonyl and substituted benzenesulfonyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, C_1 to C_6 alkyl and C_1 to C_6 alkoxy; and an inorganic or an organic cation selected from the alkali metals such as lithium, potassium and sodium, the alkaline earth metals such as magnesium, calcium and barium, the transition metals such as manganese, copper, zinc, iron, nickel, cobalt and silver, the ammonium ion and the tri- and tetra-(alkyl)ammonium ions wherein alkyl is selected from C_1 to C_6 alky1 and C_1 to C_6 hydroxyalkyl;

R^{2} is selected from the group consisting of C_1 to C_6 alkyl, C_2 to C_6 alkenyl, C_2 to C_6 alkynyl, C_1 to C_6 haloalkyl, C_2 to C_6 haloalkenyl and C_2 to C_6 halo-
alkynyl;

R^3 is selected from C_1 to C_6 alkyl;

R^4 is hydrogen;

m is 1;

5 n is selected from the integers 2 to 4; and

$m + n$ is selected from the integers 3 to 5.

More preferred compounds of the invention include those compounds of formula I wherein:

W, which may be the same or different, are selected from the group consisting of:

the group R^5CO- wherein R^5 is selected from the group consisting of: C_2 to C_6 alkenyl; C_1 to C_6 alkyl substituted with halogen, hydroxy, C_1 to C_6 alkoxy, C_1 to C_6 alkylthio, C_2 to C_6 alkanoyl, carboxy or (C_1 to C_6 alkoxy)carbonyl; benzyl; phenyl; and phenyl substituted with methoxy, nitro or cyano;

the group $YCO-$ wherein Y is selected from the group consisting of hydroxy, mercapto and C_1 to C_6 alkylthio;

the groups R^6R^7NCO- and R^6R^7NCS- wherein R^6 and R^7 are independently selected from the group consisting of: hydrogen; C_1 to C_6 alkyl; carboxy; (C_1 to C_6 alkoxy)carbonyl; and C_1 to C_6 alkylsulfonyl;

X, which may be the same or different, are independently selected from the group consisting of: halogen;
C₁ to C₆ alkyl, C₁ to C₆ alkoxy; C₁ to C₆ alkylthio; and C₂ to C₆ alkanoyl;

R¹ is selected from the group consisting of hydrogen, C₂ to C₆ alkanoyl, and the alkali and alkaline earth metals;

R² is selected from the group consisting of C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₂ to C₆ alkenyl, C₂ to C₆ haloalkenyl and C₂ to C₆ alkynyl;

R³ is selected from the group consisting of C₁ to C₆ alkyl;

R⁴ is hydrogen;

m is 1;

n is selected from the integers 2 to 4; and

m + n is selected from the integers 3 to 5.

Even more preferred compounds of the invention include those compounds of formula I wherein:

W is selected from the group consisting of:

the group R⁵CO- wherein R⁵ is selected from the group consisting of: C₃ to C₆ alkenyl; C₁ to C₆ alkyl substituted with halogen, C₁ to C₆ alkylthio, C₂ to C₆ alkanoyl, carboxy or (C₁ to C₆ alkoxy)carbonyl, benzyl, and phenyl;

the group YCO- wherein Y is selected from hydroxy and C₁ to C₆ alkylthio; and
the groups $R^6R^7\text{NCO}^-$ and $R^6R^7\text{NCS}^-$ wherein R^6 and R^7 are independently selected from the group consisting of: hydrogen; C$_1$ to C$_6$ alkyl; carboxyl; and (C$_1$ to C$_6$ alkoxy)carbonyl;

5 X, which may be the same or different, are independently selected from the group consisting of halogen, methyl, methoxy, methylthio and acetyl;

R^1 is selected from hydrogen and the alkali metals;

R^2 is selected from the group consisting of C$_1$ to C$_3$ alkyl, C$_1$ to C$_3$ haloalkyl, allyl, haloallyl and propargyl;

R^3 is selected from C$_1$ to C$_3$ alkyl;

R^4 is hydrogen;

m is 1;

15 n is selected from the integers 2 and 3; and

$m + n$ is selected from the integers 3 and 4.

One group of particularly preferred compounds of the invention are those compounds of formula I in which the benzene ring is substituted in the 2- and 6-positions. That is, compounds of the formula
wherein:

\(W \) is selected from the group consisting of:

- the group \(R^5 CO \) wherein \(R^5 \) is selected from the group consisting of: allyl; \(C_1 \) to \(C_6 \) alkyl substituted with halogen, \(C_1 \) to \(C_6 \) alkylthio, \(C_2 \) to \(C_6 \) alkanoyl, carboxy or (\(C_1 \) to \(C_6 \) alkoxy)carbonyl; and benzyl;

- the group \(YCO^- \) wherein \(Y \) is selected from hydroxy and \(C_1 \) to \(C_6 \) alkylthio; and

- the groups \(R^6 R^7 NCO^- \) and \(R^6 R^7 NCS^- \) wherein \(R^6 \) and \(R^7 \) are independently selected from the group consisting of hydrogen, \(C_1 \) to \(C_6 \) alkyl, carboxy and (\(C_1 \) to \(C_6 \) alkoxy)carbonyl;

\(X, X^2 \) and \(X^6 \) are methyl;

\(R^1 \) is selected from hydrogen and the alkali metals;

\(R^2 \) is selected from the group consisting of \(C_2 \) to \(C_3 \) alkyl, \(C_2 \) to \(C_3 \) haloalkyl, allyl, haloallyl and propargyl;

\(R^3 \) is selected from \(C_2 \) to \(C_3 \) alkyl;

\(R^4 \) is hydrogen; and

\(n \) is zero or 1.

A further group of particularly preferred compounds of the invention are those compounds of formula I in which the benzene ring is substituted in the 2-, 4- and 6-positions. That is, compounds of the formula
wherein:

W is selected from the group consisting of:

- the group \(\text{R}^5\text{CO}^- \) wherein \(\text{R}^5 \) is selected from the group consisting of: allyl; \(\text{C}_1 \) to \(\text{C}_6 \) alkyl substituted with halogen, \(\text{C}_1 \) to \(\text{C}_6 \) alkylthio, carboxy or \(\text{C}_1 \) to \(\text{C}_6 \) alkoxy)carbonyl;

- the group \(\text{YCO}^- \) wherein \(\text{Y} \) is selected from hydroxy and \(\text{C}_1 \) to \(\text{C}_6 \) alkylthio; and

- the groups \(\text{R}^6\text{R}^7\text{NCO}^- \) and \(\text{R}^6\text{R}^7\text{NCS}^- \) wherein \(\text{R}^6 \) and \(\text{R}^7 \) are independently selected from the group consisting of hydrogen, \(\text{C}_1 \) to \(\text{C}_6 \) alkyl, carboxy and \(\text{C}_1 \) to \(\text{C}_6 \) alkoxy)carbonyl;

\(\text{X}^2, \text{X}^4 \) and \(\text{X}^6 \) are methyl;

\(\text{R}^1 \) is selected from hydrogen, sodium and potassium;

\(\text{R}^2 \) is ethyl;

\(\text{R}^3 \) is selected from ethyl and \(\text{n} \)-propyl; and

\(\text{R}^4 \) is hydrogen.

Particularly preferred values for \(\text{W} \) include:
allylcarbonyl; chloromethylcarbonyl; 2-chloroethylcarbonyl; methylthiomethylcarbonyl; ethoxycarbonylmethylcarbonyl; thiocarbamoyl; N,N-dimethylcarbamoyl; carboxythiocarbamoyl; and ethoxycarbonylthiocarbamoyl.

Examples of the compounds of the invention include:

1
\[
\begin{align*}
\text{CH}_3\text{CH}=&\text{CHCO} & \text{CH}_3 \text{CH} = \text{CHCO} & \text{OH} \\
\text{H}_3\text{C} & & \text{CH}_3 & & \text{N}-\text{OC}_2\text{H}_5 \\
\text{CH}_3 & & \text{OH} & & \text{C}_3\text{H}_7-n
\end{align*}
\]

2
\[
\begin{align*}
\text{C}_6\text{H}_5\text{CO} & & \text{CH}_3 & & \text{OH} \\
\text{H}_3\text{C} & & \text{CH}_3 & & \text{N}-\text{OC}_2\text{H}_5 \\
\text{CH}_3 & & \text{F} & & \text{C}_2\text{H}_5
\end{align*}
\]

3
\[
\begin{align*}
\text{ClCH}_2\text{CO} & & \text{CH}_3 & & \text{Na}^+ \\
\text{H}_3\text{C} & & \text{CH}_3 & & \text{N}-\text{OC}_2\text{H}_5 \\
\text{H}_3\text{C} & & \text{CH}_3 & & \text{C}_3\text{H}_7-n
\end{align*}
\]

4
\[
\begin{align*}
\text{CH}_3\text{CH}=&\text{CHCO} & \text{CH}_3 \text{CH} = \text{CHCO} & \text{OCOC(CH}_3)_3 \\
\text{H}_3\text{C} & & \text{CH}_3 & & \text{N}-\text{OCH}_2\text{CH}=\text{CH}_2 \\
\text{H}_2\text{NO}_2\text{S} & & \text{CH}_3 & & \text{C}_2\text{H}_5
\end{align*}
\]
Specific examples of the compounds of the invention include those compounds detailed in Table 1 below.

TABLE 1

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Compound No</th>
<th>(X)ₙ</th>
<th>(W)₀</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2,4,6-(CH₃)₃</td>
<td>3-CH₃CH=CHCO</td>
<td>CH₂CH=CHCl</td>
<td>C₂H₅</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2,4,6-(CH₃)₃</td>
<td>3-C₆H₅CO</td>
<td>H</td>
<td>C₂H₅</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>7</td>
<td>2,4,6-(CH₃)₃</td>
<td>3-ClCH₂CO</td>
<td>H</td>
<td>C₂H₅</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>8</td>
<td>2,4,6-(CH₃)₃</td>
<td>3-CH₃CH=CHCO</td>
<td>H</td>
<td>C₂H₅</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>9</td>
<td>2,4,6-(CH₃)₃</td>
<td>3-(4-CH₃OC₆H₄CO)</td>
<td>H</td>
<td>C₂H₄F</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>10</td>
<td>2,4,6-(CH₃)₃</td>
<td>3-(4-NO₂C₆H₄CO)</td>
<td>H</td>
<td>CH₂CH=CH₂</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>11</td>
<td>2,4,6-(CH₃)₃</td>
<td>3-(4-NCC₆H₄CO)</td>
<td>H</td>
<td>CH₂C≡CH</td>
<td>C₂H₅</td>
</tr>
<tr>
<td>Compound No</td>
<td>(X)$_n$</td>
<td>(W)$_m$</td>
<td>R1</td>
<td>R2</td>
<td>R3</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>12</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-(4-</td>
<td>Na</td>
<td>CH$_2$CH=CH$_2$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td></td>
<td>3-(4-</td>
<td>NO$_2$C$_6$H$_4$CO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-C$_6$H$_5$CH$_2$CO</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td>14</td>
<td>4,6-(CH$_3$)$_2$</td>
<td>3-(C$_1$C$_2$H$_4$CO)</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td>15</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td></td>
<td>(C$_2$H$_5$COOCH$_2$CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td></td>
<td>(CH$_3$CH$_2$CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2,6-(CH$_3$)$_2$</td>
<td>3-(C$_1$CH$_2$CO)</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td>18</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td></td>
<td>(CH$_3$COCH$_2$CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-(C$_6$H$_5$)$_2$-</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td></td>
<td>NCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-HOCO</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td>21</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-(CH$_3$)$_2$NCO</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td>22</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-(C$_2$H$_5$SCO)</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td>23</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-C$_2$H$_5$-</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td></td>
<td>OCONHCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-H$_2$NCS</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
<tr>
<td>25</td>
<td>2,4,6-(CH$_3$)$_3$</td>
<td>3-HO$_2$CNHCS</td>
<td>H</td>
<td>C$_2$H$_5$</td>
<td>C$_2$H$_5$</td>
</tr>
</tbody>
</table>
The compounds of the invention may be prepared by by a variety of methods and in a further aspect the invention provides methods for the preparation of compounds of formula I.

Conveniently the preparation of the compounds of the invention can be considered in three or four parts.

Part A involves the formation of a 5-arylcyclohexan-1,3-dione of formula IX. This reaction may be carried out in a two step process by:

10 (i) reacting, preferably in the presence of a base, an aldehyde derivative of formula V with acetone (IVA) or an acetone derivative of formula IVb to form a ketone derivative of formula VIA or VIB respectively; and reacting, preferably in the presence of a base, a ketone derivative of formula VIA with a malonic acid ester derivative of formula VIIa or a ketone derivative of formula VIB with a malonic acid ester of formula VIIb, to give an intermediate of formula VIIIa or VIIIb respectively which may be isolated or hydrolysed directly, preferably in the presence of an acid, to give a 5-arylcyclohexan-1,3-dione of formula IX, or reacting, preferably in the presence of a base, a ketone derivative of formula VIA with an alkanolic acid ester of formula VIIc to give a 5-arylcyclohexan-1,3-dione of formula IX;

15 (ii) reacting, preferably in the presence of a base, an aldehyde derivative of formula V with a malonic acid ester of formula VIIb to give an arylmethylidenemalonate derivative of formula VIC which is in turn reacted, preferably in the presence of a base, with an acetoacetic acid derivative of formula VIIID to give an inter-
mediate of formula VIIIc which may be isolated or hydrolysed directly, preferably in the presence of an acid, to give a 5-arylcyclohexan-1,3-dione of formula IX; or

(iii) reacting, preferably in the presence of a base, an aldehyde derivative of formula V with an acetic acid ester of formula IVc to give a 2-arylalkenoate derivative of formula VIId which is in turn reacted, preferably in the presence of a base, with an acetoacetic acid ester derivative of formula VIId to give an intermediate of formula VIIIa which may be isolated or hydrolysed directly, preferably in the presence of an acid, to give a 5-arylcyclohexan-1,3-dione of formula IX.

