COMMONWEALTH OF AUSTRALIA
Patents Act 1952-1962

CONVENTION OR NON-CONVENTION APPLICATION FOR A
PATENT OR PATENT OF ADDITION

22 49 3/77

Sanae HAYASHIDA and Gorou SAKSUI

A FILTER

which is described in the accompanying (c) provisional complete specification.

I request that the patent may be granted as a patent of addition to

the patent application on application No. in the name of

We hereby apply for the grant of a (c) patent of addition for an invention entitled

of (b) c/o The Hayashiya Kikai Kogyo Kabushiki Kaisha,
1 Shimomisui-Yamaden, Yoko-Ohji, Fushimi-Ku, Kyoto-shi,
Japan and 3-41 Senrioka 4-Chome, Settsu-Shi, Osaka,
Japan

Our address for service is care of CLEMENT HACK & CO., Patent Attorneys,
44 Collins Street, Melbourne, Victoria, Australia.

My/Our address for service is care of CLEMENT HACK & CO., Patent Attorneys,
44 Collins Street, Melbourne, Victoria, Australia.

140 William Street,

Dated this 18th day of February 1977

Sanae HAYASHIDA and Gorou SAKSUI

CLEMEN HAC & CO., Patent Attorneys, 44 Collins Street, Melbourne, Australia.
AUSnAtIA
Patents Act 1952

DECLARATION IN SUPPORT OF A CONVENTION OR NON-CONVENTION APPLICATION FOR A PATENT OR PATENT OF ADDITION

support of the application No. (a) 22493/77
made by (b) SANA HAYASHIDA and GOROU SASAKI

for a patent/patent of addition for an invention entitled (c)

A. FILTER

1. (d) Sanae Hayashida and T. Gorou Sasaki

of (e) The Hayashida Kikai Kogyo Kabushiki Kaisha, 1 Shimomizu-Yamaden, Yoko-Ohji, Pushimi-ku, Kyoto, Japan and 3-41 Senrioka 4-chome, Itetsu-Shi, Osaka, Japan respectively,
do solemnly and sincerely declare as follows:
1. (f) We are the applicant(s) for the patent/patent of addition.

2. The basic application(s) as defined by Section 141 of the Act was made in the following country or countries on the following date(s) by the following applicant(s) namely:

in (i) Japan on 1st April 1975

by (k) Sanae Hayashida and Gorou Sasaki

in (l) Japan on (j)

by (m) Gorou Sasaki

We are the actual inventor(s) of the invention.

of (n)

is/are the actual inventor(s) of the invention and the facts upon which the applicant(s) is/are entitled to make the application are as follows:

(o)

Declared at this day of 19

(q) Signature
CLAIM 1. A filter apparatus comprising
(A) a container having one or more openings for supplying unfiltered material and one or more exits for removing filtered liquid material;
(B) at least one line of sets of rotatable filter elements disposed within said container, each set comprising
(i) a plurality of circular first plates having a first diameter, each plate having at least one hole at a predetermined distance from the center thereof,
(ii) a plurality of circular second plates having a diameter larger than said first diameter, each plate having at least one hole at said predetermined distance from the center thereof, and being of a size and shape substantially similar to said at least one hole in said first plates,
(iii) a plurality of interleaving circular plates of a third diameter smaller than said first diameter such that said interleaving plates do not block the holes in said first and second plates, and
(iv) means for holding said first plate, interleaving plate, and second plate in that order in each set with their centers in substantially the same axis and within said
container in substantially sealed manner, whereby said at least one hole of each of said first and second plates are aligned with said one or more exits, and with said sets of rotatable filter elements relatively positioned such that one set is disposed adjacent the other set with the first plates of one set adjacent the corresponding second plates of the other set and in the same plane; and

(0) means for moving the filter elements of a set in the same rotary direction, whereby unfiltered material is supplied to said one or more opening of said container and by centrifugal force of the rotating plates sludge is separated from liquid and moved toward the outer periphery of the plates and then transferred from one plate to the next down the line and accumulated toward the end of the line, and filtered liquid material remaining after the separation, passes through said at least one hole of said first and second plates and sludge remaining in said filtered liquid material is on the next lower level, separated by similar rotation of said plates and so moved toward the outer peripheries of the plates, then transferred from plate to plate in said one line and accumulated toward the end of the line at said next lower level, with the again filtered liquid material dropping level by level until substantially filtered liquid is removed from said one or more exits.
The following statement is a full description of this invention, including the best method of performing it known to me:

"A FILTER"
This invention relates to a filter or separator apparatus, which may be used, for example in separating and collecting fine grains or particles and liquids from fine grain suspensions and emulsions.

