Commonwealth of Australia
The Patents Act 1952

DECLARATION IN SUPPORT

In support of the Application made by:
MOTOROLA, INC.
of
1303 E. Algonquin Road
Schaumburg, Illinois 60196
United States of America

for a patent for an invention entitled:
METHOD FOR TERMINATING A TELEPHONE CALL BY VOICE COMMAND

I, Vincent J. Rauner, Senior Vice-President, Patents, Trademarks and Licensing,
of and care of the applicant company do solemnly and sincerely declare as follows:

I am authorised by the applicant for the patent to make this declaration on its behalf.

IRA ALAN GERSON
BRETT LOUIS LINDSLEY
1120 Nottingham Lane
242 North Avenue
Hoffman Estates, Illinois 60195
Highwood, Illinois 60040

both of the United States of America,

are the actual inventors of the invention and the facts upon which MOTOROLA, INC. is entitled to make the application are as follows:

The inventors made the invention during the course of their employment with applicant; applicant is the assignee of the actual inventors.

MOTOROLA, INC.
By: Vincent J. Rauner
Senior Vice-President, Patents, Trademarks & Licensing

(11) AU-B-23826/88
(10) 609527
that the recognition of said second terminate command word
CLAIM

1. A speech communications device having a voice command control system for controlling a voice communication path established by said speech communications device, said voice communication path being controlled by a command signal provided by said control system in response to user-spoken command words, said control system comprising:
 - speech recognition means for recognizing sequential first and second user-spoken utterances at least during the time said voice communication path is established, said speech recognition means including:
 - first means for recognizing, during the time said voice communication path is established, said first user-spoken utterance as one corresponding to a first predetermined command word, and for producing a first detect signal in response to such recognition;
second means for recognizing said second user-spoken utterance as one corresponding to a second predetermined command word, for producing a second detect signal when said second predetermined command word is recognized, and for cancelling said recognition of said first predetermined command when said second predetermined command word is not recognized and
decision means for providing said command signal in response to said second detect signal occurring within a predetermined recognition time interval after said first detect signal.

5. A speech communications device having a hands-free user-interactive voice command control system including means for switching said communications device from an off-hook mode, wherein a communications path is established, to on-hook mode wherein said communications path is terminated, in response to an on-hook signal, said control system comprising:

first means for recognizing, in said off-hook mode, a first user-spoken utterance as one corresponding to a first predetermined terminate command word, and for producing a first detect signal in response to such recognition;
timer means for measuring a pause time interval between the end of said first user-spoken utterance and the start of a sequential second user-spoken utterance, and for providing a timer signal only if said measured pause time interval is less than a predetermined maximum pause time interval;
second means for recognizing said second user-spoken utterance as one corresponding to a second predetermined terminate command word, for producing a second detect when said second predetermined terminate command word is recognized, and for cancelling said first detect signal when said second predetermined terminate command word is not recognized; and
decision means for providing a disconnect signal only in response to said timer signal and the sequential occurrence of said first and second detect signals, such
that the recognition of said second terminate command word does not cause termination of said communications path if said measured pause time interval exceeds said predetermined maximum pause time interval.
METHOD FOR TERMINATING A TELEPHONE CALL BY VOICE COMMAND

A reliable method for terminating a telephone call is disclosed using a specific sequence of steps performed by hands-free control system. The invention requires that the call terminating command sequence be recognized as: two separate speech utterances (e.g., TERMINATE (158) and CONVERSATION (159)) in proper sequence (e.g., TERMINATE first, then CONVERSATION) with a maximum pause time interval (124) between the end of the first utterance and the start of the second utterance (e.g., 300 milliseconds) and which meet predefined speech recognition matching criteria (110). Moreover, the present invention provides the user with a procedure to continue the telephone call in progress should the speech recognizer make a false recognition or if the user did not intend to speak the proper command. As a result, present invention enables a user to disconnect a telephone call by voice command with a high degree of reliability, even under high ambient noise conditions.

This document contains the amendments made under Section 49 and is correct for PATENT OFFICE printing.

A. O. J. P. 1 JUN 1989

AUSTRALIAN
18 APR 1989
PATENT OFFICE
METHOD FOR TERMINATING A TELEPHONE CALL
BY VOICE COMMAND

Background of the Invention

1. Field of the Invention

The present invention generally relates to speech recognition control systems. More particularly, the present invention relates to a hands-free voice command control system especially suited for use in a noisy environment such as encountered in vehicular radiotelephone applications.