Part B involves the acylation of a compound of formula IX to give a 2-acyl-5-arylcyclohexan-1,3-dione of formula XIII. This reaction may be carried out by reacting a 5-arylcyclohexan-1,3-dione of formula IX with:

(iv) an acid anhydride of formula X in the presence of either an alkali metal salt of the corresponding acid of formula XI or an alkoxide salt of formula XII, wherein M is an alkali metal ion and R is C₁ to C₆ alkyl;

(v) an acid anhydride of formula X in the presence of the corresponding acid of formula XIV;

(vi) an acid halide of formula XV, wherein hal represents halogen, in the presence of a Lewis acid catalyst;
(vii) a mixture of an acid halide of formula XV and the corresponding acid of formula XIV; or

(viii) with an alkali or alkaline earth metal hydride followed by reaction with an acid anhydride of formula X or an acid halide of formula XV.

Alternatively, this acylation reaction may be carried out by:

(ix) reacting a 5-arylcyclohexan-1,3-dione of formula IX with an acid halide of formula XV in the presence of pyridine to give an intermediate O-acyl derivative of formula XVI; and

(x) reacting the intermediate of formula XVI with a Lewis acid catalyst;

(xi) reacting the intermediate of formula XVI with the acid of formula XIV; or

(xii) reacting the intermediate of formula XVI with imidazole.

Part C involves the formation of a compound of the invention of formula I wherein R₁ is hydrogen, that is a compound of formula II. This reaction may be carried out either by reacting a 2-acyl-5-arylcyclohexan-1,3-dione of formula XIII with:

(xiii) an alkoxyamine derivative of formula XVII; or

(xiv) hydroxylamine to give an intermediate oxime derivative of formula XVIII and reacting that intermediate oxime derivative of formula XVIII with an alkylating agent of formula XIX where-
in L is a leaving group such as, for example, chloride, bromide, iodide, sulfate, nitrate, methyl sulfate, ethyl sulfate, tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, methanesulfonate, fluorosulfonate, methanesulfonate and trifluoromethanesulfonate.

Part D involves the formation of a compound of the invention of formula I wherein \(R^1 \) is a substituent other than hydrogen.

Compounds of the invention of formula I, wherein \(R^1 \) forms an ether, acyl or sulfonyl derivative of a compound of formula II, may be prepared from the corresponding compounds of the invention of formula II by reacting with an etherification, acylation or sulfonylation reagent of formula XX.

Compounds of the invention of formula I wherein \(R^1 \) is an inorganic or organic cation may be prepared from the compounds of the invention of formula I wherein \(R^1 \) is hydrogen, that is, compounds of formula II, by reacting said compounds of formula II with an inorganic or organic salt. For example, the compounds of formula I wherein \(R^1 \) is an alkali metal ion may be prepared by reacting the appropriate compound of formula II with the appropriate alkali metal hydroxide or alkoxylate. The compounds of formula I wherein \(R^1 \) is a transition metal ion or an organic cation may similarly be prepared by reacting the appropriate compound of formula II with an appropriate transition metal salt or organic base. Alternatively, the compounds of formula I wherein \(R^1 \) is a transition metal ion or an organic cation may be prepared by reacting the appropriate compound of formula I wherein \(R^1 \) is an alkali metal ion with an appropriate transition metal salt or organic salt.

Accordingly, in a further aspect the invention
provides a process for the preparation of a compound of formula I, as hereinbefore defined, which process comprises:

reacting 2-acyl-5-(aryl)cyclohexane-1,3-dione derivative of formula XIII with an alkoxyamine derivative of formula XVII to give a compound of the invention of formula II or reacting the 2-acyl-5-(aryl)cyclohexane-1,3-dione derivative of formula XIII with hydroxylamine and alkylating the oxime intermediate of formula XVIII with an alkylating agent of formula XIX, wherein L is a leaving group, to give a compound of the invention of formula II; and optionally

reacting the compound of the invention of formula II with a compound of formula XX, wherein L is a leaving group, to give a compound of the invention of formula I.

Certain of the intermediate compounds of formulae V, VIA, VIB, VIC, VID, VIIA, VIIIB, VIIIC, IX, XIII, XVI and XVIII are novel compounds and therefore in further embodiments the invention provides novel compounds of formulae V, VIA, VIB, VIC, VID, VIIA, VIIIB, VIIIC, IX, XIII, XVI and XVIII and processes for the preparation thereof.

The structures of the compounds described above are detailed on the following pages wherein ø represents the group

\[
\begin{align*}
\text{O} & \quad \text{R} \\
\text{N} & \quad \text{W}
\end{align*}
\]
\[
\begin{align*}
&\text{CH}_3\text{COCH}_3 & \text{CH}_3\text{COCH}_2\text{R}^4 & \text{CH}_3\text{CO}_2\text{R} \\
&\text{IVa} & \text{IVb} & \text{IVc}
\end{align*}
\]

\[
\begin{align*}
&\varnothing-\text{CHO} \\
&\text{V}
\end{align*}
\]

\[
\begin{align*}
&\varnothing-\text{CH}=\text{CH}-\text{COCH}_3 & \varnothing-\text{CH}=\text{CR}^4-\text{COCH}_3 \\
&\text{VIa} & \text{VIb}
\end{align*}
\]

\[
\begin{align*}
&\varnothing-\text{CH}=\text{C}\left(\text{CO}_2\text{R}\right)_2 & \varnothing-\text{CH}=\text{CH}-\text{CO}_2\text{R} \\
&\text{VIc} & \text{VID}
\end{align*}
\]

\[
\begin{align*}
&R^4\text{CH}\left(\text{CO}_2\text{R}\right)_2 & \text{CH}_2\left(\text{CO}_2\text{R}\right)_2 \\
&\text{VIIa} & \text{VIIb}
\end{align*}
\]
\[R^4CH_2CO_2R \quad \text{VIIc} \quad \text{CH}_3COCHR^4CO_2R \quad \text{VIId} \]

\[\text{VIIIa} \quad \text{VIIIb} \]

\[\text{VIIIc} \quad \text{IX} \]

\[(R^3\text{CO})_2O \quad R^3\text{CO}_2M \quad \text{ROM} \]

\[\text{X} \quad \text{XI} \quad \text{XII} \]

\[\text{XIII} \]
$$\text{XIV} \quad \text{XV}$$

$$\text{XVI}$$

$$\text{XVII} \quad \text{XIX} \quad \text{XX}$$

$$\text{XVIII}$$
Certain of the intermediate compounds of formulae V, VI, VIII, IX, X, XII, XXI, XIII, XVI and XVIII are novel compounds and therefore as a further embodiment the invention provides novel compounds of formulae V, VI, VIII, IX, X, XII, XXI, XIII, XVI and XVIII, wherein the substituents are as hereinbefore defined, and processes for the preparation thereof.

The compounds of formula I are active as herbicides and therefore, in a further aspect the invention provides a process for severely damaging or killing unwanted plants which process comprises applying to the plants, or to the growth medium of the plants, an effective amount of a compound of formula I as hereinbefore defined.

Generally speaking the compounds of formula I are herbicidally effective against a variety of plants. However, certain of the compounds of the invention are selectively active against monocotyledonous plants, dicotyledonous plants being relatively unaffected by rates of application of the compounds of the invention which are severely damaging or lethal to other plant species.

Moreover, certain of the compounds of formula I are selectively active within the group of monocotyledonous plants and may be used at a rate sufficient to control monocotyledonous weeds in cultivated crops, especially wild grasses in cereal crops. Certain of such compounds of the invention are especially useful in the control of wild grasses such as wild oats and rye grass in crops of cultivated monocotyledonous plants such as wheat and other varieties of cereals.

Accordingly, in yet a further aspect the invention provides a process for controlling monocotyledonous weeds in cultivated crops, especially wild grasses in cereal crops such as wheat, which process comprises applying to the crop, or to the growth medium
of the crop a compound of formula I, as hereinbefore
defined, in an amount sufficient to severely damage or
kill the weeds but insufficient to damage the crop
substantially.

The compounds of formula I may be applied
directly to the plant (post-emergence application) or to
the soil before the emergence of the plant (pre-emergence
application). However, the compounds are, in general,
more effective when applied to the plant post-emergence.

The compounds of formula I may be used on their
own to inhibit the growth of, severely damage, or kill
plants but are preferably used in the form of a com-
position comprising a compound of the invention in ad-
mixture with a carrier comprising a solid or liquid
diluent. Therefore, in yet a further aspect the in-
vention provides plant growth inhibiting, plant damag-
ing, or plant killing compositions comprising a com-
pound of formula I as hereinbefore defined and an
agriculturally acceptable carrier therefor.

Certain of the compounds of formula I exhibit
useful plant growth regulating activity. For example,
while compounds of formula I are selectively active
erbicides against wild grasses in crops of cultivated
plants at some rates of application they exhibit plant
growth regulating effects in said crops.

Plant growth regulating effects may be manifest-
ed in a number of ways. For example, suppression of
apical dominance, stimulation of auxiliary bud growth,
stimulation of early flowering and seed formation, en-
hancement of flowering and increase in seed yield, stem
thickening, stem shortening and tillering. Plant growth
regulating effects shown by compounds of the invention
may include, for example, tillering and stem shortening
in crops such as wheat and barley.

Accordingly in a still further aspect the in-
vention provides a process for regulating the growth of
a plant which process comprises applying to the plant, to the seed of the plant, or to the growth medium of the plant, an effective amount of a compound of formula I, as hereinbefore defined.

To effect the plant growth regulating process of the present invention the compounds of formula I may be applied directly to the plant (post-emergence application) or to the seed or soil before the emergence of the plant (pre-emergence) application.

The compounds of formula I may be used on their own to regulate the growth of plants but in general are preferably used in the form of a composition comprising a compound of the invention in admixture with a carrier comprising a solid or liquid diluent. Therefore, in a still further aspect the invention provides plant growth regulating compositions comprising a compound of formula I as hereinbefore defined and an agriculturally acceptable carrier therefor.

The compositions of the present invention may be in the form of solids, liquids or pastes. The compositions include both dilute compositions which are ready for immediate use and concentrated compositions which may require dilution before use. Therefore, the concentration of the active ingredient in the compositions of the present invention will vary depending on the types of formulation and whether the composition is ready for use such as, for example, a dust formulation or an aqueous emulsion or whether the composition is a concentrate such as, for example, an emulsifiable concentrate or a wettable powder, which is suitable for dilution before use. Therefore, the concentration of the active ingredient in the compositions of the present invention will vary depending on the types of formulation and whether the composition is ready for use such as, for example, a dust formulation or an aqueous emulsion or whether the composi-
tion is a concentrate such as, for example, an emulsifiable concentrate or a wettable powder, which is suitable for dilution before use. In general the compositions of the present invention comprise from 1 ppm to 99% by weight of active ingredient.

The solid compositions may be in the form of powders, dusts, pellets, grains, and granules wherein the active ingredient is mixed with a solid diluent. Powders and dusts may be prepared by mixing or grinding the active ingredient with a solid carrier to give a finely divided composition. Granules, grains and pellets may be prepared by bonding the active ingredient to a solid carrier, for example, by coating or impregnating the preformed granular solid carrier with the active ingredient or by agglomeration techniques.

Examples of solid carriers include: mineral earths and clays such as, for example, kaolin, bentonite, kieselguhr, Fuller's earth, Attaclay, diatomaceous earth, bole, loess, talc, chalk, dolomite, limestone, lime, calcium carbonate, gypsum, calcium sulfate, pyrophyllite, silicic acid, silicates and silica gels; fertilizers such as, for example, ammonium sulfate, ammonium phosphate, ammonium nitrate and urea; natural products of vegetable origin such as, for example, grain meals and flours, bark meals, wood meals, nutshell meals and cellulosic powders; and synthetic polymeric materials such as, for example, ground or powdered plastics and resins.

Alternatively, the solid compositions may be in the form of dispersible or wettable dusts, powders, granules or grains wherein the active ingredient and the solid carrier are combined with one or more surface active agents which act as wetting, emulsifying and/or dispersing agents to facilitate the dispersion of the active ingredient in liquid.

Examples of surface active agents include those
of the cationic, anionic and non-ionic type. Cationic surface active agents include quaternary ammonium compounds, for example, the long chain alkylammonium salts such as cetyltrimethylammonium bromide. Anionic surface active agents include: soaps or the alkali metal, alkaline earth metal and ammonium salts of fatty acids; the alkali metal, alkaline earth metal and ammonium salts of ligninsulfonic acid; the alkali metal, alkaline earth metal and ammonium salts of aryl-sulfonic acids including the salts of naphthalenesulfonic acids such as butynaphthalenesulfonic acids, the di- and tri- isopropynaphthalenesulfonic acids, the salts of the condensation products of sulfonated naphthalene and naphthalene derivatives with formaldehyde, the salts of the condensation products of sulfonated naphthalene and naphthalene derivatives with phenol and formaldehyde, and the salts of alkylarylbenzenesulfonic acids such as dodecylbenzenesulfonic acid; the alkali metal, alkaline earth metal and ammonium salts of the long chain mono esters of sulfuric acid or alkylsulfates such as laurylsulfate and the mono esters of sulfuric acid with fatty alcohol glycol ethers. Nonionic surface active agents include: the condensation products of ethylene oxide with phenols and alkylphenols such as iso octylphenol, octylphenol and nonylphenol; the condensation products of ethylene oxide with castor oil; the partial esters derived from long chain fatty acids and hexitol anhydrides, for example sorbitan monolaurate, and their condensation products with ethylene oxide; ethylene oxide/propylene oxide block copolymers; lauryl alcohol polyglycol ether acetal; and the lecithins.