Various methods and apparatus have been tried heretofore for filtration of fine grains from fine grain suspensions and emulsions. But, all of these prior methods and apparatus have various defects. The filter cloth method uses a cloth as a filtering or separating medium. Disadvantageously, the cloth filter method cannot be used for continuous filtrations for any length of time due to rapid sludge build up. Moreover, this method could not produce filtration of very fine grains without difficulty. Another method uses porcelain or metal pipes having numerous holes of very small diameters. Experience has shown that such holes are likely to become easily clogged by fine grains, and as a result, continuous filter operation was difficult to achieve for any length of time in many cases. Japanese Patent Publication 6416/1972 employs filter elements which are positioned closely to each other and around a circle. Disadvantageously, the filtering capacity was low because the surface area of the filter elements exposed to the suspension or emulsion was insufficient.

According to the present invention there is provided a filter apparatus comprising

(A) a container having one or more openings for supplying unfiltered material and one or more exits for removing filtered liquid material;

(B) at least one line of sets of rotatable
filter elements disposed within said container, each set comprising

(i) a plurality of circular first plates having a first diameter, each plate having at least one hole at a predetermined distance from the center thereof,

(ii) a plurality of circular second plates having a diameter larger than said first diameter, each plate having at least one hole at said predetermined distance from the center thereof, and being of a size and shape substantially similar to said at least one hole in said first plates,

(iii) a plurality of interleaving circular plates of a third diameter smaller than said first diameter such that said interleaving plates do not block the holes in said first and second plates, and

(iv) means for holding said first plate, interleaving plate, and second plate in that order in each set with their centers in substantially the same axis and within said container in substantially sealed manner, whereby said at least one hole of each of said first and second plates are aligned with said one or more exits, and with said sets of rotatable filter elements relatively positioned such that one set is disposed adjacent the other set with the first plates of one set adjacent the corresponding second plates of the other set and in the same plane; and

(C) means for moving the filter elements of a set in the same rotary direction, whereby unfiltered material is supplied to said one or
more opening of said container and by centrifugal force of the rotating plates sludge is separated from liquid and moved toward the outer periphery of the plates and then transferred from one plate to the next down the line and accumulated toward the end of the line, and filtered liquid material remaining after the separation, passes through said at least one hole of said first and second plates and sludge remaining in said filtered liquid material is on the next lower level, separated by similar rotation of said plates and so moved toward the outer peripheries of the plates, then transferred from plate to plate in said one line and accumulated toward the end of the line at said next lower level, with the again filtered liquid material dropping level by level until substantially filtered liquid is removed from said one or more exits.

The sludge which collects on the surfaces of the plates and is transferred from one plate to another down the line and accumulated toward the end of the line, may be continuously or batchwise removed. To continuously remove the sludge, the flow of unfiltered material and the separated sludge moving toward the end provides sufficient pressure to push out the accumulated sludge in each level. The accumulated sludge may also be manually removed by removing the accumulator plate on which the sludge accumulates.

Advantageously, the filtering efficiency of this apparatus is extremely high since the height of the spaces between the filter pieces of a set of filter elements, which are solid and may advantageously be of metal, can be
adjusted as desired and in accordance with the size of the fine grains contemplated to be filtered out. The holes located toward the center of the plates are used to allow separated liquid containing some amount of grains after separation from larger sized grains to flow to the next lower set of plates. Ideally, after the lowest set of plates acts on the liquid, there will be no further non-desired grains in the liquid and completely filtered liquid is removed from the container. The space between the different plates is adjusted so that grains of sizes greater than the desired size will not flow therethrough. Liquid may filter through the spaces.

