COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

APPLICATION FOR A STANDARD PATENT

I/WE. KABUSHIKI KAISHA KOBE. SEIKO SHO also known as KOBE STEEL, LTD., a company organized and existing under the laws of Japan of 3-18, Wakinohama-cho, 1-chome, Chuo-ku, Kobe 651, Japan hereby apply for the grant of a Standard Patent for an invention entitled

BEARING SUPPORTING SYSTEM FOR CONE CRUSHER

which is described in the accompanying complete specification.

This application is made under the provision of Part XVI of the Patents Act 1952 and is based on an application for a patent or similar protection made

in Japan on 1 April 1983

in

 declared 9,at the following in a

My/Our address for service is: F.B. RICE & CO.,
28A Montague Street,
Balmain, NSW 2041

Dated this 29th day of March 1984.

KABUSHIKI KAISHA KOBE SEIKO SHO also known as KOBE STEEL, LTD.

APPLICATION ACCEPTED AND AMENDED

ALLOWED 23-3-84

By: Patent Attorney

To: The Commissioner of Patents
COMMONWEALTH OF AUSTRALIA

F.B. RICE & CO.,
Patent Attorneys,
Sydney

LODDED AT SUB OFFICE

LODDED AT SUB OFFICE

100

Declaraant's Name

Signed

Declared at Kobe

Patent Office

40 40 20

20
DECLARATION IN SUPPORT

In support of the (Convention) Application made by KABUSHIKI KAISHA KOBE SHO also known as KOBE STEEL, LTD. of 3-18, Wakinohama-cho, 1-chome, Chuo-ku, Kobe 651, Japan, for a patent for an invention entitled: Bearing supporting system for cone crusher

I, Masayuki Tatsuno, of and on behalf of the applicant company do solemnly and sincerely declare as follows:

a) Convention Application for the patent

b) I am authorised by the applicant(s) for the patent to make this declaration on its behalf.

The basic application(s) as defined by section 141(242) of the Act was(are) made

on 1 April 1983 in Japan

by Kabushiki Kaisha Kobe Sho.

The basic application(s) referred to in this paragraph is (are) the first application(s) made in a Convention country in respect of the invention the subject of the application.

Ms (are) the actual inventor(s) of the invention and the facts upon which the applicant company is (are) entitled to make the application are as follows:

The applicant is the assignee of the invention from the actual inventors

Declared at Kobe, Japan this 8th day of September 1986

Signed: General Manager, Patent & Licensing Department

Masayuki Tatsuno

F. B. RICE & CO PATENT ATTORNEYS

This form is suitable for any type of Patent Application. No legalisation required.
Inventors:

Takeshi TANAKA, of 2-20, Sakuragaoka-nishimachi, 1-chome, Nishi-ku, Kobe, Japan.

Masao JOTATSU, of 3-1, Obanoyama-cho, 2-chome, Shinohara, Nada-ku, Kobe, Japan.

Masaaki HIGAKI, of 14-68, Kegoya 1-chome, Kure, Hiroshima-ken, Japan.

Toshimasa HAMADA, of 5061, Hatami, Ondo-cho, Aki-gun, Hiroshima-ken, Japan.

Tadaaki HASHIKAWA, of 1876-5, Yakiyama-cho, Kure, Hiroshima-ken, Japan.

Koneri OHASHI, of 2952-8, Yakiyama-cho, Kure, Hiroshima-ken, Japan.