The liquid compositions may comprise a solution or dispersions of the active ingredient in a liquid carrier optionally containing one or more sur-
face active agents which act as wetting, emulsifying and/or dispersing agents. Examples of liquid carriers include: water; mineral oil fractions such as, for example, kerosene, solvent naphtha, petroleum, coal tar oils and aromatic petroleum fractions; aliphatic, cycloaliphatic and aromatic hydrocarbons such as, for example, paraffin, cyclohexane, toluene, the xylenes, tetrahydrophthalene and alkylated naphthalenes; alcohols such as, for example, methanol, ethanol, propanol, isopropanol, butanol, cyclohexanol and propylene glycol; ketones such as, for example, cyclohexanone and isophorone; and strongly polar organic solvents such as, for example, dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone and sulfolane.

A preferred liquid composition comprises an aqueous suspension, dispersion or emulsion of the active ingredient which is suitable for application by spraying, atomizing or watering. Such aqueous compositions are generally prepared by mixing concentrated compositions with water. Suitable concentrated compositions include emulsion concentrates, pastes, oil dispersions, aqueous suspensions and wettable powders. The concentrates are usually required to withstand storage for prolonged periods and after such storage to be capable of dilution with water to form aqueous preparations which remain homogeneous for a sufficient time to enable them to be applied by conventional spray equipment. The concentrates conveniently contain from 20 to 99%, preferably 20 to 60%, by weight of active ingredient.

Emulsion or emulsifiable concentrates are conveniently prepared by dissolving the active ingredient in an organic solvent containing one or more surface active agents and optionally an oil. Oil dispersions may be prepared by grinding together the active ingredient, a hydrocarbon oil, and one or more surface
active agents. Aqueous suspension concentrates may conveniently be prepared by ball milling a mixture of the active agent and preferably at least one suspending agent. Suitable suspending agents include:

- Hydrophilic colloids such as, for example, poly(N-vinylpyrrolidone), sodium carboxymethylcellulose and the vegetable gums, gum acacia and gum tragacanth;
- Hydrated colloidal mineral silicates such as, for example, montmorillonite, beidellite, nontronite, hectorite, saponite, sauconite and bentonite;
- Other cellulose derivatives; and poly(vinyl alcohol). Wett-

able powder concentrates may conveniently be prepared by blending together the active ingredient, one or more surface active agents, one or more solid carriers and optionally one or more suspending agents and grinding the mixture to give a powder having the required particle size.

The aqueous suspensions, dispersions or emulsions may be prepared from the concentrated compositions by mixing the concentrated compositions with water optionally containing surface active agents and/or oils.

It should be noted that the compounds of the invention of formula I wherein \(R^1 \) is hydrogen are acidic. Therefore, the compounds of formula I may be formulated and applied as the salts of organic or inorganic bases. In formulating and employing the compounds of formula I in the form of their salts either the salts per se, that is the compounds of formula I wherein \(R^1 \) is an inorganic or an organic cation, may be used in the formulation or the compounds of formula I wherein \(R^1 \) is hydrogen may be used in the formulation and the salts generated in situ by the use of the appropriate organic or inorganic base.

The mode of application of the compositions of the invention will depend to a large extent on the type of composition used and the facilities available for
its application. Solid compositions may be applied by
dusting or any other suitable means for broadcasting or
spreading the solid. Liquid compositions may be
applied by spraying, atomizing, watering, introduction
into the irrigation water, or any other suitable means
for broadcasting or spreading the liquid.

The rate of application of the compounds of the
invention will depend on a number of factors including,
for example, the compound chosen for use, the identity
of the plants whose growth is to be inhibited the
formulations selected for use and whether the compound
is to be applied for foliage or root uptake. As a
general guide, however, an application rate of from
0.005 to 20 kilograms per hectare is suitable while
from 0.01 to 5.0 kilograms per hectare may be pre-
ferred.

The compositions of the invention may comprise,
in addition to one or more compounds of the invention,
one or more compounds not of the invention but which
possess biological activity. For example, as herein-
before indicated the compounds of the invention are in
general substantially more effective against mono-
cotyledonous plants or grass species than against di-
cotyledonous plants or broad-leaved species. As a
result, in certain applications the herbicidal use
of the compounds of the invention alone may not be
sufficient to protect a crop. Accordingly in yet a
still further embodiment the invention provides a
herbicidal composition comprising a mixture of at
least one herbicidal compound of formula I as herein-
before defined with at least one other herbicide.

The other herbicide may be any herbicide not
having the formula I. It will generally be a herbicide
having a complementary action. For example, one pre-
ferred class is of mixtures comprising a herbicide
active against broad-leaved weeds. A second preferred
class is of mixtures comprising a contact herbicide.

Example of useful complementary herbicides include:

A. benzo-2,1,3-thiadiazin-4-one-2,2-dioxides such as 3-isopropylbenzo-2,1,3-thiadiazin-4-one-2,2-dioxide (common name bentazon);

B. hormone herbicides and in particular the phenoxy-alkanoic acids such as 4-chloro-2-methylphenoxy acetic acid (common name MCPA), 2-(2,4-dichlorophenoxy)propionic acid (common name dichlorprop), 2,4,5-trichlorophenoxyacetic acid (common name 2,4,5-T), 4-(4-chloro-2-methylphenoxy)butyric acid (common name 2,4-D), 4-(2,4-dichlorophenoxy)butyric acid (common name 2,4-DH), 2-(4-chloro-2-methylphenoxy)propionic acid (common name mecoprop), and their derivatives (eg salts, esters, amides and the like);

C. 3-[(4-(4-halophenoxy)phenyl)-1,1-dialkylureas such as 3-[(4-chlorophenoxy)phenyl]-1,1-dimethylurea (common name chloroxuron);

D. dinitrophenols and their derivatives (eg acetates) such as 2-methyl-4,6-dinitrophenol (common name DNOC), 2-tertiarybutyl-4,6-dinitrophenol (common name dinoterb), 2-secondarybutyl-4,6-dinitrophenol (common name dinoseb) and its ester dinoseb acetate;

E. dinitroaniline herbicides such as N',N'-diethyl-2,6-dinitro-4-trifluoromethyl-3-phenylenediamine (common name dinitramine), 2,6-dinitro-N,N-dipropyl-4-trifluoromethylaniline (common name trifluralin) and 4-methylsulfonyl-2,6-dinitro-N,N-
dipropylaniline (common name nitralin);

F. phenylurea herbicides such as N'-(3,4-dichlorophenyl)-N,N-dimethylurea (common name diruon) and N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl]urea (common name fluometuron);

G. phenylcarbamoyloxyphenylcarbamates such as 3-[[methoxycarbonyl]amino]phenyl (3-methylphenyl)carbamate (common name phenmedipham) and 3-[[ethoxycarbonylamino]phenyl phenylcarbamate (common name desmedipham);

H. 2-phenylpyridazin-3-ones such as 5-amino-4-chloro-2-phenylpyridazin-3-one (common name pyrazon);

I. uracil herbicides such as 3-cyclohexyl-5,6-trimethyleneuracil (common name lenacil), 5-bromo-3-sec-butyl-6-methyluracil (common name bromacil) and 3-tert-butyl-5-chloro-6-methyluracil (common name terbacil);

J. triazine herbicides such as 2-chloro-4-ethylamino-6-(iso-propylamino)-1,3,5-triazine (common name atrazine), 2-chloro-4,6-di(ethylamino)-1,3,5-triazine (common name simazine) and 2-azido-4-(iso-propylamino)-6-methylthio-1,3,5-triazine (common name aziprotryne);

K. 1-alkoxy-2-alkyl-3-phenylurea herbicides such as 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (common name linuron), 3-(4-chlorophenyl)-1-methoxy-1-methylurea (common name monolinuron) and 3-(4-bromo-4-chlorophenyl)-1-methoxy-1-methylurea (common name chlorobromuron);
L. thio
carbamate herbicides such as S-propyl
dipropylthiocarbamate (common name verolate);

M. 1,2,4-triazin-5-one herbicides such as 4-amino-4,5-
dihydro-3-methyl-6-phenyl-1,2,4-triazene-5-one
(common name metamitron) and 4-amino-6-tert-butyl
4,5-dihydro-3-methylthio-1,3,4-triazin-5-one
(common name metribuzin);

N. benzoic acid herbicides such as 2,3,6-trichloro-
benzoic acid (common name 2,3,6-TBA), 3,6-dichloro-
2-methoxybenzoic acid (common name dicamba) and 3-
amino-2,5-dichlorobenzoic acid (common name
chloramben);

O. anilide herbicides such as N-butoxymethyl- α-
chloro-2',6'-diethylacetanilide (common name
butachlor), the corresponding N-methoxy compound
(common name alachlor), the corresponding N-isopropyl compound (common name propachlor) and
3',4'-dichloropropionanilide (common name
propanil);

P. dihalobenzonitrile herbicides such as 2,6-
dichlorobenzonitrile (common name dichlobenil),
3,5-dibromo-4-hydroxybenzonitrile (common name
bromoxylin) and 3,5-diiodo-4-hydroxybenzonitrile
(common name ioxynil);

Q. haloalkanoic herbicides such as 2,2-dichloro-
propionic acid (common name dalapon), trichloro-
acetic acid (common name TCA) and salts thereof;

R. diphenylether herbicides such as 4-nitrophenyl 2-
nitro-4-trifluoromethylphenyl ether (common name
fluorodifen), methyl 5-(2,4-dichlorophenoxy)-2-
nitrobenzoate (common name bifenox), 2-nitro-5-(2-chloro-4-trifluoromethylphenoxy)benzoic acid and 2-chloro-4-trifluoromethylphenyl 3-ethoxy-4-nitrophenyl ether;

5. \(S. \) \(\text{N-}\{\text{heteroarylaminocarbonyl}\}\text{benzenesulfonamide such as 2-chloro-}\text{N-}\{(4\text{-methoxy-6-methyl-1,3,5-triazin-2-yl}}\text{aminocarbonyl}\}\text{benzenesulfonamide (commonly known as DPX 4139); and}

T. miscellaneous herbicides including \(N, N\)-dimethyl-diphenylacetamide (common name diphenamid), \(N\)-(1-naphthyl)phthalamic acid (common name naptalam) and 3-amino-1,2,4-triazole.

Examples of useful contact herbicides include:

U. dipyridylium herbicides such as those in which the active entity is the 1,1'-dimehyl-4,4'-dipyridylium ion (common name paraquat) and those in which the active entity is the 1,1'-ethylene-2,2'-dipyridylium ion (common name diquat);

V. organoarsenical herbicides such as monosodium methanearsonate (common name MSMA); and

W. amino acid herbicides such as \(N\)-(phosphonomethyl)-glycine (common name glyphosate) and its salts and esters.
The invention is now illustrated by, but in no way limited to, the following Examples.

Example 1

2-[1-(3-Chloroallyloxyimino)propyl]-3-hydroxy-5-(3-
5 crotonyl-2,4,6-trimethylphenyl)cyclohex-2-en-1-one (5)

(i) An aqueous solution of 1% sodium hydroxide (29.5 ml) was added dropwise over a period of 5 minutes to a suspension of mesitylaldehyde (10.0 g; 68 mmole) in acetone (50 ml) and water 50 ml. The mixture was stirred at a temperature of 65°C for a period of 1-1/2 hours and then was extracted with dichloromethane (200 ml). The organic extract was washed several times with water, dried over anhydrous sodium sulfate, and the solvent was removed by evaporation under reduced pressure using a rotary evaporator. The product 1-(2,4,6-trimethylphenyl)but-1-en-3-one, a viscous oil, solidified on standing to give a white solid (11.5 g; 90%), mp 64°C. Proton magnetic resonance spectrum (CDCl3; δ in ppm): 2.25 (12H, m); 6.30 (1H, d); 6.88 (2H, s); 7.64 (1H, d).

(ii) Diethyl malonate (10.1 g; 60 mmole) was added to a solution of sodium metal (1.4 g; 60 mmole) in anhydrous absolute ethanol (50 ml) and the mixture was heated to reflux temperature. A mixture of 1-(2,4,6-trimethylphenyl)but-1-en-3-one (11.4 g; 61 mmole) in anhydrous absolute ethanol (50 ml) was added over a period of 2 minutes and the mixture was heated under reflux for a period of 2 hours. An aqueous solution of sodium hydroxide (7.3 g; 180 mmole in 100 ml
of water) was added and the mixture was heated under reflux for a further 4-1/2 hours. The solution was poured into water (200 ml) and the aqueous mixture was extracted twice with ethyl acetate (100 ml). The aqueous phase was acidified with concentrated hydrochloric acid and warmed gently until the evolution of carbon dioxide ceased. The aqueous mixture was extracted with ethyl acetate, dried over anhydrous sodium sulfate, and the solvent was removed by evaporation under reduced pressure using a rotary evaporator. The product, 3-hydroxy-5-mesitylcyclohex-2-en-1-one, was obtained as a pale yellow solid (10.9 g; 77.4%), mp 165°C. Proton magnetic resonance spectrum (D₆-dimethylsulfoxide; δ in ppm): 2.04-4.1 (14H, m); 5.2 (1H, s); 6.8 (2H, s); 11.2 (1H, brs).