2. Description of the Prior Art

Typically, in both radio and landline telephone systems, the user communicates by means of a handset that includes a speaker at one end, which is placed close to the user's ear, and a microphone at the other end, which is held close to the user's mouth. In operation, one hand of the user is occupied holding the handset in its proper orientation, thereby leaving the user's only free hand to accomplish tasks such as driving a vehicle. In order to provide a greater degree of freedom for the user, speakerphones have commonly been used in landline telephone systems. Recently, vehicular speakerphones have been developed for use in automobiles. For example, U.S. Patent No. 4,378,603 by Eastmond and U.S. Patent No. 4,400,584 by Vilmur, both assigned to the same assignee as the present invention, describe vehicular speakerphones with hands-free operation.

Hands-free control systems, which are responsive to human voice, are highly desirable for use in automotive applications. Most mobile radiotelephone transceiver functions (e.g., on/off, transmit/receive,
volume, squelch, etc.) or mobile radiotelephone control functions (e.g., pushbutton dialing, speech recognizer training, telephone call answering) may readily be achieved by voice command without requiring any manual operations. Hence, the use of speech recognition with a vehicular speakerphone has the potential for providing a totally hands-free telephone conversation without ever requiring the automobile driver to remove his hands from the steering wheel or take his eyes off the road. This feature has not only extended the hands-free capability, but also has added to the safety and convenience of using mobile radiotelephones in vehicles.

Unfortunately, the application of complete hands-free control to a mobile radiotelephone introduces several significant obstacles. When speech recognition is utilized in a vehicular environment, the high degree of ambient noise inherent in a vehicle presents a considerable problem to reliable voice control. Furthermore, a vehicular speakerphone typically has a microphone that is distant from the user's mouth, such as being mounted overhead on the automobile sun visor. Consequently, the required high microphone sensitivity causes a large increase in the amount of environmental background noise being applied to the speech recognizer, which degrades its recognition reliability.

More significantly, however, is the problem of speech recognition falsing. If the voice command controller erroneously recognizes a "call answering" command, the speech communications device will simply come "off-hook" at a time when it is not desired -- which is typically only a minor inconvenience. However, if the controller erroneously detects a "call terminating" command, the controller will put the device "on-hook" and the telephone call will be inadvertently dropped -- which is, at the very least, considerably frustrating to the user. Hence, much more significant consequences result
from speech recognition falsing on the call terminating command than on other command words.

For these reasons, the prior art techniques for terminating a hands-free telephone conversation have been severely limited. Most systems are not totally hands-free, since phone calls must still be answered and terminated manually. For example, even though cellular mobile radiotelephones may provide a voice command dialing feature, they often require the user to pick up the handset to activate the voice command system. Other vehicular telephone systems require the user to activate a "call terminate" button mounted on the steering wheel. Still other voice-controlled telephone systems disconnect the call upon the recognition of a voice command corresponding to a single isolated word speech recognition template. In a high noise environment, there is a substantial likelihood that a speech recognizer may false and improperly drop the call. Moreover, a call may be disconnected if the mobile user inadvertently mentions the voice command word during his conversation. The chance of falsing is further increased with the desirable feature of speech recognizer robustness to variability in user voice characteristics.

A need, therefore, exists for a reliable method for terminating a telephone call by voice command in a hands-free speech communications device.

Summary of the Invention

Accordingly, it is a general object of the present invention to provide an improved method and apparatus for terminating a telephone call by voice command.

A more particular object of the present invention is to provide an improved user-interactive voice command control system capable of totally hands-free operation while providing fewer accidental telephone call disconnections.
In accordance with an aspect of the present invention there is provided a speech communications device having a voice command control system for controlling a voice communication path established by said speech communications device, said voice communication path being controlled by a command signal provided by said control system in response to user-spoken command words, said control system comprising:

speech recognition means for recognizing sequential first and second user-spoken utterances at least during the time said voice communication path is established, said speech recognition means including:

first means for recognizing, during the time said voice communication path is established, said first user-spoken utterance as one corresponding to a first predetermined command word, and for producing a first detect signal in response to such recognition;

second means for recognizing said second user-spoken utterance as one corresponding to a second predetermined command word, for producing a second detect signal when said second predetermined command word is recognized, and for cancelling said recognition of said first predetermined command when said second predetermined command word is not recognized and

decision means for providing said command signal in response to said second detect signal occurring within a predetermined recognition time interval after said first detect signal.