Seigo TOGAWA, of 4179, Yakiyama-cho, Kure, Hiroshima-ken, Japan.
(54) BEARING SUPPORT FOR CONE CRUSHER
(71) KABUSHIKI KAISHA KOBE SEIKO SHO also known as KOBE STEEL, LTD.
(21) 26295/84 559196 (22) 30.3.84
(31) 58-49420 (32) 1.4.83 (33) JP
(43) 4.10.84 (44) 26.2.87
(51) F16G 17/06 B02C 2/06
(72) TAKESHI TANAKA, MASAO JOTATSU, MASAAKI HIGAKI, TOSHIMASA HAMADA, TADASHI HASHIKAWA, TONERI OASHI, SEIGO TOGAWA
(74) RI
(56) 64432/80 536663 B02C 2/04
50061/72 457625 10.4
48287/68 433881 10.4, 10.1
(57) Claim
1. A bearing support system in a cone crushe comprising:
a head center securely mounted on an upper portion of a main shaft for supporting a mantle;
an eccentric drive shaft for radially supporting said main shaft;
a thrust bearing mounted on an intermediate portion of said main shaft for supporting said main shaft on said eccentric drive shaft; and
a spherical seat member fixedly mounted on said eccentric drive shaft wherein said thrust bearing further comprises a first member having a first bearing surface and a second member having a second bearing surface on an upper side thereof in abutting engagement with said first bearing surface of said first member and a spherical surface on a lower side thereof in abutting engagement with said spherical seat member for permitting relative deviational movements between said thrust bearing and said spherical seat member.

1165(99)/31

- 14 -
COMMONWEALTH OF AUSTRALIA
Patents Act 1952

COMPLETE SPECIFICATION
(ORIGINAL)

Class Int. Class

Application Number : 26295/84.
Lodged :
Complete Specification Lodged :
Accepted :
Published :

Priority : 1 April 1983
Related Art :

Name of Applicant : KABUSHIKI KAISHA KOBE SEIKO SHO
also known as KOBE STEEL, LTD.

Address of Applicant : 3-18, Wakinohama-cho, 1-chome,
Chuo-ku, Kobe 651, Japan

Actual Inventors : Takeshi Tanaka, Masao Jotatsu,
Masaaki Higaki, Toshimasa Hamada,
Tadashi Hashikawa, Toneri Ohashi,
Seigo Togawa

Address for Service : F.B. RICE & CO.,
Patent Attorneys,
28A Montague Street,
BALMAIN. 2041.

Complete Specification for the invention entitled:
BEARING SUPPORTING SYSTEM FOR CONE CRUSHER

The following statement is a full description of this invention
including the best method of performing it known to us :--
BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to bearing supporting system suitable for cone and gyratory crushers and especially for the so-called spiderless crushers which are designed to support a main shaft assembly with mantle in radial direction only at the lower side without giving a bearing support to the upper side thereof. More particularly, the invention concerns bearing supporting system which has a thrust bearing mounted in an improved manner for supporting a main shaft in the thrust direction, forming suitable oil film on the bearing surface and ensuring a prolonged lifetime of a crusher.

Description of the Prior Art

In general, the crusher is provided with a mantle substantially of a truncated cone shape which is rotatable in an eccentric state within a concave ring substantially in the form of a conical cylinder to crush rocks of feed material by compressing between the concave ring and mantle. The main shaft assembly with mantle is supported by either a double supporting system which is adapted to support the upper and lower sides of the main shaft or by a single
supporting system which is adapted to support only a lower side of a mantle shaft in radial direction, leaving the upper side of the mantle shaft in free state. The type which supports the upper and lower sides of a mantle shaft can provide a stable support of a simple construction but it requires to mount radial support arms extending from the upper of the main shaft toward a concave ring. These radial support arms are located across a passage of feed material to be fed into the crusher, so that they form obstacles hindering feed material from feeding freely in all directions. That is to say, the feed becomes irregular in the circumferential direction, giving rise to a problem of uneven wear of the concave ring and mantle.

In contrast, in the latter case, it is possible to preclude the problem of uneven wear as mentioned above, and to feed material in an extremely smooth manner without any obstacle in feeding. However, owing to the cantilever-like support of a main shaft, big load is imposed on a bearing, so that the bearing support system has to be constructed to endure operating under the conditions of heavy load.

An example of the cone crusher which is constructed to this effect is proposed in Japanese Patent
Publication No. 57-58216 as illustrated in FIGURE 1-1.