(iii) Propionic anhydride (15.0 ml) was added cautiously to freshly prepared sodium methoxide (0.47 g; 9 mmole). On completion of the reaction 3-hydroxy-5-mesitylcyclohex-2-en-1-one (5.0 g; 22 mmole) was added and the reaction mixture was heated under reflux at a temperature of 160°C for a period of 2 hours. The excess propionic anhydride was removed by evaporation under reduced pressure using a rotary evaporator. Aqueous 30% sodium hydroxide solution (50 ml) was added to the residue and the mixture was heated under reflux for a period of 1 hour with vigorous stirring. After cooling the mixture was acidified with concentrated hydrochloric acid and the aqueous mixture was extracted with dichloromethane. The organic extracts were dried over anhydrous sodium sulfate and the solvent was removed by evaporation under reduced
pressure using a rotary evaporator. The product, a brown oil, was purified by chromatography over silica gel (eluant dichloromethane) to give 3-hydroxy-5-mesityl-2-propionylcyclohex-2-en-1-one (3.17 g; 50.2%) as a pale yellow oil.

Proton magnetic resonance spectrum (CDCl₃; 6 in ppm): 1.60 (3H, t, J=8 Hz); 2.24 (3H, s); 2.37 (6H, s); 2.64–5.26 (7H, m); 6.84 (2H, m); 18.26 (1H, s).

To a suspension of aluminium trichloride (0.03 mole) in dichloroethane (20 ml) at 0 °C was added 3-hydroxy-5-mesityl-2-propionylcyclohex-2-en-1-one (2.9, 0.01 mole) in dichloroethane (10 ml). The mixture was stirred at 0 °C for five minutes and then crotonyl chloride (1.1 g, 0.01 mole) was added. Stirring was continued at 0 °C for 30 minutes and then at 20 °C for 3 hours. The brown solution was poured into cold dilute hydrochloric acid (2 M, 200 ml) and shaken occasionally as it was allowed to warm to room temperature. The organic phase was separated and the aqueous phase was shaken with chloroform (2 x 100 ml). The combined organic extracts were dried over magnesium sulphate and evaporated to give 3-hydroxy-5-(3-crotonyl-2,4,6-trimethylphenyl)-2-propionylcyclohex-2-en-1-one (4.1 g, 83%) as a pale brown oil. Proton magnetic resonance spectrum (CDCl₃; 6 in ppm):

1.16 (3H, t); 1.93 (3H, d, J=7 Hz); 2.07 (3H, s); 2.17 (3H, s); 2.38 (3H, s); 2.2–4.0 (7H, m); 6.1–6.8 (2H, m); 6.86 (1H, s); 18.20 (1H, s).

3-Chloroallyloxyamine hydrochloride (0.3 g) and then anhydrous sodium acetate (0.2 g) were added to a solution of 3-hydroxy-5-(3-crotonyl-2,4,6-
trimethylphenyl)-2-propionylcyclohex-2-en-1-one (0.7 g) in anhydrous ethanol (80 ml). The mixture was stirred briefly then allowed to stand at room temperature for 16 hours. The ethanol was removed by evaporation under reduced pressure using a rotary evaporator. The residue was treated with chloroform and the organic phase was washed twice with water (50 ml). The chloroform layer was dried over magnesium sulphate and the solvent was removed by evaporation under reduced pressure to give the product 2-[1-(3-chloroallyloxyimino)propyl]-3-hydroxy-5-(3-crotonyl-2,4,6-trimethylphenyl)cyclohex-2-en-1-one (0.7 g, 85%) as a colourless oil. Proton magnetic spectrum (CDCl₃; δ in ppm): 1.19 (3H, t); 1.92 (3H, d, J=7Hz); 2.09 (3H, s); 2.19 (3H, s); 2.39 (3H, s); 2.2-4.0 (7H, m); 4.4-4.8 (2H, m); 5.867 (4H, m); 6.86 (1H, s); 15.2 (1H, bs).

Example 2

Compounds No 6, 7, 8, 9, 10, 11, 13, 15, 16, 19 and 22 were prepared from 3-hydroxy-5-mesityl-2-propionylcyclohex-2-en-1-one by reaction of the appropriate acid chloride, followed by reaction with the appropriate alkoxyamine hydrochloride following essentially the same procedure as that described in Example 1 parts (iv) and (v).

Compounds No 14 and 17 were prepared in an entirely analogous manner commencing with the appropriate 5-(dimethylphenyl)-3-hydroxy-2-propionylcyclohex-2-en-1-one and following essentially the same procedure as that described in Example 1 parts (iv) and (v).

Each of the products was characterized by proton nuclear magnetic resonance spectroscopy and the
spectroscopic data is reported in Table 3, Example 11.

Example 3

2-[(1-(Ethoxyimino)propyl]-3-hydroxy-5-(3-acetylacetyl-2,4,6-trimethylphenyl) cyclohex-2-en-1-one (18)

(i) Boron trifluoride gas was bubbled slowly into a stirred, ice cold solution of 3-hydroxy-5-mesityl-2-propionyl-cyclohex-2-en-1-one (4.0 g) in acetic anhydride (20 ml). After the gas had been bubbling into the solution for about one hour a solid began to separate and within the next hour the mixture had set to a pale yellow semi-solid. This semi-solid was tipped into a beaker containing aqueous sodium acetate (300 ml, 10%) and the mixture was stirred vigorously and heated to 90°C for one hour. Upon cooling the mixture was extracted with chloroform (2 x 50 ml) and the organic layer was dried over magnesium sulphate and evaporated to give 3-hydroxy-5-(3-acetylacetyl-2,4,6-trimethylphenyl)-2-propionylcyclohex-2-en-1-one as a brown oil which was purified by column chromatography on silica gel (eluant chloroform).

Proton magnetic resonance spectrum (CDCl₃; in ppm): 1.15 (3H, t); 2.13 (3H, s); 2.20 (3H, s); 2.30 (3H, s); 2.38 (3H, s); 2.2-4.0 (7H, m); 5.60 (1H, s); 6.86 (1H, s); 15.5 (1H, brs); 18.2 (1H, s).

(ii) Reaction of 3-hydroxy-5-(3-acetylacetyl-2,4,6-trimethylphenyl)-2-propionylcyclohex-2-en-1-one with ethoxyamine hydrochloride following essentially the same procedure as that described in
Example 1 part (v) gave 2-[1-(ethoxyimino)-propyl]-3-hydroxy-5-(3-acetylacetetyl-2,4,6-trimethylphenyl)cyclohex-2-en-1-one (18) as the major product. The product was characterized by proton nuclear magnetic resonance spectroscopy and the spectroscopic data is reported in Table 3, Example 11.

Example 4

2-[1-(Ethoxyimino)propyl]-3-hydroxy-5-(3-ethoxy-carbonylthiocarbamoyl-2,4,6-trimethylphenyl)cyclohex-2-en-1-one (23)

(i) A solution of 3-hydroxy-5-mesityl-2-propionyl-cyclohex-2-en-1-one (1.03 g, 3.6 mmole) in dichloromethane (5 ml) was added to a suspension of aluminium trichloride (2.66 g, 20 mmole) in dichloromethane (10 ml) with stirring at room temperature. The mixture was stirred at room temperature for a further 20 minutes and then cooled to 0°C with an ice bath. A solution of ethoxycarbonylisothiocyanate (0.65 g, 5 mmole) in dichloromethane (5 ml) was added dropwise and the mixture was stirred at 0°C for four hours. Dilute hydrochloric acid was added and the mixture was heated at 50°C for 30 minutes. The dichloromethane layer was separated, washed with saturated aqueous sodium chloride, dried over magnesium sulphate and evaporated to give a red oil (1.66 g). Purification by column chromatography on silica gel (eluant dichloromethane) gave 3-hydroxy-5-(3-ethoxycarbonylthiocarbamoyl-2,4,6-trimethylphenyl)-2-propionylcyclohex-2-en-1-one (0.35 g) as a pale yellow oil. Proton magnetic resonance spectrum (CDCl3; δ in ppm): see Table 2, Example 10.
tion or dispersions of the active ingredient in a liquid carrier optionally containing one or more sur-

- 45 -

(ii) Reaction of 3-hydroxy-5-(3-ethoxycarbonylthiocarbamoyl-2,4,6-trimethylphenyl)-2-propionylcyclohex-2-en-1-one with ethoxyamine hydrochloride following essentially the same procedure as that described in Example 1 part (v) gave 2-{1-(ethoxyimino)propyl}-3-hydroxy-5-(3-ethoxycarbonylthiocarbamoyl-2,4,6-trimethylphenyl)cyclohex-2-en-1-one (23) as a yellow oil. The compound was characterized by its proton nuclear magnetic resonance spectrum and the data are recorded in Table 3, Example 11.

Example 5

2-{1-(Ethyminoo)propyl}-3-hydroxy-5-(3-thiocarbamoyl-
2,4,6-trimethylphenyl)cyclohex-2-en-1-one (24)

(i) A solution of 3-hydroxy-5-(3-ethoxycarbonyl-
thiocarbamoyl-2,4,6-trimethylphenyl)-2-propionyl-
cyclohex-2-en-1-one (2 g) (Example 4) and sodium hydroxide (3 g) in water (30 ml) was stirred and heated at 80°C for 90 minutes. The mixture was acidified with dilute hydrochloric acid and extracted with diethyl ether. The ether layer was dried over magnesium sulphate and evaporated to give an oil (1.3 g) which was purified by column chromatography over silica gel (eluant dichloromethane) to give 3-hydroxy-5-(3-thiocarbamoyl-2,4,6-trimethylphenyl)-2-propionyl-
cyclohex-2-en-1-one as a brown oil (0.86 g) which slowly solidified.

Proton magnetic resonance spectrum (CDCl₃; 6 in ppm): see Table 2, Example 10.

(ii) The reaction of 3-hydroxy-5-(3-thiocarbamoyl-
2,4,6-trimethylphenyl)-2-propionylcyclohex-2-en-
1-one with ethoxyamine hydrochloride was carried out following the same procedure as that described in Example 1 part (v) to give 2-[l-(ethoxyimino)propyl]-3-hydroxy-5-(3-thiocarbamoyl-2,4,6-trimethylphenyl)cyclohex-2-en-1-one (24) as a tan oil. The compound was characterized by its proton nuclear magnetic resonance spectrum and the data are recorded in Table 3, Example 11.

Example 6

2-[l-(Ethoxyimino)propyl]-3-hydroxy-5-(3-carboxythiocarbamoyl-2,4,6-trimethylphenyl)cyclohex-2-en-1-one (25) was prepared following the same procedure as described in Example 4 parts (i) and (ii) except that the reaction in part (i) was allowed to proceed at a higher temperature and the most polar of the products was isolated by column chromatography. The compound was characterized by its proton nuclear magnetic resonance spectrum and the spectroscopic data are recorded in Table 3, Example 11.

Example 7

2-[l-(Ethoxyimino)propyl]-3-hydroxy-5-(3-N,N-dimethylcarbamoyl-2,4,6-trimethylphenyl)cyclohex-2-en-1-one (21)

{i} 2,4,6-Trimethylbenzoyl chloride (10.6 g) was dissolved in dichloromethane (50 ml) and cooled to 5°C with stirring. Titanium tetrachloride (13 ml) was added dropwise to the solution so that the temperature did not rise above 10°C. A solution of dichloromethylmethyl ether (5.4 ml) in dichloromethane (10 ml) was then added dropwise over a period of 0.5 hour and stirring was continued at 5-10°C for a further hour. The re-
Action mixture was then allowed to rise to 20°C for 2 hours after which it was poured rapidly into a separating funnel containing ice-water (200 ml) and shaken briefly and the layers separated. The organic layer was shaken with excess ice-cold aqueous dimethylamine (100 ml, 25%) and the mixture left at room temperature overnight.

The dichloromethane layer was separated, dried over magnesium sulphate and evaporated to give crude 3-dimethylcarbamoyl-2,4,6-trimethylbenzaldehyde (8 g).

(ii) 3-Dimethylcarbamoyl-2,4,6-trimethylbenzaldehyde was converted into 2-[1-(ethoxyimino)propyl]-3-hydroxy-5-(3-N,N-dimethylcarbamoyl-2,4,6-trimethylphenyl)cyclohex-2-en-1-one (21) following essentially the same procedure as that described in Example 1 parts (i) to (iii) and part (v). The product was characterized by proton nuclear magnetic resonance spectroscopy and the spectroscopic data is reported in Table 3, Example 11.

Example 8

2-[1-(Ethoxyimino)propyl]-3-hydroxy-5-(3-carboxy-2,4,6-trimethylphenyl)cyclohex-2-en-1-one (20)

(i) 3-Formyl-2,4,6-trimethylbenzoic acid was prepared from 2,4,6-trimethylbenzoyl chloride following the same procedure as that described in Example 7 part (i), except that the reaction was worked-up without using dimethylamine.