In accordance with another aspect of the present invention there is provided a speech communications device having a hands-free user-interactive voice command control system including means for switching said communications device from an off-hook mode, wherein a communications path is established, to on-hook mode wherein said communications path is terminated, in response to an on-hook signal, said control system comprising:

first means for recognizing, in said off-hook mode, a first user-spoken utterance as one corresponding to a first predetermined terminate command word, and for
producing a first detect signal in response to such recognition;

timer means for measuring a pause time interval between the end of said first user-spoken utterance and the start of a sequential second user-spoken utterance, and for providing a timer signal only if said measured pause time interval is less than a predetermined maximum pause time interval;

second means for recognizing said second user-spoken utterance as one corresponding to a second predetermined terminate command word, for producing a second detect when said second predetermined terminate command word is recognized, and for cancelling said first detect signal when said second predetermined terminate command word is not recognized; and

decision means for providing a disconnect signal only in response to said timer signal and the sequential occurrence of said first and second detect signals, such that the recognition of said second terminate command word does not cause termination of said communications path if said measured pause time interval exceeds said predetermined maximum pause time interval.

In accordance with another aspect of the present invention there is provided a method of controlling a speech communications device having speech recognition and device operational control capabilities for controlling a voice communication path established between said speech communications device and another device, comprising the steps of:

establishing said voice communication path;

recognizing, at least during the time said voice communication path is established, a first user-spoken utterance as one corresponding to a first predetermined command word, and producing a first detect signal in response to such recognition;

measuring a pause time interval between the end of said first user-spoken utterance and the start of a sequential second user-spoken utterance, and providing a timer signal only if said measured pause time interval is
less than a predetermined maximum pause time interval;
recognizing said sequential second user-spoken utterance as one corresponding to a second predetermined command word, and producing a second detect signal when said second predetermined command word is recognized, and returning to said recognizing a first user-spoken utterance step when said second predetermined command word is not recognized; and
providing a first control signal only in response to said time signal and the sequential occurrence of said first and second detect signals.

In the preferred embodiment, the hands-free user-interactive voice command control system may be used with a mobile radiotelephone employing a vehicular speakerphone.

A preferred embodiment of the present invention will now be described with reference to the accompanying drawings wherein:

Figure 1 is a block diagram of a voice command control system for a speech communications device employing a hands-free speakerphone according to the present invention; and

Figure 2 is a flowchart illustrating the specific sequence of operations performed by the control system in accordance with the practice of the preferred embodiment of the present invention.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
Speech recognition is prone to falsing in high noise environments. Therefore, the present invention uses a predetermined two-word command sequence with a timed inter-word pause interval to initiate the call terminating procedure, along with intelligent interaction with the user to provide the ability to continue a call even if the proper command sequence was recognized. Using a speech recognition grammar structure which requires the recognition of two utterances in sequence significantly reduces the possibility of false recognition during a telephone conversation to an acceptable level, even when used with a continuous speech recognizer. If the particular command words chosen have multiple syllables, then the reliability of the system is further enhanced. Moreover, the present invention provides the user with a means to continue the telephone call in progress should the speech recognizer false, or if the user did not intend to speak the proper command. As a result, the present invention enables a user to disconnect a telephone call by voice command with a high degree of reliability, even under high ambient noise conditions.

Generally, the control system waits for the recognition of the user utterances corresponding to particular voice commands. In the preferred embodiment, the two words TERMINATE and CONVERSATION were chosen to represent the call termination command. Both words TERMINATE and CONVERSATION must be recognized -- in order -- with at most a short pause between them. When the words TERMINATE CONVERSATION are recognized, the control system synthesizes the word TERMINATE to indicate that the call is going to be dropped. At this point, the controller mutes the received audio and waits for a predetermined reconnect time interval, e.g., 5 seconds, and then drops the call. If the user speaks the word
CALL during the 5 second wait time, the controller synthesizes a "beep" to indicate that the call will not be dropped, and unmutes the received audio. The controller will then terminate the call. This method of providing user-interactive feedback during the call terminating procedure allows the user to reconnect the call if the speech recognizer fails, or if the user inadvertently utters the proper command word sequence.