This cone crusher is provided with a casing 1 consisting of an upper casing 3 and a lower casing 2, a concave ring 4 substantially in the form of a conical cylinder which is fitted on the inner surface of the upper casing 3, and a mantle 5 which is rotatably supported in the concave ring 4. The lower casing 2 is provided with a support cylinder 6 integrally at the bottom thereof, the support cylinder 6 having an eccentric drive shaft 8 substantially in the form of a conical cylinder rotatably fitted thereon through a radial bearing 7 fitted on the inner surface of the support cylinder 6.

A main shaft 12 which has the mantle 5 secured thereto through a head center 11 is supported in an upper portion of the eccentric drive shaft 8 rotatably through a radial bearing 13 and in an eccentric and tilted state. A spherical bearing 14 is securely mounted at the upper side of the eccentric drive shaft 8 in sliding contact with a spherical surface 15 formed on the underside of the head center 11.

With this cone crusher, rotation of a drive shaft 16 is transmitted to the eccentric drive shaft 8 through a gear 17 mounted at the fore end of the drive shaft 16 in
meshing engagement with a bevel gear 18 on the eccentric drive shaft 8, imparting gyratory rocking motions to the main shaft 12 which is mounted in a tilted state on an upper portion of the eccentric drive shaft 8, by rotation about the axis thereof. Accordingly, the mantle 5 which is mounted coaxially on the mantle shaft 12 through the head center 11 is put in similar gyratory motions eccentrically about the axis of the concave ring 4.

When the mantle is put in such eccentric gyratory motions, rocks which is fed to the clearance between the concave ring 4 and mantle 5, namely, to a crushing chamber 19 is compressed and crushed between the mantle 5 and concave ring 4 by eccentric gyratory motions of the mantle 5. Reaction force F which is produced as a result of compression of material acts as rotational moment M1 or M2 relative to the main shaft 12 and the eccentric drive shaft 8 which rotatably supports the main shaft 12, and at the same time acts as an axial force pushing the mantle 5 downward. Such rotational moment M1 or the like is set off by the main shaft 12 which is supported in radial direction by the eccentric drive shaft 8 through the radial bearing 13 and also in axial direction by the spherical bearing 14, while the axial thrust is absorbed by the spherical bearing 14.
Further, bending moment M_1 which is applied to the eccentric drive shaft 8 through the mantle shaft 12 is absorbed by the bearing 7 which support the eccentric drive shaft 8 in radial direction, and the axial thrust force is set off by a hydraulic piston 20 which supports a lower portion of the mantle shaft 12.

As clear from the foregoing description, the rotational moment and thrust force which act on the mantle of the above-described conventional crusher are supported by bearings 7 and 13 in the radial direction in the fashion of a cantilever and by the spherical bearing 14 and hydraulic piston 29 in the axial direction. Accordingly, the bearings are subjected to large reaction forces of the crushing operation and required to have a sufficiently high load capacity.

Especially, in the conventional crusher of this sort, the main shaft 12 is shrunk-fit on the head center 11 in order to guarantee sufficient strength of the main shaft 12 and the head center 11. However, the head center 11 undergoes deformation of the order of several tens to several hundreds microns on shrinkage fit even if the individual units of the head center 11 and main shaft 12 are manufactured with high precision, causing strong localized
sliding contact at least to either one of the thrust and radial bearings 7, 13 and 14 which are required to absorb thrust or radial loads imposed by the crushing reaction forces through an oil film of several tens microns in thickness, shortening the lifetime of the bearings.

SUMMARY OF THE INVENTION

According to the present invention there is disclosed a bearing support system in a cone crusher comprising:

- a head center securely mounted on an upper portion of a main shaft for supporting a mantle;
- an eccentric drive shaft for radially supporting said main shaft;
- a thrust bearing mounted on an intermediate portion of said main shaft for supporting said main shaft on said eccentric drive shaft; and
- a spherical seat member fixedly mounted on said eccentric drive shaft wherein said thrust bearing further comprises a first member having a first bearing surface and a second member having a second bearing surface on an upper side thereof in abutting engagement with said first bearing surface of said first member and a spherical surface on a lower side thereof in abutting engagement with said spherical seat member for permitting relative deviational movements between said thrust bearing and said spherical seat member.
the type having a head center fixedly mounted on an upper portion of a main shaft for supporting a mantle thereon, and an eccentric drive shaft for supporting the main shaft in radial direction, characterized in that the bearing supporting system essentially comprises: a thrust bearing mounted on an intermediate portion of the main shaft, supporting said main shaft on said eccentric drive shaft through the thrust bearing.