Also, it is possible to continuously remove accumulated sludge by using the pressure against the sludge caused by the flow of the unfiltered material, or mechanically. The sludge accumulates in increasing amounts toward the end of the line of sets of filter elements because the turning of the filter elements in the same rotary direction causes filtered sludge to be separated from the liquid and moved by centrifugal force toward to the outer peripheries of the plates and then transferred from one plate to another along the line. Since the finer grained material is carried by the separated liquid to the next lower set of plates, and the larger grained material is transferred from one plate to another down the line, there is no possibility of clogging of the filter elements. Also, the area of contact of the sludge with the filter pieces is large and most efficient.

A preferred feature of the invention is a
filter or separation apparatus comprising a container having therein at least two sets of rotatable filter elements, each set comprising a plurality of circular first plates of a first diameter and having one or more holes at a predetermined distance from the center, a plurality of second circular plates of a diameter larger than the first diameter and having one or more holes at the predetermined distance from the center, and interleaving plates of a diameter smaller than the first diameter with the first and second plates separated by the interleaving plates; the sets of filter elements are arranged in a line; the container has one or more supply inlets, one or more sludge removal plates, and one or more exits located to be accessible to the holes of the first and second plates whereby unfiltered material is supplied through the inlet, the sets of filter elements are rotated in the same rotary direction, the sludge is separated from the liquid by the rotating action of the plates and move toward the outer periphery and then transferred from one plate to another down the line, and then accumulated toward the end of the line, and filtered liquid containing remaining finer sludge is passed through the holes of the plates from one level to the next lower level whereas the same above action of separation takes place, and repeated from level to level until at the bottom, the filtering action is completed and filtered liquid is removed.

Another preferred feature of the invention is gears and shafts located at the center of the plates, and the rotating of the plates to cause separation of

- 6 -
sludge from liquid and movement of the sludge toward the outer periphery, and the transferring of the sludge from one plate to another down the line to accumulate the sludge toward the end of the line.

A further preferred feature of the invention is two or more holes in each plate of substantially the same size and shape located at substantially the same distance from the center and spaced equidistance from each other. Wherein liquid containing fine grained material separated from other sludge material by the rotary action of the plate is exited from one level of plates to the next lower plates for repeated separation of sludge by rotary action of the plates; and wherein the holes of each plate can be aligned with each other or out of alignment with each other.

Another preferred feature is the thickness of the first and second plates being substantially the same, and preferably about 1 mm.

Further preferred features of the invention are that the first and second plates are preferably of metal, and that said first and second plates are solid except for the holes through which said separated liquid may flow.

Another preferred feature of the invention is the use of two compartments in the container, one compartment containing the sets of filter elements in a water tight seal and having one or more outlets positioned adjacent the holes in the first and second plates and the second compartment communicated with the one or more outlets.
A further preferred feature is the removal of sludge accumulated toward the end of the line of filter elements through an outlet by use of the pressure against the accumulated sludge by the flow of unfiltered material.

Another preferred feature is the use of two or more even numbered lines of a plurality of sets of filter elements.

BRIEF DESCRIPTION OF DRAWING

FIG. 1 is a plan view of an illustrative set of filter elements of the invention;

FIG. 2 is a partial elevational cross-sectional view of the embodiment of FIG. 1;

FIG. 3 is a plan view of an illustrative filter apparatus employed in a container with a plurality of sets of filter elements disposed in two straight lines;

FIG. 4 is an elevational view of the embodiment of FIG. 3; and

FIG. 5 is a partial elevational cross-sectional view of the filter apparatus in more detail.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

In the different figures, the same numbers will refer to the same parts. In FIGS. 1 and 2, there are depicted two sets of filter elements I and II, each comprising a plurality of circular first plates 2 and 1 having a predetermined first diameter; a plurality of circular second filter plates 1' and 2, and having a larger diameter than the predetermined first diameter. An interleaving circular plate 3 is located between the first and second
plates. Between the second and first plates in each set are similar interleaving circular plates 4. The interleaving plates 3 and 4 have a diameter smaller than the predetermined first diameter and ensure that an annular space is formed about the periphery of the interleaving plates and between the first and second plates. The various plates are solid and have as indicated holes 6, 6' through which the separated liquid and remaining sludge material flow to the next lower level.