Referring now to the accompanying drawings, Figure 1 shows a general block diagram of user-interactive control system 100 of the present invention. The system is basically comprised of device controller 120 connected to speech communications device 140. The system is particularly adapted to be used with a speakerphone rather than a telephone handset, such that the user's hands are free to perform other tasks. Speakerphone 150 controls the direction of the audio paths to provide this hands-free feature. Speech recognizer 110 is coupled to the speakerphone and the device controller so as to interpret verbal commands from the user into command signals. The device controller monitors the information coming from the speech recognizer as well as from timers 124. The controller has the ability to reset the timers, place the communications device on-hook, select templates and enable speech recognizer 110, and provide information to speech synthesizer 130 to provide feedback to the user.

Speech communications device 140 may include portions of any radio or landline voice communication system, such as, for example, two-way radio systems, telephone systems, intercom systems, etc. In the present embodiment, speech communications device 140 is a radiotelephone transceiver, such as a cellular mobile radiotelephone. A detailed explanation of such a radiotelephone may be found in Motorola Instruction Manual 68P81066E40 entitled, "DYNA T.A.C.(R) Cellular..."
Mobile Telephone." However, any speech communications device warranting hands-free user-interactive operation may be used. For example, any landline telephone or simplex radio transceiver requiring hand-free control may also take advantage of the present invention.

Speech communications device 140 utilizes transmit path 144 and receive path 142 to interface the transmit/receive audio to the communications channel. In the preferred embodiment of a mobile radiotelephone, these paths may interface to a pair of radio frequency (RF) channels for duplex radiotelephone operation, or perhaps to a single RF channel for simplex operation.

Speech recognizer 110 performs speech recognition upon the input speech signal 158. During recognition, speech recognizer 110 compares previously stored word templates against the input speech information. The recognition algorithms of the present embodiment incorporates near continuous speech recognition, dynamic time warping, energy normalization, and a Chebyshev distance metric to determine a template match. Prior art recognition algorithms, such as described in J.S. Bridle, M.D. Brown and R.M. Chamberlain, "An Algorithm for Connected Word Recognition," IEEE International Conference on Acoustic Speech and Signal Processing, (May 3-5, 1982), Vol.2, pp. 899-902, may also be used.

In the present embodiment, an eight-bit microcomputer performs the function of speech recognizer 110. Moreover, several other control systems blocks of Figure 1 are implemented in part by the same microcomputer with the aid of a CODEC/FILTER and a DSP (digital signal processor). A speech recognizer which may be used to perform the function of block 110 is described in the article by J. Peckham, J. Greene, J. Canning, and P. Stevens, entitled "A Real-Time Hardware Continuous Speech Recognition System," IEEE
International Conference on Acoustics, Speech, and Signal Processing (May 3-5, 1982), Vol. 2, pp. 863-866, and the references contained therein. However, the present invention is not limited to any specific hardware or any specific type of speech recognition. More particularly, the present invention contemplates the use of speaker dependent or speaker independent speech recognition, isolated or continuous word recognition, and software-based or hardware-based implementation.

Device controller 120 is typically a microprocessor which interfaces between speech communications device 140, speech recognizer 110, and speech synthesizer 130. Device controller 120 translates device control data 112 provided by speech recognizer 110 into control signals that can be recognized by the particular speech communications device. These control signals direct the device to perform specific operating functions as instructed by the user. For example, if a user-spoken utterance corresponds to a predefined call answering or call terminating command, device controller 120 would produce the proper hookswitch control signal via controller bus 148. Controller 120 may also perform voice command control of other features of speech communications device 140, such as: unlocking the control head; dialing a telephone number; or any number of other operational functions.

Device controller 120 also provides device status data 122 representing the operating status of speech communications device 140. This data is applied to speech synthesizer 130, and translated into user-recognizable speech when output via speaker 176. For example, when a user-spoken utterance corresponds to a predefined voice command, speech synthesizer 130 would synthesize an indication to the user in response to such recognition. Status information may also include information as to the names and telephone numbers stored.
in a voice-dialing system ("Office", "555-1234", etc.), speech recognition status information ("Ready", "Terminate?", etc.), or radiotelephone status information ("Call Dropped", "System Busy", etc.).