In a preferred form of the present invention, the thrust bearing comprises a first member having a circular radially split bearing surface and fixedly mounted on an annular flange formed integrally on an intermediate portion of the main shaft, and a second member having on its upper side a flat bearing surface in abutting engagement with the bearing surface of the first member and on its lower side a spherical surface seated on a fixed spherical seat member at the upper end of the eccentric drive member in a manner to permit slight deviational movements relative to each other.

The above and other objects, features and advantages of the present invention will become apparent from the following description and appended claims, taken in conjunction with the accompanying drawings which show by way of example some preferred embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:

FIGURE 1 is a schematic vertical section of a conventional cone crusher;

FIGURE 1-1 is a schematic vertical section of cone crusher according to Japanese Patent Publication No. 57-58216.

FIGURE 2 is a schematic vertical section of a cone crusher incorporating bearing supporting system according to the present invention;

FIGURES 3(a) to 3(d) as an example are a bottom view, a side view, a top view and a section on line A-A of FIGURE 3(c), showing a number of thrust pads constituting a first member of the thrust bearing of the invention and providing a circular radially split bearing surface;

FIGURE 4(a) and 4(b) as an example are a sectional side view and a bottom view of a thrust bearing plate constituting a second member of the thrust bearing of the invention;

FIGURES 5(a) and 5(b) as an example are a sectioned side view and a top view of a spherical seat member employed in the embodiment of FIGURE 2; and

FIGURE 6 is a schematic vertical section of a
shaft supporting structure applied to an eccentric drive shaft of a cone crusher.

DESCRIPTION OF PREFERRED EMBODIMENTS

Referring to FIGURE 2, there is illustrated a cone crusher employing bearing support system of the invention, including a mantle 5 which is fixed in position and pressed against a tapered circumferential surface of a head center 11 by a nut 21 which is threaded on the fore end of a main shaft 12. The head center 11 is secured by bolts 23 to a flange 22 which is integrally provided in an intermediate portion of the main shaft 12.

The head center 11 has a mounting hole 44 fitted on an upper shaft portion 43 of the main shaft 12 to ensure its concentricity with the latter. However, it is desirable to mount the main shaft with strong fit and light shrinkage in order to enhance the accuracy of fitting of the mounting hole 44 and upper shaft portion 43.

By fitting the head center 11 on the main shaft 12 in the above-described manner and fixing same in position by bolts, they can be assembled without causing a large distortion thereto nor localized abutment of bearing surfaces as experienced when the head center 11 is shrunk-fitted on
the main shaft 12.

A plural number of radially separated thrust pads 24 are circularly mounted fixedly on the lower side of the flange 22 in an intermediate portion of the main shaft 12 by bolts 25. These thrust pads 24 constitute one member of a thrust bearing, which has a radially divided circular bearing surface, and are each provided, for example, with a flat bottom surface 26, a flat surface 29 on a bearing surface 27 located on the opposite side for abutting engagement with a thrust bearing plate 28, and a flat sunken surface 30 indented from the flat surface 29 toward the bottom surface as shown in FIGURE 3. The lubricant oil which is pooled on the flat sunken surface 30 is forcibly fed onto the flat surface 29 in a wedge-like fashion to support large axial thrust load.

The radially divided annular thrust bearing which is useful in the present invention is not limited to the above-described sunken form, and may have the sunken flat surface and bearing surface 29 connected by a tapered surface to provide the so-called 'tapered land type' thrust bearing or may have the respective pads mounted tiltably independently of each other to form the so-called 'tilting pad' thrust bearing for facilitating intrusion of lubricant.
oil between the pads and opposing bearing surface.