As depicted in FIG. 2, the stacked sets may be arranged to have the first and second plates close to each other and in the same plane. The plates may be disposed with such tolerances that filtered liquid may pass, but the separated sludge material of a particle size above that desired does not pass and remains on that level and transferred from plate to plate down the line.

As depicted in FIG. 1, each of the first and second plates have one or more holes 6 and 6' located at the same distance from the center. If there are more than one hole in each plate, the two or more holes are spaced preferably equidistance from each other and at the same radius. When the first and second plates are stacked together, the holes in each need not be aligned with respect to each other, nor need the holes be at the same radial distance. The holes in each plate are preferably of the same size and shape.

The plates may be of any suitable material, such as metal and the thickness of the first and second plates may differ in accordance with the diameters of the
fine grain in suspension or emulsion desired to be filtered out. In the average case, thicknesses corresponding to the diameters of grains under 1 mm will suffice. The thickness of the first and second plate are preferably the same.

Each of the first plate, second plate and interleaving plate has a hole A or A' in the center thereof (such as in FIGS. 1 and 2) for placement of a shaft 5 or 5' therein. The plates are affixed to the shaft itself for enabling rotation of the stacked sets by the shaft 5. When the holes are at the center, by suitable adjustment of the spaces between the shafts, the degree of closeness of the plate edges can be controlled.

The total number of first and second plates 1, 1', 2, 2' in each set is preferably the same and the diameters of the first plates are different from the diameters of the second plates. The first and second plates are preferably mounted in alternate order with interleaving plates 3, 4 therebetween.

The sets I and II are positioned such that as shown in FIG. 2, the shorter first filter plate 1' of set I is in the same plane and in close proximity to the larger second filter plate 1 of set II.

In the described embodiment holes 6 and 6' are located at the same distance from the center. However the spacing is only a feature of the described embodiment and is not essential to the invention.

As depicted in FIGS. 3, 4, 5, two or more sets of interleaving elements I and II may be placed in two or more, and preferably an even number of straight lines in container 30. Container 30, which may be rectangular in shape, is
preferably water tight and has one or more supply inlets 31 and one or more exits 32. The sludge outlet 10 and the surface of the final element of each of the sets of filter elements I and II should be connected to sludge removal plate 33, 33'. The sludge outlet 10 has a door/which closes and opens. The sludge removal can be continuous and be accomplished by opening the outlet 10 and having the flow of liquid contained in the unfiltered material go through holes 6, 6', compartment 24 and outlet 32 and the remaining sludge transported by the rotation of the filter elements push out the sludge through outlet 10 and the door therein. The plate like removal device 33 is disposed between the end of the line of sets of filter elements and the sludge outlet 10, as shown in FIG. 3. Since the filter elements are all rotated in the same rotary direction, in the same line, the sludge is first separated from the liquid, moved to the outer periphery of the plates, and then transferred from plate to plate down the line, and then accumulated in increasing amounts toward the end of the line. The accumulated sludge may tend to pile up on remover plate 33.

Turning now to FIG. 5, the first plates, second plates and interleaving plates 3, 4 are mounted on shafts 5, 5'. Gears 21 are mounted on the respective shafts 5, 5' for driving the sets of filter elements in the same rows in the same direction such as shown by arrows in FIG. 3, using a motor means not shown.

Shafts 5, 5' are water-tightly sealed at the top of container 30 with packings 23 and bearing 22, and
at the bottom of container 30 with packings 23' and bearings 22'. The container 30 is preferably of water
tight construction and has two separate compartments.
The upper compartment preferably contains the filter
elements sets sealed in by plugs 25 from the lower com-
artment 24. Between the upper and lower compartments,
are one or more openings 26 located at the same distance
from the center axis and hence aligned with holes 6, 6'
of the filter plates so that the filtered liquid will pass
through holes 6, 6' and through holes 26 and collect in
the lower compartment 24 and be drained therefrom through
exit 32. Of course the lower compartment 24 is not
essential.