In the present embodiment, a 19-channel vocoder is used as speech synthesizer 130. An example of such a vocoder may be found in J.N. Holmes, "The JSR Channel Vocoder", IEE Proc., Vol. 127, pt. F, No. 1, February 1980), pp. 53-60. However, as will be apparent to those skilled in the art, any speech synthesis apparatus may be utilized. Furthermore, the present invention contemplates that any means of providing an indication to the user would perform the basic reply function of the speech synthesizer block 130. For example, a visual indication (e.g., LED, LCD, CRT, etc.) or an audible indication (e.g., tone generator or other audible signal) may be substituted.

Timer block 124 provides a measurement of the time interval between the end of the first user-spoken utterance and the start of the second user-spoken utterance, as well as a measurement of the reconnect time interval after a predefined TERMINATE command has been recognized. These time intervals may be initialized, read, and reset by controller 120 via data bus 126. Refer to the detailed description in Figure 2 for the operation of these timers.

Speakerphone 150 performs the transmit/receive audio switching function, as well as the receive/reply audio multiplexing function of the hands-free control system. User-spoken input speech is applied to microphone 152, which is typically remotely-mounted at a distance from the user's mouth (e.g., on the automobile sun visor). The microphone 152 generates an electrical input speech signal, which is then amplified by preamplifier 153, to provide input speech signal 154 to speakerphone 150. Speakerphone 150 directs the input
speech signal at 154 to speech recognizer 110 via input signal line 158.

In a simplex system, when the mobile radio user is talking, signal detector 160 provides a positive control signal via detector output 162 to close transmit audio switch 156, and a negative control signal via detector output 164 to open receive audio switch 166. Conversely, when the landline party is talking, signal detector 160 provides the opposite plurality signals to close receive audio switch 166, while opening transmit audio switch 156. When the receive audio switch 166 is closed, receiver audio 146 from speech communications device 140 is routed through receive audio switch 166 to multiplexer 170 via switched receive audio output 168.

Multiplexer 170 controls the audio path between voice reply audio 132 from speech synthesizer 130, and switched receive audio 168, in response to multiplex control signal 128 from device controller 120. Whenever the device controller sends information to the speech synthesizer, multiplexer signal 128 directs multiplexer 170 to route the voice reply audio to the speaker. Vehicle speakerphone audio 172 is usually amplified by audio amplifier 174 before being applied to speaker 176.

The vehicle speakerphone embodiment described herein is only one of numerous possible configurations. For example, it may be desired that speech recognizer 110 always be responsive to the mobile user's commands, whether or not the landline party is talking. In such a case, input speech signal 154 would be directly connected to speech recognizer 110. Furthermore, in some communications systems, it may prove advantageous to replace audio switches 156 and 166 with variable gain devices that provide equal but opposite attenuation in response to the control signals from the signal detector.

Signal detector 160 may also supply a signal to device controller 120 indicating whether the landline party or
mobile user is speaking, which can then be used to prevent speech recognizer 110 from improperly recognizing speech from the landline party.

As may now be appreciated, device controller 120 is the heart of the user-interactive hands-free voice command control system 100. An example of a device controller known in the art and suitable for use with the present invention is a microprocessor. The detailed operation of device controller 120 will now be described in terms of a software flowchart for control system 100.

Figure 2a and 2b describe the sequence of steps performed by control system 100 during a call terminating command sequence. Beginning with step 202, the controller first checks the status of communications device 140 in step 204. If a call is not in progress, control returns to step 204 such that the call terminating command sequence will not be performed. If a call is in progress, control proceeds to sequence 200, which represents the speech recognition process for the two words TERMINATE CONVERSATION.

Appropriate word recognition templates are first selected in step 206. Next, speech recognizer 110 is enabled to recognize user-spoken utterances in step 208. In step 210, the controller checks to see that the telephone call is still active, such that a dropped call will immediately be indicated to the user in step 252. This indication may be the synthesis of words such as CALL DROPPED, or other audible or visual indication.