As illustrated particularly in FIGURE 4, the thru-

bearing plate 28 which is positioned opposingly to

the thrust surfaces 29 of the thrust pads 24 is provided

with a flat surface 31 on its upper side confronting the

thrust pads 24 to ensure smooth contact with the bearing

surface 29 of the latter, and with a bottom surface 32 of

a downwardly convex shape which is formed with a concentric

annular groove and a plural number of radial grooves 34 and

35 for communicating the annular groove with the inner and

outer sides of the thrust bearing plate 28. The thrust

bearing plate 28 consists of a unitary structure in the

circumferential direction thereof and provided with at least

a vertically extending pin receiving hole 37 on the convex

surface 32 for inserting a straight pin 36.

As illustrated in FIGURE 2, the eccentric drive

shaft 8 which holds the main shaft 12 rotatably in an

inclined state within the bearing 13 has an annular spheri-

cal seat 38 securely mounted at its upper end by bolts 39

 coaxially with the main shaft 12. The upper surface 40 of

the spherical seat 38 is formed in a concave spherical

surface with a radius of curvature same as or conforming

with the spherical surface 32 of the thrust bearing plate
as shown in FIGURE 5, with the spherical surface 40 in sliding contact with the spherical surface 32 of the thrust bearing plate 28.

Bored through the spherical surface 40 of the spherical seat 38 is a pin receiving hole 41 in a position coinciding with the in an inside diameter slightly smaller than the pin receiving hole 37 of the thrust bearing plate 28. These holes 37 and 41 are aligned with each other in the assembled state of the crusher shown in FIGURE 2 to receive the pin 36 therein. The r 36 has an outer diameter which is equal to the inside diameter of the pin receiving hole 41 so that it is held in the pin receiving hole 41 by strong fit and hole loosely in the pin receiving hole 37 on the part of the thrust bearing plate 28, permitting its slight deviations of the thrust bearing plate 28 relative to the spherical surface 38. Accordingly, the thrust bearing plate 28 is tiltable in an arbitrary direction although through a small angle. By this self-aligning action of the thrust bearing plate 28, its spherical surface 31 wollows the bearing surfaces 29 of the thrust pads 24 to maintain perfect parallelism there-between.

When feed material S is fed in a crushing chamber 19 in a cone crusher which is constructed as in the above-
described embodiment, a crushing force F which acts on the
mantle 5 produces a force F1 acting to presses the mantle
shaft 12 against the radial bearing 13, a thrust force F2
acting to push the mantle shaft 12 downward and a rotational
moment M1 acting to rotate the mantle shaft 12 counterclock-
wise. In this instance, the radial force F1 is supported by
the radial bearing 13 and the thrust force F2 is supported
by the bearing surfaces 29 and 31 of the thrust bearings 24
and 28, while the rotational moment M1 is absorbed by the
force F3 of the bearing surface 29 which tends to push up
the thrust pads 24, prohibiting uneven or localized load
application on the respective bearing surfaces.

It is important for such a thrust structure to
prevent localized abutment of each bearing by improving the
perpendicularity of the bearing surfaces 27 of the thrust
pads 24 relative to the radial bearing 13. In the above
described embodiment, the thrust pads 24 are mounted on the
flange 22 which is provided integrally with the main shaft
12, so that it is possible to machine the bearing surface of
the radial bearing 13 and thrust pad mounting surface
consistently in a manufacturing process, allowing to improve
the perpendicularity of these bearing surfaces to a signifi-
cant degree.
Since the thrust bearing plate 28 is supported on the spherical seat 38 in such a manner as to permit slight tilting movements of the thrust bearing plate 28 in the foregoing embodiment, it has a good self-aligning function to maintain parallelism of the thrust pads 24 with the bearing surface of the thrust bearing plate 28, forming an oil film of good condition in intimate contact therewith to ensure a maximum load capacity as well as excellent bearing capacity by improvement of perpendicularity of the bearing surfaces 27 of the thrust pads relative to the radial bearing 13.