(ii) 3-Formyl-2,4,6-trimethylbenzoic acid was con-
active against broad-leaved weeds. A second preferred

verted into 2-[1-(ethoxyimino)propyl]-3-hydroxy-
5-[3-carboxy-2,4,6-trimethylphenyl]cyclohex-2-
en-1-one following essentially the same oro-

A second preferred

Example 9

Sodium salt of 2-[1-(allyloxyimino)propyl]-3-hydroxy-
5-[3-(4-nitrobenzoyl)-2,4,6-trimethylphenyl]cyclohex-
2-en-1-one (12)

A solution of 2-[1-(allyloxyimino)propyl]-3-
hydroxy-5-[3-(4-nitrobenzoyl)-2,4,6-trimethylphenyl]-
cyclohex-2-en-1-one (10) (167 mg) and sodium hydroxide
(14 mg) in aqueous acetone (30 ml) was evaporated to
dryness under reduced pressure. Toluene (20 ml) was
added to the residue and the toluene was then also
evaporated leaving the sodium salt of 2-[1-(allyloxy-
imino)propyl]-3-hydroxy-5-[3-(4-nitrobenzoyl)-2,4,6-
trimethylphenyl]cyclohex-2-en-1-one as a brown solid,
mp >210° (dec).

Example 10

The majority of the 2-acyl-5-arylcyclohexane-
1,3-diones of formula XIII were obtained as oils and
were characterized by their nuclear magnetic resonance
spectra. For convenience, proton nuclear magnetic
resonance spectroscopic data are recorded in Table 2
below.
TABLE 2

![Chemical Structure]

<table>
<thead>
<tr>
<th>(X)_n</th>
<th>(W)_n</th>
<th>Appearance</th>
<th>Proton Chemical Shift in ppm (CDCl₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,6-3-(CH₃CH=CHCO)</td>
<td>pale</td>
<td>1.16(3H,t); 1.93(3H,d, J=7Hz); 2.07(3H,s); 2.17(3H,s); 2.38(3H,s); 2.2-4.0(7H,m); 6.1-6.8(2H,m); 6.86(1H,s); 18.20(1H,s).</td>
<td></td>
</tr>
<tr>
<td>2,4,6-3-(C₆H₅CO)</td>
<td>yellow</td>
<td>1.16(3H,t); 2.04(3H,s); 2.15(3H,s); 2.44(3H,s); 2.2-4.0(7H,m); 6.94(1H,s); 7.1-7.8(5H,m); 18.22(1H,s).</td>
<td></td>
</tr>
<tr>
<td>2,4,6-3-(ClCH₂CO)</td>
<td>oil</td>
<td>1.18(3H,t); 2.17(3H,s); 2.23(3H,s); 2.39(3H,s); 2.2-4.0(7H,m); 4.37(2H,s); 6.90(1H,s); 18.23(1H,s).</td>
<td></td>
</tr>
<tr>
<td>2,4,6-3-(4-CH₃O-C₆H₄CO)</td>
<td>yellow</td>
<td>1.16(3H,t); 2.04(3H,s); 2.13(3H,s); 2.43(3H,s); 2.3-4.0(7H,m); 3.83(3H,s); 6.88(3H,m); 7.71(2H,d); 18.14(1H,s).</td>
<td></td>
</tr>
</tbody>
</table>
(common name chlorobromuron);

TABLE 2 - continued

<table>
<thead>
<tr>
<th>$(X)_n$</th>
<th>$(W)_n$</th>
<th>Appearance</th>
<th>Proton Chemical Shift δ in ppm (CDCl$_3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,4,6-$</td>
<td>$3-(4-NO_2-$</td>
<td>brown oil</td>
<td>1.16(3H,t); 2.03(3H,s); 2.13(3H,s); 2.45(3H,s); 2.3-4.0(7H,m); 6.93 (1H,s); 7.8-8.4(4H,doe); 18.20(1H,s).</td>
</tr>
<tr>
<td>(CH$_3$)$_3$</td>
<td>C$_6$H$_4$CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2,4,6-$</td>
<td>$3-(4-NC-$</td>
<td>pale brown oil</td>
<td>1.16(3H,t); 2.02(3H,s); 2.13(3H,s); 2.44(3H,s); 2.3-4.0(7H,m); 6.92(1H, s); 7.79(4H,doe); 18.15 (1H,s).</td>
</tr>
<tr>
<td>(CH$_3$)$_3$</td>
<td>C$_6$H$_4$CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2,4,6-$</td>
<td>$3-(C_6H_5-$</td>
<td>yellow oil</td>
<td>1.16(3H,t); 2.06(3H,s); 2.10(3H,s); 2.36(3H,s); 2.2-4.1 (7H,m); 3.95 (2H,s); 6.86(1H,s); 7.0-7.3(5H,m); 18.18(1H,s).</td>
</tr>
<tr>
<td>(CH$_3$)$_3$</td>
<td>CH$_2$CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$4,6-$</td>
<td>$3-(ClCH_2-$</td>
<td>yellow oil</td>
<td>1.17(3H,t); 2.36(3H,s); 2.46(3H,s); 2.4-4.0 (11H,m); 7.07(1H,s); 7.45(1H,s); 18.20(1H,s).</td>
</tr>
<tr>
<td>(CH$_3$)$_2$</td>
<td>CH$_2$CO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2,4,6-$</td>
<td>$3-(C_2H_5O_2-$</td>
<td>light brown oil</td>
<td>1.16(3H,t); 1.33(3H,t); 2.0-2.3(9H,m); 2.3-4.0 (7H,m); 4.20(2H,q); 5.10(1H,s); 6.90(1H,s); 12.38(1H,s); 18.25 (1H,s).</td>
</tr>
<tr>
<td>(CH$_3$)$_3$</td>
<td>CCH$_2$(O)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2 - continued

<table>
<thead>
<tr>
<th>(X)_n</th>
<th>(W)_n</th>
<th>Appearance</th>
<th>Proton Chemical Shift δ in ppm (CDCl₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,6-3-(CH₃)- (CH₃)₃ SCH₂CO</td>
<td>pale yellow oil</td>
<td>1.15(3H, t); 2.22(6H, s); 2.30(3H, s); 2.40(3H, s); 2.3-4.0(9H, m); 6.89 (1H, s); 18.25(1H, s).</td>
<td></td>
</tr>
<tr>
<td>2,6-3-(ClCH₂)- (CH₃)₂ CO</td>
<td>colourless oil</td>
<td>1.15(3H, t); 2.43(3H, s); 2.47(3H, s); 2.51-4.2 (7H, m); 4.51(2H, s); 7.09 (1H, d); 7.26(1H, d); 18.10(1H, s).</td>
<td></td>
</tr>
<tr>
<td>2,4,6-3-(CH₃)- (CH₃)₃ COCH₂CO</td>
<td>brown oil</td>
<td>1.15(3H, t); 2.13(3H, s); 2.20(3H, s); 2.30(3H, s); 2.38(3H, s); 2.2-4.0(7H, m); 5.60(1H, s); 6.86(1H, s); 15.5(1H, brs); 18.20 (1H, s).</td>
<td></td>
</tr>
<tr>
<td>2,4,6-3-(C₆H₅)₂ NCO</td>
<td>brown oil</td>
<td>1.14(3H, t); 2.25(3H, s); 2.34(3H, s); 2.39(3H, s); 2.46-3.89(7H, m); 6.71 (1H, s); 7.04(6H, m); 7.34(4H, m); 18.17(1H, s).</td>
<td></td>
</tr>
<tr>
<td>2,4,6-3-(HOCO) (CH₃)₃</td>
<td>white solid</td>
<td>1.15(‘, t); 2.30(3H, s); 2.44(6H, s); 2.4-4.0(7H, m); 6.85(1H, s); 12.2 (1H, brs); 18.2(1H, brs).</td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td>Proton Chemical Shift δ in ppm (CDCl₃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pale yellow oil</td>
<td>1.15(3H,t); 2.15(3H,s); 2.26(3H,s); 2.38(3H,s); 2.3-4.0(7H,m); 2.79(3H,s); 3.15(3H,s); 6.86(1H,s); 18.20(1H,s).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white solid</td>
<td>1.15(3H,t); 1.37(3H,t); 2.23(3H,s); 2.33(3H,s); 2.39(3H,s); 2.4-4.1(9H,m); 6.89(1H,s); 18.17(1H,s).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yellow oil</td>
<td>1.19(6H,m); 2.18(3H,s); 2.29(3H,s); 2.36(3H,s); 3.15(2H,q); 4.13(2H,q); 2.3-4.1(5H,m); 6.86(1H,s); 9.66(1H,brs); 18.14(1H,s).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tan solid</td>
<td>1.14(3H,t); 2.45(6H,s); 2.62(3H,s); 3.06(2H,q); 2.6-4.2(5H,m); 6.94(1H,s); 18.17(1H,s); N-H not observed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pale yellow solid</td>
<td>1.17(3H,t); 2.30(3H,s); 2.34(3H,s); 2.41(3H,s); 3.07(2H,q); 2.3-4.0(5H,m); 6.85(1H,s); 7.31(1H,brs); 8.19(1H,brs); 18.17(1H,s).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 11

The majority of the compounds of the invention were obtained as oils and were characterized by, and can be identified by, their nuclear magnetic resonance spectra. For convenience proton nuclear magnetic resonance (pmr) spectroscopic data is recorded in Table 3 below.

<table>
<thead>
<tr>
<th>Compound No</th>
<th>Appearance</th>
<th>Proton Chemical Shift δ in ppm (CDCl₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>colourless oil</td>
<td>1.19(3H,t); 1.92(3H,d,J=7Hz); 2.09(3H,s); 2.19(3H,s); 2.39 (3H, s); 2.2-4.0(7H,m); 4.4-4.8(2H,m); 5.8-6.7(4H,m); 6.86(1H,s); 15.2 (1H,brs).</td>
</tr>
<tr>
<td>6</td>
<td>colourless oil</td>
<td>1.19(3H,t); 1.33(3H,t); 2.04(3H,s); 2.16(3H,s); 2.45(3H,s); 2.2-4.0(7H,m); 4.12(2H,q); 6.92(1H,s); 7.3-7.9(5H,m); 15.06(1H,brs).</td>
</tr>
<tr>
<td>7</td>
<td>colourless oil</td>
<td>1.19(3H,t); 1.33(3H,t); 2.16(3H,s); 2.25(3H,s); 2.41(3H,s); 2.4-4.0(7H,m); 4.13(2H,q); 4.38(2H,s); 6.90 (1H,s); 15.10(1H,brs).</td>
</tr>
<tr>
<td>8</td>
<td>colourless oil</td>
<td>1.16(3H,t); 1.29(3H,t); 1.92(3H,d); 2.06(3H,s); 2.19(3H,s); 2.37(3H,s); 2.3-4.0(7H,m); 4.12(2H,q); 6.1-6.8 (2H,m); 6.85(1H,s); 15.0(1H,brs).</td>
</tr>
<tr>
<td>Compound No</td>
<td>Appearance</td>
<td>Physical Constants</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>9</td>
<td>colourless</td>
<td>1.19(3H, t); 2.04(3H, s); 2.17(3H, s); 2.44(3H, s); 2.3-5.0(9H, m); 3.87(3H, s); 6.87-6.97(3H, m); 7.77(2H, dofd); 14.26(1H, brs).</td>
</tr>
<tr>
<td>10</td>
<td>oil</td>
<td>1.19(3H, t); 2.03(3H, s); 2.15(3H, s); 2.47(3H, s); 2.2-4.0(5H, m); 4.55(2H, d); 5.27-6.16(3H, m); 6.96(1H, s); 7.8-8.4(4H, dofd); 14.73(1H, brs).</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1.19(3H, t); 2.02(3H, s); 2.14(3H, s); 2.47(3H, s); 2.2-4.0(6H, m); 4.67(2H, d); 6.96(1H, s); 7.71-7.96(4H, dofd); 14.22(1H, brs).</td>
</tr>
<tr>
<td>13</td>
<td>yellow</td>
<td>1.11-1.39(6H, m); 2.08(3H, s); 2.14(3H, s); 2.38(3H, s); 2.3-4.0(5H, m); 3.95(2H, s); 4.10(2H, q); 6.85(1H, s); 7.1-7.4(5H,m); 15.02(1H, brs).</td>
</tr>
<tr>
<td>14</td>
<td>yellow</td>
<td>1.10-1.41(6H, m); 2.36(3H, s); 2.47(3H, s); 2.3-4.2(13H, m); 7.08(1H, s); 7.51(1H, s); 15.22(1H, brs).</td>
</tr>
<tr>
<td>15</td>
<td>pale yellow</td>
<td>1.11-1.40(9H, m); 2.20-2.39(9H, m); 2.2-4.0(7H, m); 3.70(1H, s); 4.0-4.3(4H, m); 5.10(0.5H, s); 6.89(1H, s); 12.38(0.5H, s); 15.0(1H, brs).</td>
</tr>
<tr>
<td>Compound No</td>
<td>Appearance</td>
<td>Proton Chemical Shift δ in ppm (CDCl₃)</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>16</td>
<td>pale</td>
<td>1.11-1.41(6H,m); 2.22(6H,s); 2.31 (3H,s); 2.40(3H,s); 2.3-4.0(9H,m); 4.14(2H,q); 6.89(1H,s); 15.0(1H, brs).</td>
</tr>
<tr>
<td>17</td>
<td>colourless oil</td>
<td>1.19(3H,t); 1.33(3H,t); 2.45(3H, s); 2.47(3H,s); 2.5-4.0(7H,m); 4.13(2H,q); 4.55(2H,s); 7.17(2H, m); 15.1(1H,brs).</td>
</tr>
<tr>
<td>18</td>
<td>pale</td>
<td>1.1-1.4(6H,m); 2.10(3H,s); 2.18 (3H,s); 2.30(3H,s); 2.38(3H,s); 2.3-4.0(7H,m); 4.11(2H,q); 5.60 (1H,s); 6.87(1H,s); 14-15(2H, very broad).</td>
</tr>
<tr>
<td>19</td>
<td>pale tan solid</td>
<td>1.19(3H,t); 1.33(3H,t); 2.38(3H, s); 2.35(3H,s); 2.41(3H,s); 2.3-4.0(7H,m); 4.12(2H,q); 6.72(1H,s); 7.07(5H,m); 7.38(5H,m); 15.10(1H, brs).</td>
</tr>
<tr>
<td>20</td>
<td>colourless solid</td>
<td>1.1-1.4(6H,m); 2.28(3H,s); 2.38 (6H,s); 2.3-4.0(7H,m); 4.13(2H,q); 6.86(1H,s); 11.3(2H,brs).</td>
</tr>
<tr>
<td>21</td>
<td>pale</td>
<td>1.1-1.4(6H, m); 2.15(3H,s); 2.26 (3H,s); 2.38 (3H,s); 2.2-4.1(7H, m); 2.79(3H,s); 3.15(3H,s); 4.13 (2H,q); 6.87(1H,s); 15.0(1H,brs).</td>
</tr>
</tbody>
</table>
TABLE 3 - continued