If the call is still active, the controller tests whether the speech recognizer has recognized any word in step 212. If no word has yet been recognized, control returns to step 210 to again check to see that the call is still active. However, if a word has been recognized, step 214 assigns the variables W1, D1, and T1 to different parameters of the recognized word. More specifically, the variable W1 is assigned to the word
Moreover, the present invention provides the user with a procedure to continue the telephone call in progress should the speech recognizer make a false recognition or if the user did not intend to speak the proper command. As a result, present invention enables a user to disconnect a telephone call by voice command with a high degree of reliability, even under high ambient noise conditions.

that was recognized. The distance metric, or quantitative measurement of the match of the recognized word to the particular word template, is designated as the variable D_1. The variable T_1 is assigned to the time instant associated with the end of the first utterance corresponding to word one, defined as the stop time.

In step 216, the distance metric D_1 for word one is compared to a speech recognition threshold to determine whether or not it meets a predetermined degree of similarity. All speech recognition algorithms inherently have some quantitative recognition threshold which must be met before it is determined that the utterance matches to the template. If desired, this speech recognition threshold may be adjusted to correspond to a higher degree of similarity for call terminating commands, due to the importance of minimizing falsing. If D_1 is not less than the distance metric threshold, then control returns to step 210. If D_1 is less than the distance metric threshold, then step 218 tests whether or not the word recognized corresponds to the correct word recognition template corresponding to the predefined call terminating command. In the preferred embodiment, step 218 simply tests whether or not W_1 is the word TERMINATE. If the word TERMINATE was not recognized, control returns to the beginning of sequence 200.

If the first word recognized was TERMINATE, then the call is again checked in step 220 to see if it is still active. Again, if it is not still active, a CALL DROPPED indication is output at block 252, and control returns to the beginning steps. If the call is still active, step 222 checks to see how much time has passed since the end of the word TERMINATE. If this time exceeds the maximum wait time, control returns to sequence 200. Step 222 ensures that the controller does not wait indefinitely for the second utterance to be
recognized. If the wait time has not been exceeded, step 224 checks to see if a second word has been recognized. If not, control returns to step 220. If a second word has been recognized, the variables W2, D2, and T2 are assigned in step 226 as follows: W2 is assigned to the word that was recognized, D2 is assigned to the distance metric of the second word that was recognized, and T2 is assigned to the particular instant of time at the start of the second user-spoken utterance. Step 228 again checks the distance metric D2 against the speech recognition threshold to see if a proper template match has been achieved. If not, control returns to step 220. If D2 is less than the required matching threshold, then the second word variable W2 is tested in step 230 to see if the proper second word of the call terminating command has been recognized. In the preferred embodiment, the second word CONVERSATION is used. If W2 is not CONVERSATION, control is again directed to sequence 200.

Next, in step 232, the time interval between the end of the first user-spoken utterance and the start of the second user-spoken utterance, or T2-T1, is compared to a predefined maximum pause time interval. This ensures that the two words TERMINATE and CONVERSATION were uttered with less than the specified pause interval between them. Any appropriate predetermined pause time interval, preferably less than one second, may be chosen. In the preferred embodiment, the maximum pause time interval used is 300 milliseconds. If T2-T1 is not less than the pause time interval, then control again returns to sequence 200. However, if TERMINATE CONVERSATION has been recognized in the proper sequence with less than the predetermined pause time interval between the words, control proceeds to step 234 where the controller indicates to the user that TERMINATE CONVERSATION has been recognized. Again, this indication may be performed by speech synthesis, visual, or audio means.
In step 236, the reconnect timer is started. The reconnect timer measures the time interval after the occurrence of the recognition of TERMINATE CONVERSATION. At this time, it may be desirable to mute the received audio to prevent interference with recognition of the error command. In step 238, the reconnect timer is checked to see if it has exceeded a predetermined maximum reconnect time interval, or if the call has been dropped. In the preferred embodiment, such a maximum reconnect time interval would be in the range of 2 to 10 seconds, preferably 5 seconds. If the reconnect timer has not yet expired and the call is still active, control proceeds to step 240, where the speech recognizer is programmed to recognize a user-spoken utterance corresponding to a predefined error command. The word CALL is used in the present embodiment as such an error command. If the error command is recognized before the reconnect timer has expired, then the controller indicates that the call will be reconnected in step 244. For example, the controller could synthesize a BEEP to indicate that the call is again active, and unmute the received audio to allow the conversation to continue. Control would then return to sequence 200 to look for the words TERMINATE CONVERSATION. If the error command is not recognized before the reconnect timer expires, then the device controller assumes that the user desires the controller to disconnect the telephone call. Accordingly, in step 246, the controller switches the speech communications device to an on-hook state. In step 248, the speech recognizer is disabled, and the call terminating process ends at step 250.