The filter apparatus operates as follows.

Accumulated sludge is taken out port 16 of container 30,
and port 16 is closed to be water tight by closing door
74. Unfiltered material, such as fine grain suspension
or emulsion is supplied to container 30 through one or
more inlets 31 (see FIG. 3). The container is preferably
maintained at a pressure above atmospheric pressure. After
the unfiltered material contacts the upper 1 - 3 plates
the shafts 5, 5' of the sets of elements of the same line
are all driven in the same rotary direction by motor means
transferred via gears 21 connected to the shafts. Thus,
by centrifugal force, sludge particles are separated from
the liquid and moved toward the outer periphery of the
plates. Then, at each level, the sludge is transferred
from plate 30, plate 31 - t. e. line and sludge is accumulated
toward the end of the line, such as on remover plate 33.
At the upper most level, the larger particles tend to be rotated outwardly first, and other usually smaller particles tend to remain in the liquid. That liquid which contains the remaining sludge particles after separation of the other sludge particles, flows downward through the holes 6, 6' to the next lower level whereas the same rotary action of the plates will cause other particles still in the liquid to be separated out and moved toward the outer periphery of the plates, then transferred plate to plate down the line and accumulated toward the end of the line at that level. After repeated filtering action from level to level, the remaining liquid is substantially completely filtered and exits through the bottom of the container.

In one embodiment, wherein two straight lines or rows of sets of filter elements are used, such as shown in FIG. 3, the elements in one line are rotated in one direction, and the elements in the other line are rotated in the other opposite direction. In this manner, and with the supply inlet located toward the end of the line (see FIG. 3), the sludge would tend to be transferred from right to left at the outer areas and from the left to right in the center areas. This is advantageous in that the sludge would tend to accumulate at the take out port 10 and sludge removal is simplified and made more efficient.

The rotary speed of the filter elements may be varied according to the material being filtered. In one embodiment, the rotary speed was about one revolution per 15 minutes.
between the first and second plates 1,1' and 2,2' because of the close tolerances therebetween. The particles are separated from the liquid by centrifugal force of the plates. There will be some escape but most of the separation will take place at the upper most levels and fewer and fewer grains will be filtered as the material flows down to the lower levels. The sludge separated from the liquid by the rotating action will tend to move toward the outer peripheries of the plates, and then transferred from plate to plate down the line and accumulated toward the end of the line. The same direction of rotation of the sets of plates in each line enables this accumulation to take place. The filtered liquid which, toward the upper levels, contains some sludge left over after separation of other sludge material by the rotating action, travels through holes 6,6' and then (in case of Fig. 5), through openings 26 and collect in compartment 24 for drainage through exits 32. Container 30 usually is not filled completely with unfiltered material since each lower level of plates would tend to have fewer and fewer particulate material, and only filtered liquid remains toward the bottom and flows through holes 6,6'.

The grains may collect on the surfaces of the plates and thicken in layers with passage of time and increase of unfiltered material. This is more likely toward the end of the line rather than toward the front of the line. The accumulation may be such that the pressure from the flow of unfiltered material may not be sufficient to remove the accumulated sludge. The sludge
may be removable using mechanical means, such as manually
taking out the take-out plate 33 after opening door and
outlet 10. The sludge usually builds up on take-out plate
33, and the pressure of the flow of unfiltered material
would be usually sufficient to push out the accumulated
sludge through outlet 10. Also, entire sets of plates may
be removed, cleaned and replaced in another embodiment.
Advantageously, sludge removal is efficient and convenient.
It may be done continuously while continuing the filtering
action.

Repeating the above operations makes possible
rapid, convenient, easy separation and collection of fine
grains and liquids from emulsions and suspensions, and the
like.