<table>
<thead>
<tr>
<th>Compound No</th>
<th>Appearance</th>
<th>Proton Chemical Shift δ in ppm (CDCl₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 colorless oil</td>
<td>1.11-1.45(9H,m); 2.24(3H,s); 2.35(3H,s); 2.39(3H,s); 2.3-4.0(9H,m); 4.12(2H,q); 6.87(1H,s); 15.09(1H, brs).</td>
<td></td>
</tr>
<tr>
<td>23 yellow-orange oil</td>
<td>1.13-1.41(9H,m); 2.19(3H,s); 2.32(3H,s); 2.38(3H,s); 2.30-4.0(9H,m); 4.13(2H,q); 6.87(1H,s); 9.49(1H,brs); 15.06(1H,brs).</td>
<td></td>
</tr>
<tr>
<td>24 tan oil</td>
<td>1.20(3H,t); 1.34(3H,t); 2.44(3H,s); 2.46(3H,s); 2.63(3H,s); 2.70-4.0(7H,m); 4.14(2H,q); 6.98(1H,s); 15.23(1H,brs); N-H not observed.</td>
<td></td>
</tr>
<tr>
<td>25 pale yellow solid</td>
<td>1.09-1.43(6H,m); 2.23(3H,s); 2.26(3H,s); 2.34(3H,s); 2.3-4.0(7H,m); 4.09(2H,q); 6.78(3H,s); 8.10(1H,brs); 8.44(1H,brs); 15.00(1H,brs).</td>
<td></td>
</tr>
</tbody>
</table>

Example 12

This non-limiting Example illustrates the preparation of formulations of the compounds of the invention.

a) Emulsifiable Concentrate

Compound No 15 was dissolved in toluene containing
7% V/V "Teric" N13 and 3% v/v "Kemmat" SC15B to
give an emulsifiable concentrate which may be di-
luted with water to the required concentration to
give an aqueous emulsion which may be applied by
spraying.

("Teric" is a Trade Mark and "Teric" N13, is a
product of ethoxylation of nonylphenol; "Kemmat" is
a Trade Mark and "Kemmat" SC15B is a formulation of
calcium dodecylbenzenesulfonate.)

b) Aqueous Suspension

Compound No 15 (5 parts by weight) and "Dyapol" PT
(1 part by weight) were added to an aqueous solution
(94 parts by weight) of "Teric" N8 and the mixture
was ball milled to produce a stable aqueous sus-
pension which may be diluted with water to the re-
quired concentration to give an aqueous suspension
which may be applied by spraying. ("Dyapol" is a
Trade Mark and "Dyapol" PT is an anionic suspending
agent; "Teric" N8 is a product of ethoxylation of
nonylphenol).

c) Emulsifiable Concentrate

Compound No 15 (10 parts by weight), "Teric" N13
(5 parts by weight) and "Kemmat" SC15B (5 parts by
weight) were dissolved in "Solvesso" 150 (80 parts
by weight) to give an emulsifiable concentrate
which may be diluted with water to the required con-
centration to give an aqueous emulsion which may be
applied by spraying. ("Solvesso" is a Trade Mark
and "Solvesso" 150 is a high boiling point aromatic
petroleum fraction.)
d) **Dispersible Powder**

Compound No 15 (10 parts by weight), "Matexil" DA/AC (3 parts by weight), "Aerosol" OT/B (1 part by weight) and china clay 298 (86 parts by weight) were blended and then milled to give a powder composition having a particle size below 50 microns. ("Matexil" is a Trade Mark and "Matexil" DA/AC is the disodium salt of a naphthalenesulfonic acid/formaldehyde condensate; "Aerosol" is a Trade Mark and "Aerosol" OT/B is a formulation of the dioctyl ester of sodium sulfosuccinic acid.)

e) **High Strength Concentrate**

Compound No 15 (99 parts by weight), silica aerogel (0.5 parts by weight) and synthetic amorphous silica (0.5 parts by weight) were blended and ground in a hammer-mill to produce a powder having a particle size less than 200 microns.

f) **Dusting Powder**

Compound No 15 (10 parts by weight), attapulgite (10 parts by weight) and pyrophyllite (80 parts by weight) were thoroughly blended and then ground in a hammer-mill to produce a powder of particle size less than 200 microns.

Emulsifiable concentrates and/or suspensions of the compounds of the invention were prepared essentially as described in part a), b) or c) above and then diluted with water, optionally containing surface active agent and/or oil, to give aqueous compositions of the required concentration which were used, as described in Examples 13 and 14, in the evaluation of the pre-
emergence and post-emergence herbicidal activity of the compounds.

Example 13

The pre-emergent herbicidal activity of the compounds of the invention formulated as described in Example 12 was assessed by the following procedure:

The seeds of the test species were sown in rows 2 cm deep in soil contained in seed boxes. The monocotyledonous plants and the dicotyledonous plants were sown in separate boxes and after sowing the two boxes were sprayed with the required quantity of a composition of the invention. Two duplicate seed boxes were prepared in the same manner but were not sprayed with a composition of the invention and were used for comparison purposes. All the boxes were placed in a glasshouse, lightly watered with an overhead spray to initiate germination and then sub-irrigated as required for optimum plant growth. After three weeks the boxes were removed from the glass house and the effect of the treatment was visually assessed. The results are presented in Table 4 where the damage to plants is rated on a scale of from 0 to 5 where 0 represents from 0 to 10% damage, 1 represents from 11 to 30% damage, 2 represents from 31 to 60% damage, 3 represents from 61 to 80% damage, 4 represents from 81 to 99% damage and 5 represents 100% kill. A dash (-) means that no experiment was carried out.
The names of the test plants are as follows:

<table>
<thead>
<tr>
<th>Wh</th>
<th>Ot</th>
<th>Rg</th>
<th>Jm</th>
<th>P</th>
<th>Ip</th>
<th>Ms</th>
<th>Sf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>Wild Oats</td>
<td>Ryegrass</td>
<td>Japanese millet</td>
<td>Peas</td>
<td>Ipomea</td>
<td>Mustard</td>
<td>Sunflower</td>
</tr>
</tbody>
</table>

TABLE 4

PRE-EMERGENCE HERBICIDAL ACTIVITY

<table>
<thead>
<tr>
<th>Compound No</th>
<th>APPLICATION Rate (kg/ha)</th>
<th>Wh</th>
<th>Ot</th>
<th>Rg</th>
<th>Jm</th>
<th>P</th>
<th>Ip</th>
<th>Ms</th>
<th>Sf</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1.0</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0.25</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1.0</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>1.0</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 14

The post-emergent herbicidal activity of the compounds of the invention formulated as described in Example 12 was assessed by the following procedure.

The seeds of the test species were sown in
rows 2 cm deep in soil contained in seed boxes. The monocotyledonous plants and the dicotyledonous plants were sown in separate seed boxes in duplicate. The four seed boxes were placed in a glass house, lightly watered with an overhead spray to initiate germination and then sub-irrigated as required for optimum plant growth. After the plants had grown to a height of about 10 to 12.5 cm one box of each of the monocotyledonous plants and the dicotyledonous plants was removed from the glass house and sprayed with the required quantity of a composition of the invention. After spraying the boxes were returned to the glass house for a further 3 weeks and the effect of treatment was visually assessed by comparison with the untreated controls. The results are presented in Table 5 where the damage to plants is rated on a scale of from 0 to 5 where 0 represents from 0 to 10% damage, 1 represents from 11 to 30% damage, 2 represents from 31 to 60% damage, 3 represents from 61 to 80% damage, 4 represents from 81 to 99% damage and 5 represents 100% kill. A dash (-) means that no experiment was carried out.

The names of test plants are as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wh</td>
<td>Wheat</td>
</tr>
<tr>
<td>Ot</td>
<td>Wild Oats</td>
</tr>
<tr>
<td>Rg</td>
<td>Ryegrass</td>
</tr>
<tr>
<td>Jm</td>
<td>Japanese millet</td>
</tr>
<tr>
<td>P</td>
<td>Peas</td>
</tr>
<tr>
<td>Ip</td>
<td>Ipomea</td>
</tr>
<tr>
<td>Ms</td>
<td>Mustard</td>
</tr>
<tr>
<td>Sf</td>
<td>Sunflower</td>
</tr>
</tbody>
</table>

TABLE 5

POST-EMERGENCE HERBICIDAL ACTIVITY

<table>
<thead>
<tr>
<th>Compound No</th>
<th>APPLICATION Rate (kg/ha)</th>
<th>TEST PLANT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wh</td>
</tr>
<tr>
<td>7</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0.125</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>0.25</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>0.063</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0.25</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>0.063</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>0.25</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>0.063</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>0.25</td>
<td>5</td>
</tr>
<tr>
<td>23</td>
<td>0.063</td>
<td>5</td>
</tr>
</tbody>
</table>

Example 15

The compounds were formulated for test by mixing an appropriate amount with 5 ml of an emulsion prepared by diluting 160 ml of a solution containing 21.9 g per litre of "Span" 80 and 78.2 g per litre of "Tween" 20 in methylcyclohexanone to 500 ml with water. "Span" 80 is a Trade Mark for a surface-active agent comprising sorbitan monolaurate. "Tween" 20 is a Trade Mark for a surface-active agent comprising a condensate of
CONTD
sorbitan monolaurate with 20 molar proportions of ethylene oxide. Each 5 ml emulsion containing a test compound was then diluted to 40 ml with water and sprayed on to young pot plants (post-emergence test) of the species named in Table 6 below. Damage to test plants was assessed after 14 days on a scale of 0 to 5 wherein 0 is 0 to 20% damage and 5 is complete kill.

In a test for pre-emergence herbicidal activity, seeds of the test plants were sown in a shallow slit formed in the surface of soil in fibre trays. The surface was then levelled and sprayed, and fresh soil then spread thinly over the sprayed surface. Assessment of herbicidal damage was carried out after 21 days using the same scale of 0 to 5 as the post-emergence test.

In both cases the degree of herbicidal damage was assessed by comparison with untreated control plants. The results are given in Table 6 below. A dash (−) means no experiment was carried out.

The names of the test plants were as follows:

<table>
<thead>
<tr>
<th>20</th>
<th>Mz</th>
<th>Ma</th>
<th>Winter wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Ww</td>
<td>Rice</td>
<td>Barley</td>
</tr>
<tr>
<td>25</td>
<td>Re</td>
<td>Av</td>
<td>Avena fatua</td>
</tr>
<tr>
<td>25</td>
<td>Br</td>
<td>Al</td>
<td>Alopecurus myosuroides</td>
</tr>
<tr>
<td>30</td>
<td>Dg</td>
<td>St</td>
<td>Setaria viridis</td>
</tr>
<tr>
<td>30</td>
<td>Al</td>
<td>Ec</td>
<td>Echinochloa crus-galli</td>
</tr>
<tr>
<td>30</td>
<td>Sh</td>
<td>Sh</td>
<td>Sorghum halepense</td>
</tr>
<tr>
<td>30</td>
<td>Ag</td>
<td>Ag</td>
<td>Agropyron repens</td>
</tr>
<tr>
<td>No</td>
<td>APPLICATION</td>
<td>Mz</td>
<td>Ww</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>5</td>
<td>POST 0.2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>POST 0.2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>POST 0.2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>POST 0.05</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>POST 0.2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>POST 0.05</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>POST 0.02</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
CLAIMS
The claims defining the invention are as follows:

1. A compound of formula I

\[
\begin{array}{c}
\text{I} \\
\text{wherein:}
\end{array}
\]

\(W\), which may be the same or different, are selected from the group consisting of:

- The groups \(R^5\text{CO}-\) and \(R^5\text{CS}-\) wherein \(R^5\) is selected from the group consisting of: \(C_2\) to \(C_6\) alkenyl; \(C_2\) to \(C_6\) alkynyl; benzyl; phenyl; the groups \(C_1\) to \(C_6\) alkyl, \(C_2\) to \(C_6\) alkenyl, \(C_2\) to \(C_6\) alkynyl, benzyl and phenyl wherein each group is substituted with from one to three substituents selected from the group consisting of halogen, hydroxy, nitro, cyano, \(C_1\) to \(C_6\) alkoxy, carboxyl, \(C_2\) to \(C_6\) alkanyl, amino, \(N-(C_1\) to \(C_6\) alkyl)amino, and \(N,N\)-di\((C_1\) to \(C_6\) alkyl)amino; and the acetal, hemiacetal, oxime, imine and Schiff base derivatives of the group \(R^5\text{CO}-\);

- The groups \(Y\text{CO}-\) and \(Y\text{CS}-\) wherein \(Y\) is selected from hydroxy, mercapto, \(C_1\) to \(C_6\) alkylthio and the group \(MO-\) and \(MS7-\) wherein \(M\) is an organic or an inorganic cation; and

- The groups \(R^6\text{R}^7\text{NCO}-\) and \(R^6\text{R}^7\text{NCS}-\) wherein \(R^6\) and \(R^7\) are independently selected from the group consisting of: hydrogen; \(C_1\) to \(C_6\) alkyl substituted \(C_1\) to \(C_6\) alkyl.