In summary, it can now be seen that the present invention provides a reliable method for terminating a telephone call by a specific sequence of steps performed by the controller. The present invention requires that several constraints are placed upon the recognition of
the call terminating command recognition sequence. As described above, the constraints imposed upon the call terminating procedure are as follows (using the words TERMINATE and CONVERSATION as examples): (1) the predefined call drop command must be recognized as two separate speech utterances (e.g., TERMINATE and CONVERSATION); (2) in proper sequence (e.g., TERMINATE first, then CONVERSATION); (3) with a maximum pause time interval between the end of the first utterance and the start of the second utterance (e.g., 300 milliseconds); and (4) which meet predefined speech recognition matching criteria. Furthermore, a confirmation time interval is provided such that the user may reconnect the call through the use of an error command.

Accordingly, the present invention provides high reliability for hands-free control systems, even when used in environments having a high level of ambient background noise. For example, the present invention may be used in any situation where the user wishes to answer a call and terminate a call by voice command. Typically, the invention would be used in conjunction with a speakerphone providing hands-free capability to either landline or mobile telephones. However, the present invention is also well suited for use with handset or headset-type phones.

While specific embodiments of the present invention have been shown and described herein, further modifications and improvements may be made by those skilled in the art. In particular, it should be noted that the command words TERMINATE, CONVERSATION, and CALL were chosen in the preferred embodiment only as representative English words which meet the aforementioned criteria. However, other command words may be chosen if desired, especially for use with different languages. All such modifications which retain
the basic underlying principles disclosed and claimed herein are within the scope of this invention.

What is claimed is:
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A speech communications device having a voice command control system for controlling a voice communication path established by said speech communications device, said voice communication path being controlled by a command signal provided by said control system in response to user-spoken command words, said control system comprising:
 speech recognition means for recognizing sequential first and second user-spoken utterances at least during the time said voice communication path is established, said speech recognition means including:
 first means for recognizing, during the time said voice communication path is established, said first user-spoken utterance as one corresponding to a first predetermined command word, and for producing a first detect signal in response to such recognition;
 second means for recognizing said second user-spoken utterance as one corresponding to a second predetermined command word, for producing a second detect signal when said second predetermined command word is recognized, and for cancelling said recognition of said first predetermined command when said second predetermined command word is not recognized and
 decision means for providing said command signal in response to said second detect signal occurring within a predetermined recognition time interval after said first detect signal.

2. The speech communications device according to claim 1, further comprising:
 third means for recognizing a third user-spoken utterance as one corresponding to a third predetermined command word, and for producing a third detect signal in response to such recognition; and
 correction means for preventing said decision means from providing said command signal if said third detect signal occurs within a predetermined verification time interval after said second detect signal.

-18-
3. The speech communications device according to claim 1, wherein said predetermined recognition time interval is less than 5 seconds.

4. The speech communications device according to claim 2, wherein said predetermined verification time interval is less than 10 seconds.

5. A speech communications device having a hands-free user-interactive voice command control system including means for switching said communications device from an off-hook mode, wherein a communications path is established, to on-hook mode wherein said communications path is terminated, in response to an on-hook signal, said control system comprising:

- first means for recognizing, in said off-hook mode, a first user-spoken utterance as one corresponding to a first predetermined terminate command word, and for producing a first detect signal in response to such recognition;
- timer means for measuring a pause time interval between the end of said first user-spoken utterance and the start of a sequential second user-spoken utterance, and for providing a timer signal only if said measured pause time interval is less than a predetermined maximum pause time interval;
- second means for recognizing said second user-spoken utterance as one corresponding to a second predetermined terminate command word, for producing a second detect signal when said second predetermined terminate command word is recognized, and for cancelling said first detect signal when said second predetermined terminate command word is not recognized; and
- decision means for providing a disconnect signal only in response to said timer signal and the sequential occurrence of said first and second detect signals, such that the recognition of said second terminate command word does not cause termination of said communications path if said measured pause time interval exceeds said predetermined maximum pause time interval.