The spherical seat 38 and thrust bearing plate 28 which are connected by the pin 36 which permits slight relative deviations are free of any material frictional wear since they are blocked against relative rotation, and serve not as a spherical bearing but as means for producing self-aligning effect by slight deviations of the thrust bearing plate. The bearing supporting system which is separately provided with a flat thrust bearing surface and self-aligning spherical surface as described hereinbefore can also be applied to the axial contact surface B between the eccentric drive shaft 8 and the hydraulic piston shown in FIGURE 1-1. More particularly, as shown in FIGURE 6, the bearing supporting system may further include thrust
pads 24' which are securely mounted on the upper side of the piston 20, and a thrust bearing plate 28' gripped between bearing surfaces 29' of the thrust pads 24' and a spherical surface of a spherical seat 38' which is securely mounted on the underside of the eccentric drive shaft 8. The thrust bearing plate 28' and spherical seat 38' are connected with each other by a pin 42' which permits slight deviations of the thrust bearing plate 28' relative to the latter, thereby supporting the thrust force acting on the eccentric drive shaft 8' and at the same time maintaining parallelism of the thrust pads 24' with the thrust bearing plate 28' by self-aligning action between the spherical seat 38' and the thrust bearing plate 28'.

As clear from the foregoing description, the present invention is directed to bearing supporting system for a cone crusher of the type which has a head center securely fixed on an upper portion of a main shaft for mounting a mangle thereon and an eccentric drive shaft for supporting the main shaft in radial direction, characterized in that the support structure essentially includes a self-aligning thrust bearing mounted on an intermediate portion of the main shaft to support the main shaft on the eccentric drive shaft through the thrust bearing, thereby ensuring perpendicularity of thrust and radial bearing surfaces to
preclude the problem of localized abutment of the thrust
or radial bearing encountered in a conventional cone crusher
with a head center secured to a main shaft by shrinkage fit.
Thus, the present invention greatly contributes to improve-
ment of load capacity of bearings as well as to prolongation
of lifetime of the cone crusher as a whole.
The claims defining the invention are as follows:

1. A bearing support system in a cone crusher comprising:
 a head center securely mounted on an upper portion of
 a main shaft for supporting a mantle;
 an eccentric drive shaft for radially supporting said
 main shaft;
 a thrust bearing mounted on an intermediate portion
 of said main shaft for supporting said main shaft on said
 eccentric drive shaft; and
 a spherical seat member fixedly mounted on said
 eccentric drive shaft wherein said thrust bearing further
 comprises a first member having a first bearing surface
 and a second member having a second bearing surface on an
 upper side thereof in abutting engagement with said first
 bearing surface of said first member and a spherical
 surface on a lower side thereof in abutting engagement
 with said spherical seat member for permitting relative
 deviational movements between said thrust bearing and said
 spherical seat member.

2. The bearing support system as set forth in Claim 1,
 further comprising means for fitting and fixedly
 securing said head center to said main shaft.

3. The bearing supporting system as set forth in either
 claim 1 or claim 2 wherein said thrust bearing further
 comprises a circular radially split angular bearing
 surface.

4. The bearing support system as set forth in any one of
 the preceding claims further comprising an annular flange
 formed integrally on an intermediate portion of said main
 shaft, and upon which said thrust bearing is mounted
 wherein said first member further comprises a plurality of
 circularly arranged thrust pads.

5. The bearing support system as set forth in any one of
 the preceding claims, further comprising a straight pin
 for connecting said second member of said thrust bearing
6. The bearing support system as set forth in any one of the preceding claims, wherein said first bearing surface of said first member further comprises a circular radially split bearing surface.

7. The bearing support system as set forth in any one of the preceding claims, wherein said second bearing surface of said second member further comprises a flat bearing surface.

8. The bearing support system as set forth in any one of the preceding claims, wherein said first bearing surface of said first member further comprises a circular radially split bearing surface and wherein said second bearing surface of said second member further comprises a flat bearing surface.

9. The bearing support system as hereinbefore described with reference to Figures 1, 1-1, 2, 3, 4, 5 and 6.

DATED this 16th day of December 1986

KABUSHIKI KAISHA KOBE SEIKO
SHO also known as KOBE
STEEL, LTD.
Patent Attorneys for the Applicant:

F.B. RICE & CO.
FIGURE 4
(a)

FIGURE 4
(b)