9. A compound according to claim 8 wherein:
alkyl wherein the alkyl group is substituted with from one to three substituents selected from the group consisting of hydroxy, halogen, \(\text{C}_1 \) to \(\text{C}_6 \) alkoxy and phenyl; \(\text{C}_1 \) to \(\text{C}_6 \) alkanoyl; carboxy; (\(\text{C}_1 \) to \(\text{C}_6 \) alkoxy)carbonyl; \(\text{C}_1 \) to \(\text{C}_6 \) alkylsulfonyl; benzoyl; benzenesulfonyl; the groups substituted benzoyl and substituted benzenesulfonyl wherein in each group the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, hydroxy, nitro, cyano, \(\text{C}_1 \) to \(\text{C}_6 \) alkoxy, \(\text{C}_1 \) to \(\text{C}_6 \) alkylthio, (\(\text{C}_1 \) to \(\text{C}_6 \) alkoxy)carbonyl, \(\text{C}_2 \) to \(\text{C}_6 \) alkanoyl, amino, \(\text{N}-(\text{C}_1 \) to \(\text{C}_6 \) alkyl)amino and \(\text{N},\text{N}-(\text{C}_1 \) to \(\text{C}_6 \) alkyl)amino; or \(R^6 \) and \(R^7 \) together form a 5 to 7 membered heterocyclic ring;

\(X \), which may be the same or different, are independently selected from the group consisting of: halogen; nitro; cyano; \(\text{C}_1 \) to \(\text{C}_6 \) alkyl; \(\text{C}_1 \) to \(\text{C}_6 \) alkyl substituted with a substituent selected from the group consisting of halogen, nitro, hydroxy, \(\text{C}_1 \) to \(\text{C}_6 \) alkoxy and \(\text{C}_1 \) to \(\text{C}_6 \) alkylthio; \(\text{C}_2 \) to \(\text{C}_6 \) alkenyl; \(\text{C}_2 \) to \(\text{C}_6 \) alkynyl; hydroxy; \(\text{C}_1 \) to \(\text{C}_6 \) alkoxy; \(\text{C}_1 \) to \(\text{C}_6 \) alkoxy substituted with a substituent selected from halogen and \(\text{C}_1 \) to \(\text{C}_6 \) alkoxy; \(\text{C}_2 \) to \(\text{C}_6 \) alkenyloxy; \(\text{C}_2 \) to \(\text{C}_6 \) alkynyloxy; \(\text{C}_2 \) to \(\text{C}_6 \) alkanoyloxy; (\(\text{C}_1 \) to \(\text{C}_6 \) alkoxy)carbonyl; \(\text{C}_1 \) to \(\text{C}_6 \) alkylthio; \(\text{C}_1 \) to \(\text{C}_6 \) alkylsulfanyl; \(\text{C}_1 \) to \(\text{C}_6 \) alkylsulfonyl; sulfamoyl; \(\text{N}-(\text{C}_1 \) to \(\text{C}_6 \) alkyl)sulfamoyl; \(\text{N},\text{N}-(\text{C}_1 \) to \(\text{C}_6 \) alkyl)sulfamoyl; benzoyloxy; substituted benzoyloxy wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, \(\text{C}_1 \) to \(\text{C}_6 \) alkyl, \(\text{C}_1 \) to \(\text{C}_6 \) alkoxy and \(\text{C}_1 \) to \(\text{C}_6 \) haloalkyl; the group \(\text{NR}^8 \text{R}^9 \) wherein \(\text{R}^8 \) and \(\text{R}^9 \) are independently selected from the group consisting of hydrogen, \(\text{C}_1 \) to \(\text{C}_6 \) alkyl, \(\text{C}_2 \) to \(\text{C}_6 \) alkanoyl, benzoyl and benzyl; the groups formyl and \(\text{C}_2 \) to \(\text{C}_6 \) alkanoyl and the oxime, imine and Schiff base derivatives thereof;
R¹ is selected from the group consisting of: hydrogen; C₁ to C₆ alkyl; C₂ to C₆ alkenyl; C₂ to C₆ alkynyl; substituted C₁ to C₆ alkyl wherein the alkyl group is substituted with a substituent selected from the group consisting of C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, phenyl and substituted phenyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy and C₁ to C₆ alkyl thio; benzencesulfonyl; substituted benzencesulfonyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy and C₁ to C₆ alkylthio; an acyl group; and an inorganic or organic cation;

R² is selected from the group consisting of: C₁ to C₆ alkyl; C₂ to C₆ alkenyl; C₂ to C₆ haloalkenyl; C₂ to C₆ alkynyl; substituted C₁ to C₆ alkyl wherein the alkyl group is substituted with a substituent selected from the group consisting of halogen, C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, phenyl and substituted phenyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy and C₁ to C₆ alkylthio;

R₃ is selected from the group consisting of: C₁ to C₆ alkyl; C₁ to C₆ fluoroalkyl; C₂ to C₆ alkenyl; C₂ to C₆ alkynyl; and phenyl;

R₄ is selected from the group consisting of: hydrogen; halogen; cyano; C₁ to C₆ alkyl; and (C₁ to C₆ alkoxy)- carboxyl;
m is selected from the integers 1 and 2;

n is selected from the integers 1 to 4; and

m + n is selected from the integers 3 to 5.

2. A compound according to claim 1 wherein:

W, which may be the same or different, are selected from the group consisting of:

- the group R⁵-CO- wherein: R⁵ is selected from the group consisting of: C₂ to C₆ alkenyl; C₂ to C₆ alkynyl; phenyl; the groups C₁ to C₆ alkyl, C₂ to C₆ alkenyl, C₂ to C₆ alkynyl and phenyl wherein each group is substituted with at least one substituent selected from the group consisting of halogen, hydroxy, nitro, cyano, C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, (C₁ to C₆ alkoxy)carbonyl, amino, N-(C₁ to C₆ alkyl)amino, and N,N-di(C₁ to C₆ alkyl)amino; and the acetal, hemiacetal, oxime, imine and Schiff base derivatives of the group R⁵-CO-;

- the group Y-CO- wherein Y is selected from hydroxy, mercapto, C₁ to C₆ alkylthio and the group MO- and MS- wherein M is an organic or an inorganic cation;

- the group R⁶R⁷NCO- wherein R⁶ and R⁷ are independently selected from the group consisting of: hydrogen, C₁ to C₆ alky, and substituted C₁ to C₆ alkyl wherein the alkyl group is substituted with at least one substituent selected from the group consisting of hydroxy, halogen, C₁ to C₆ alkoxy and phenyl.

3. A compound according to claim 1 wherein:

and, optionally,

reacting the compound of the invention of formula II
which may be the same or different, are selected from the group consisting of:

the groups R5CO- and R5CS- wherein R5 is selected from the group consisting of: C\textsubscript{2} to C\textsubscript{6} alkenyl; C\textsubscript{2} to C\textsubscript{6} alkynyl; benzyl; phenyl; the groups C\textsubscript{1} to C\textsubscript{6} alkyl, C\textsubscript{2} to C\textsubscript{6} alkenyl, C\textsubscript{2} to C\textsubscript{6} alkynyl, benzyl and phenyl wherein each group is substituted with from one to three substituents selected from the group consisting of halogen, hydroxy, nitro, cyano, C\textsubscript{1} to C\textsubscript{6} alkoxy, C\textsubscript{1} to C\textsubscript{6} alkylthio, carboxy, (C\textsubscript{1} to C\textsubscript{6} alkoxy) carbonyl, C\textsubscript{2} to C\textsubscript{6} alkanoyl, amino, N-(C\textsubscript{1} to C\textsubscript{6} alkyl)amino, and N,N-di(C\textsubscript{1} to C\textsubscript{6} alkyl)amino; and groups of the formula \(-\text{C}(R5)=\text{NR}^{\text{II}}\) wherein RII is chosen from hydrogen, C\textsubscript{1} to C\textsubscript{6} alky, phenyl, benzyl, hydroxy, C\textsubscript{1} to C\textsubscript{6} alkoxy, phenoxy and benzyloxy;

the groups Y-CO- and Y-CS- wherein Y is selected from hydroxy, mercapto, C\textsubscript{1} to C\textsubscript{6} alkylthio and the group MO- and MS- wherein M is an organic or an inorganic cation; and

the groups R6R7NCO- and R6R7NCS- wherein R6 and R7 are independently selected from the group consisting of: hydrogen; C\textsubscript{1} to C\textsubscript{6} alkyl; substituted C\textsubscript{1} to C\textsubscript{6} alkyl wherein the alkyl group is substituted with from one to three substituents selected from the group consisting of hydroxy, halogen, C\textsubscript{1} to C\textsubscript{6} alkoxy and phenyl; C\textsubscript{1} to C\textsubscript{6} alkanoyl; carboxy; (C\textsubscript{1} to C\textsubscript{6} alkoxy)carbonyl; C\textsubscript{1} to C\textsubscript{6} alkanesulfonyl; benzoyl; benzenesulfonfonyl; the groups substituted benzoyl and substituted benzenesulfonfonyl wherein in each group the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, hydroxy, nitro, cyano, C\textsubscript{1} to C\textsubscript{6} alkoxy, C\textsubscript{1} to C\textsubscript{6} alkylthio, (C\textsubscript{1} to C\textsubscript{6} alkoxy)carbonyl, C\textsubscript{2} to C\textsubscript{6} alkanoyl, amino, N-(C\textsubscript{1} to C\textsubscript{6} alkyl)amino and N,N-
\(\text{di(C}_1 \text{ to C}_6 \text{ alkyl)amino; or R}^6 \text{ and R}^7 \text{ together form a 5 to 7 membered heterocyclic ring;} \)

\(X, \) which may be the same or different, are independently selected from the group consisting of: halogen; nitro; cyano; \(\text{C}_1 \text{ to C}_6 \text{ alkyl; C}_1 \text{ to C}_6 \text{ alkyl substituted with a substituent selected from the group consisting of halogen, nitro, hydroxy, C}_1 \text{ to C}_6 \text{ alkoxy and C}_1 \text{ to C}_6 \text{ alkylthio; C}_2 \text{ to C}_6 \text{ alkenyl; C}_2 \text{ to C}_6 \text{ alkynyl; hydroxy; C}_1 \text{ to C}_6 \text{ alkoxy; C}_1 \text{ to C}_6 \text{ alkoxy substituted with a substituent selected from halogen and C}_1 \text{ to C}_6 \text{ alkoxy; C}_2 \text{ to C}_6 \text{ alkenyloxy; C}_2 \text{ to C}_6 \text{ alkynyloxy; C}_2 \text{ to C}_6 \text{ alkanoyloxy; (C}_1 \text{ to C}_6 \text{ alkoxy)carbonyl; C}_1 \text{ to C}_6 \text{ alkylthio; C}_1 \text{ to C}_6 \text{ alkylsulfinyl; C}_1 \text{ to C}_6 \text{ alkylsulfonyl; sulfamoyl; N-(C}_1 \text{ to C}_6 \text{ alkyl)sulfamoyl; N}_2 \text{N-di(C}_1 \text{ to C}_6 \text{ alkyl)sulfamoyl; benzyl; substituted benzylxy wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, C}_1 \text{ to C}_6 \text{ alkyl, C}_1 \text{ to C}_6 \text{ alkoxy and C}_1 \text{ to C}_6 \text{ haloalkyl, the group NR}^8 \text{R}^9 \text{ wherein R}^8 \text{ and R}^9 \text{ are independently selected from the group consisting of hydrogen, C}_1 \text{ to C}_6 \text{ alkyl, C}_2 \text{ to C}_6 \text{ alkanoyl, benzoyl and benzyl; the groups formyl and C}_2 \text{ to C}_6 \text{ alkanoyl; and the group of the formula -C(R}^{10})=\text{NR}^{11} \text{ wherein R}^{10} \text{ is chosen from hydrogen and C}_1 \text{ to C}_5 \text{ alkyl, and R}^{11} \text{ is chosen from hydrogen, C}_1 \text{ to C}_6 \text{ alkyl, phenyl, benzyl, hydroxy, C}_1 \text{ to C}_6 \text{ alkoxy, phenoxy and benzylxy;}} \)

\(R^1 \) is selected from the group consisting of: hydrogen; \(\text{C}_1 \text{ to C}_6 \text{ alkyl; C}_2 \text{ to C}_6 \text{ alkenyl; C}_2 \text{ to C}_6 \text{ alkynyl; substituted C}_1 \text{ to C}_6 \text{ alkyl wherein the alkyl group is substituted with a substituent selected from the group consisting of C}_1 \text{ to C}_6 \text{ alkoxy, C}_1 \text{ to C}_6 \text{ alkylthio, phenyl and substituted phenyl wherein the benzene ring is substituted with from one to three substituents} \)
selected from the group consisting of halogen, nitro, cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy and C₁ to C₆ alkylthio; C₁ to C₆ alkylsulfonyl; benzenesulfonyl; substituted benzenesulfonyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy and C₁ to C₆ alkylthio; C₂ to C₆ alkanoyl; benzoyl, substituted benzoyl wherein the benzene ring is substituted with from one to three substituents chosen from the group consisting of halogen, nitro, cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy and C₁ to C₆ alkylthio; 2-furoyl; 3-furoyl; 2-thenoyl; 3-thenoyl; and an organic or inorganic cation selected from the alkali metal ions, the alkaline earth metal ions, the transition metal ions and the ammonium ion R₁²R₁³R₁⁴R₁⁵⁺ wherein R₁², R₁³, R₁⁴ and R₁⁵ are independently selected from the group consisting of: hydrogen; C₁ to C₁₀ alkyl; substituted C₁ to C₁₀ alkyl wherein the alkyl group is substituted with a substituent selected from the group consisting of hydroxy, halogen and C₁ to C₆ alkoxy; phenyl; benzyl; and the groups substituted phenyl and substituted benzyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy and C₁ to C₆ alkylthio;

R² is selected from the group consisting of: C₁ to C₆ alkyl; C₂ to C₆ alkenyl; C₂ to C₆ haloalkenyl; C₂ to C₆ alkynyl; C₂ to C₆ haloalkynyl; substituted C₁ to C₆ alkenyl wherein the alkyl group is substituted with a substituent selected from the group consisting of halogen, C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, phenyl and substituted phenyl wherein the benzene ring is
substituted with from one to three substituents
selected from the group consisting of halogen, nitro,
cyano, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆
alkoxy and C₁ to C₆ alkylthio;

R³ is selected from the group consisting of: C₁ to C₆
alkyl; C₁ to C₆ fluoroalkyl; C₂ to C₆ alkenyl; C₂ to
C₆ alkynyl; and phenyl;

R⁴ is selected from the group consisting of: hydrogen;
halogen; cyano; C₁ to C₆ alkyl; and (C₁ to C₆ alkoxy)–
carbonyl;

m is selected from the integers 1 and 2;

n is selected from the integers 1 to 4; and

m + n is selected from the integers 3 to 5.