6. The speech communications device according to claim
5, further comprising:

means for providing an indication to a user in response to said disconnect signal;

third means for recognizing a user-spoken utterance as one corresponding to a predetermined error command word, and for producing an error signal in response to such recognition; and

correction means for providing said on-hook signal in response to said disconnect signal only if said error signal does not occur within a predetermined reconnect time interval after the occurrence of said disconnect signal, such that the recognition of said error command word within said predetermined reconnect time interval prevents the recognition of said terminate command words from causing termination of said communications path.

7. The speech communications device according to claim 5, wherein said speech communications device is a mobile radiotelephone.

8. The speech communications device according to claim 5, wherein said speech communications device includes a speakerphone.

9. The speech communications device according to claim 6, wherein said first, second, and third recognizing means implement connected-word speech recognition.

10. The speech communications device according to claim 5, wherein said first and second predetermined terminate command words each have at least two syllables.

11. The speech communications device according to claim 5, wherein said predetermined maximum pause time interval is less than 1 second.

12. The speech communications device according to claim 6, wherein said indication providing means is a speech synthesizer.

13. The speech communications device according to claim 6, wherein said predetermined reconnect time interval is less than 10 seconds.

14. A method of controlling a speech communications device having speech recognition and device operational control capabilities for controlling a voice communication
path established between said speech communications device and another device, comprising the steps of:

- establishing said voice communication path;
- recognizing, at least during the time said voice communication path is established, a first user-spoken utterance as one corresponding to a first predetermined command word, and producing a first detect signal in response to such recognition;
- measuring a pause time interval between the end of said first user-spoken utterance and the start of a sequential second user-spoken utterance, and providing a timer signal only if said measured pause time interval is less than a predetermined maximum pause time interval;
- recognizing said sequential second user-spoken utterance as one corresponding to a second predetermined command word, and producing a second detect signal when said second predetermined command word is recognized, and returning to said recognizing a first user-spoken utterance step when said second predetermined command word is not recognized; and
- providing a first control signal only in response to said timer signal and the sequential occurrence of said first and second detect signals.

15. The method according to claim 14, further comprising the steps of:

- providing an indication to a user in response to said first control signal;
- recognizing a third user-spoken utterance as one corresponding to a third predetermined command word, and producing an error signal in response to such recognition; and
- producing a second control signal in response to said first control signal only if said error signal does not occur within a predetermined reconnect time interval after the occurrence of said first control signal.

16. The method according to claim 14, wherein said speech communications device is a mobile radiotelephone.

17. The method according to claim 14, wherein said speech communications device includes a speakerphone.
18. The method according to claim 14, wherein all recognizing steps are performed using connected-word speech recognition.

19. The method according to claim 14, wherein said first and second predetermined command words each have at least two syllables.

20. The method according to claim 14, wherein said predetermined maximum pause time interval is less than 1 second.

21. The method according to claim 15, wherein said indication providing step is performed using speech synthesis.

22. The method according to claim 15, wherein said predetermined reconnect time interval is less than 10 seconds.

23. A speech communications device according to claim 1 or 5 substantially as herein described with reference to the accompanying drawings.

24. A method according to claim 14 substantially as herein described with reference to the accompanying drawings.

Dated: 4 February 1991

PHILLIPS ORMONDE & FITZPATRICK
Attorneys for:
MOTOROLA, INC.

26981
FIG. 2B
INTERNATIONAL SEARCH REPORT

International Application No PCT/US88/02885

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

| Int. Cl. (4): | H04B 1/46 G10/L 9/06 |
| U.S. Cl.: | 379/61 455/79 381/43, 46 |

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>455/79 381/43, 110, 46, 56</td>
</tr>
<tr>
<td></td>
<td>379/58, 61, 389</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US, A, 4,426,733 (BRENIG) 17 JANUARY 1984 See column 5, lines 24-52 and column 6, lines 27-50.</td>
<td>1-22</td>
</tr>
<tr>
<td>Y</td>
<td>US, A, 4,525,793 (STACKHOUSE) 25 JUNE 1985 See column 2, line 59 to column 3, line 5.</td>
<td>1-22</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means other than publication of the document
 - "P" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 - "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 11 OCTOBER 1988

Date of Mailing of this International Search Report: 15 NOV 1988

International Searching Authority: ISA/US

Signature of Authorized Officer: Judson Jones