4. A compound according to claim 1 or claim 3
wherein:

W, which may be the same or different, are selected
from the group consisting of:

the groups R⁵CO– and R⁵CS– wherein R⁵ is selected
from the group consisting of: C₂ to C₆ alkenyl;
benzyl; phenyl; and the groups C₁ to C₆ alkyl, benzyl
and phenyl wherein each group is substituted with
from one to three substituents selected from the
group consisting of halogen, hydroxy, nitro, cyano,
C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, carboxy, (C₁
to C₆ alkoxy)carbonyl and C₂ to C₆ alkanoyl;

the group YCO– and YCS– wherein Y is selected from
the group consisting of hydroxy, mercapto and C₁ to
C₆ alkylthio; and

the groups R⁶R⁷NCO- and R⁶R⁷NCS- wherein R⁶ and R⁷ are independently selected from the group consisting of: hydrogen; C₁ to C₆ alkyl; C₁ to C₆ alkanoyl; carboxy; (C₁ to C₆ alkoxy)carbonyl; C₁ to C₆ alkylsulfonyl; benzoyl; benzenesulfonyl; or the group R⁶R⁷N is a 5 to 7 membered heterocyclic ring selected from piperidine, morpholine and pyrrolidine;

X, which may be the same or different, are independently selected from the group consisting of halogen, C₁ to C₆ alkyl, C₁ to C₆ haloalkyl, C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, formyl, C₂ to C₆ alkanoyl, and the group of the formula -C(R¹⁰)NR¹¹ wherein R¹⁰ is selected from hydroxy and C₁ to C₅ alkyl and R¹¹ is selected from hydroxy and C₁ to C₆ alkoxy;

R¹ is selected from the group consisting of: hydrogen; C₂ to C₆ alkanoyl; benzoyl and substituted benzoyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, C₁ to C₆ alky1 and C₁ to C₆ alkoxy; benzenesulfonyl and substituted benzene-sulfonyl wherein the benzene ring is substituted with from one to three substituents selected from the group consisting of halogen, nitro, C₁ to C₆ alkyl and C₁ C₆ alkoxy; and an inorganic or an organic cation selected from the alkali metals, the alkaline earth metals the transition metals the ammonium ion and the tri- and tetra(alkyl)ammonium ions wherein alkyl is selected from C₁ to C₆ alkyl and C₁ to C₆ hydroxyalkyl;

R² is selected from the group consisting of C₁ to C₆ alkyl, C₂ to C₆ alkenyl, C₂ to C₆ alkynyl, C₁ to C₆
haloalkyl, C₂ to C₆ haloalkenyl and C₂ to C₆ haloalkynyl;

R³ is selected from C₁ to C₆ alkyl;

R⁴ is hydrogen;

m is 1;

n is selected from the integers 2 to 4; and

m + n is selected from the integers 3 to 5.

5. A compound according to any one of claims 1, 3 and 4 wherein:

W, which may be the same or different, are selected from the group consisting of:

the group R⁵CO⁻ wherein R⁵ is selected from the group consisting of: C₂ to C₆ alkenyl; C₁ to C₆ alkyl substituted with halogen, hydroxy, C₁ to C₆ alkoxy, C₁ to C₆ alkylthio, C₂ to C₆ alkanoyl, carboxy or (C₁ to C₆ alkoxy)carbonyl; benzyl; phenyl; and phenyl substituted with methoxy, nitro or cyano;

the group YCO⁻ wherein Y is selected from the group consisting of hydroxy, mercapto and C₁ to C₆ alkylthio;

the groups R⁶R⁷NCO⁻ and R⁶R⁷NCS⁻ wherein R⁶ and R⁷ are independently selected from the group consisting of: hydrogen; C₁ to C₆ alkyl; carboxy; (C₁ to C₆ alkoxy)carbonyl; and C₁ to C₆ alklysulfonyl;
X, which may be the same or different, are independently selected from the group consisting of: halogen; C₆₋₃ alkyl, C₁₋₃ alkoxy; C₁₋₃ alkylthio; and C₂₋₆ alkanoyl;

R₁ is selected from the group consisting of hydrogen, C₂₋₆ alkanoyl, and the alkali and alkaline earth metals;

R² is selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ haloalkenyl and C₂₋₆ alkanoyl;

R³ is selected from the group consisting of C₁₋₆ alkyl;

R⁴ is hydrogen;

m is 1;

n is selected from the integers 2 to 4; and

m + n is selected from the integers 3 to 5.

6. A compound according to any one of claims 1 and 3 to 5 inclusive wherein:

W is selected from the group consisting of:

the group R⁵CO- wherein R⁵ is selected from the group consisting of: C₃₋₆ alkenyl; C₁₋₆ alkyl substituted with halogen, C₁₋₆ alkylthio, C₂₋₆ alkenyl, carboxyl or (C₁₋₆ alkoxy)carbonyl; benzyl; and phenyl;

the group YCO- wherein Y is selected from hydroxy
and C₁ to C₆ alkylthio; and

the groups R⁶R⁷NCO- and R⁶R⁷NCS- wherein R⁶ and R⁷
are independently selected from the group consisting of: hydrogen; C₁ to C₆ alkyl; carboxy; and (C₁ to C₆ alkoxy)carbonyl;

X, which may be the same or different, are independently selected from the group consisting of halogen, methyl, methoxy, methylthio and acetyl;

R¹ is selected from hydrogen and the alkali metals;

R² is selected from the group consisting of C₁ to C₃ alkyl, C₁ to C₃ haloalkyl, allyl, haloallyl and propargyl;

R³ is selected from C₁ to C₃ alkyl;

R⁴ is hydrogen;

m is 1;

n is selected from the integers 2 and 3; and

m + n is selected from the integers 3 and 4.

7. A compound according to any one of claims 1 and 2 to 6 inclusive of formula

![Chemical Structure]
wherein:

W is selected from the group consisting of:

the group R5CO wherein R5 is selected from the group consisting of: allyl; C1 to C6 alkyl substituted with halogen, C1 to C6 alkylthio, C2 to C6 alkanoyl, carboxy or (C1 to C6 alkoxy)carbonyl; and benzyl;

the group YCO- wherein Y is selected from hydroxy and C1 to C6 alkylthio; and

the groups R6R7NCO- and R6R7NCS- wherein R6 and R7 are independently selected from the group consisting of hydrogen, C1 to C6 alkyl, carboxy and (C1 to C6 alkoxy)carbonyl;

X, X2 and X6 are methyl;

R1 is selected from hydrogen and the alkali metals;

R2 is selected from the group consisting of C2 to C3 alkyl, C2 to C3 haloalkyl, allyl, haloallyl and propargyl;

R3 is selected from C2 to C3 alkyl;

R4 is hydrogen; and

n is zero or 1.

8. A compound according to any one of claims 3 to 7 inclusive of formula
wherein:

W is selected from the group consisting of:

- the group R^5CO^- wherein R^5 is selected from the group consisting of: allyl; C_1 to C_6 alkyl substituted with halogen, C_1 to C_6 alkylthio, carboxy or (C_1 to C_6 alkoxy)carbonyl;
- the group YCO^- wherein Y is selected from hydroxy and C_1 to C_6 alkylthio; and
- the groups $R^6R^7NCO^-$ and $R^6R^7NCS^-$ wherein R^6 and R^7 are independently selected from the group consisting of hydrogen, C_1 to C_6 alkyl, carboxy and (C_1 to C_6 alkoxy)carbonyl;

- X^2, X^4 and X^6 are methyl;

- R^1 is selected from hydrogen, sodium and potassium;

- R^2 is ethyl;

- R^3 is selected from ethyl and n-propyl; and

- R^4 is hydrogen.
9. A compound according to claim 8 wherein:

W is selected from the group consisting of: allylcarbonyl; chloromethylcarbonyl; 2-chloroethylcarbonyl; methylthiomethylcarbonyl; ethoxycarbonylmethylcarbonyl; thiocarbamoyl; N,N-dimethylcarbamoyl; carboxythiocarbamoyl; and ethoxycarbonylthiocarbamoyl;

X^2, X^4 and X^6 are methyl;

R^1 and R^4 are hydrogen;

R^2 is ethyl; and

R^3 is selected from ethyl and n-propyl.

10. A compound according to any one of claims 1 and 3 to 9 inclusive selected from the group consisting of:

5-[3-(chloromethylcarbonyl)-2,4,6-trimethylphenyl]-2-[1-(ethoxyimino)propyl]-3-hydroxycyclohex-2-en-1-one;

5-[3-(ethoxycarbonylmethylcarbonyl)-2,4,6-trimethylphenyl]-2-[1-(ethoxyimino)propyl]-3-hydroxycyclohex-2-en-1-one;

2-[1-(ethoxyimino)propyl]-3-hydroxy-5-[3-(methylthiomethylcarbonyl)-2,4,6-trimethylphenyl]cyclohex-2-en-1-one;

2-[1-(ethoxyimino)propyl]-3-hydroxy-5-[3-(N,N-dimethylcarbamoyl)-2,4,6-trimethylphenyl]cyclohex-2-en-1-one;

and

5-[3-(N-ethoxycarbonylthiocarbamoyl)-2,4,6-trimethylphenyl]-2-[1-(ethoxyimino)propyl]-3-hydroxycyclohex-2-
11. A herbicidal composition comprising as active ingredient a compound as defined according to any one of claims 1 to 10 inclusive and a carrier therefor.

12. A process for severely damaging or killing unwanted plants which process comprises applying to said plants, or to the growth medium of said plants, an effective amount of a compound as defined according to any one of claims 1 to 10 inclusive or an effective amount of a composition as defined according to claim 11.

13. A process for selectively controlling the growth of monocotyledonous weeds in dicotyledonous crops which process comprises applying to said crop, or to the growth medium of said crop, a compound as defined according to any one of claims 1 to 10 inclusive or a composition as defined according to claim 11 in an amount sufficient to severely damage or kill said weeds but insufficient to substantially damage said crop.

14. A process according to claim 12 or claim 13 wherein the compound is applied at a rate in the range of from 0.005 to 20 kilograms per hectare.

15. A process for the synthesis of a compound of formula I as defined according to any one of claims 1 to 10 inclusive which process comprises reacting a 2-acyl-5-(aryl)cyclohexene-1,3-dione derivative of formula XIII with an alkoxyamine derivative of formula XVII to give a compound of the invention of formula II or reacting the 2-acyl-5-(aryl)cyclohexene-1,3-dione derivative of formula XIII with hydroxylamine and
alkylating the oxime intermediate of formula XVIII with an alkylating agent of formula XIX, wherein L is a leaving group, to give a compound of the invention of formula II;
and, optionally,

reacting the compound of the invention of formula II
with a compound of formula XX, wherein L is a leaving

\[
\begin{align*}
R^1 & \quad L \\
(X) & \quad R^2
\end{align*}
\]

\[
\begin{align*}
& \quad OR^1 \\
& \quad N-OR^2 \\
& \quad C
\end{align*}
\]

16. A compound of formula I as defined according to
any one of claims 1 to 10 inclusive substantially as
herein described with reference to any one of Examples
1 to 11 inclusive.

17. A composition as defined according to claim 11
substantially as herein described with reference to any
one of Examples 12 to 15 inclusive.

18. A process as defined according to any one of
claims 12 to 14 inclusive substantially as herein des-
cribed with reference to any one of Examples 13 to 15
inclusive.

19. A process as defined according to claim 15
substantially as herein described with reference to any
one of Examples 1 to 11 inclusive.

DATED this 3rd day of July 1984

ICI AUSTRALIA LIMITED