Advantageously, this invention uses a plurality
of levels of separation plates which rotate in the same
rotary directions, in a line. The material to be filtered
may contain particles of sizes in a liquid. The material
to be filtered out starts at the top level of the plates
at the front of the line. By centrifugal force, the
rotating plates will separate the sludge from the liquid
and cause the sludge to move toward the outer peripheries
of the plates. The remaining filtered liquid which may
contain further sludge particles, goes through holes 66' to
the next lower level, whereat the same centrifugal action
will separate the grains from the liquid and so on until
the remaining liquid toward the lower parts is substantially
filtered and contains only particles of the size desired or
smaller. The plates are situated with respect to each other

- 15 -
in a manner that liquid and particles smaller than the size desired may go between the plates, but other larger particles will not go through the spaces between the plates. At each level, the sludge which moves toward the outer periphery is transferred from plate to plate down the line until it is accumulated, for example, on remover plate 33, toward the end of the line. The accumulated sludge may be removed through door 34 either mechanically or by force of the other sludge moving from the front of the line toward the end of the line forcing out the accumulated sludge.

The foregoing description is illustrative of the principles of the invention. Numerous other variations and modifications thereof would be apparent to the worker skilled in the art. All such modifications and variations are to be considered to be within the spirit and scope of the invention.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A filter apparatus comprising
 (A) a container having one or more openings for supplying unfiltered material and one or more exits for removing filtered liquid material;
 (B) at least one line of sets of rotatable filter elements disposed within said container, each set comprising
 (i) a plurality of circular first plates having a first diameter, each plate having at least one hole at a predetermined distance from the center thereof,
 (ii) a plurality of circular second plates having a diameter larger than said first diameter, each plate having at least one hole at said predetermined distance from the center thereof, and being of a size and shape substantially similar to said at least one hole in said first plates,
 (iii) a plurality of interleaving circular plates of a third diameter smaller than said first diameter such that said interleaving plates do not block the hole in said first and second plates, and
 (iv) means for holding said first plate, interleaving plate, and second plate in that order in each set with their centers in substantially the same axis and within said container in substantially sealed manner, whereby said at least one hole of each of said first and second plates are aligned with said one or more exits, and
 with said sets of rotatable filter elements relatively positioned such that one set is disposed adjacent the other

No. 22493/77
Proposed: 22/2/79
set with the first plates of one set adjacent the corresponding second plates of the other set and in the same plane; and

(C) means for moving said sets of filter elements in the same rotary direction,

whereby unfiltered material is supplied to said one or more openings of said container and by centrifugal force of the rotating plates sludge is separated from liquid and moved toward the outer periphery of the plates and then transferred from one plate to the next down the line and accumulated toward the end of the line, and filtered liquid material remaining after the separation, passes through said at least one hole of said first and second plates and sludge remaining in said filtered liquid material is on the next lower level, separated by similar rotation of said plates and so moved toward the outer peripheries of the plates, then transferred from plate to plate in said one line and accumulated toward the end of the line at said next lower level, with the again filtered liquid material dropping level by level until substantially filtered liquid is removed from said one or more exits.

2. The filter apparatus of claim 1, wherein said means for moving comprises gear means and shaft means located at the centre of said first and second plates.

3. The filter apparatus of claim 1 wherein more than two holes are provided in each of said first and second plates, said holes being located at substantially the same distance from the centres of the respective first and second plates.

- 18 -
4. The filter apparatus of claim 1, wherein the thickness of each of said first and second plates are substantially the same.

5. The filter apparatus of claim 1, wherein the thickness of said first and second plates are about 1mm.

6. The apparatus of claim 1, wherein said first and second plates are of metal.

7. The apparatus of claim 1, wherein said container has two compartments with the first, second and interleaving plates substantially sealed in one compartment, with said one or more exits leading from said one compartment to the other compartment, wherein said filtered liquid material is collected.

8. The apparatus of claim 1, wherein at least two lines are provided with each line having a plurality of sets of elements, and said means for moving rotates the sets of elements in one line in the same rotary direction and the sets of elements in the second line in the opposite rotary direction, and said unfiltered material is supplied in two inlet disposed at one end of said lines, and sludge is accumulated toward said end of said line.

9. The filter apparatus of claim 1, wherein said container is at a pressure above atmospheric pressure.

10. A filtering apparatus as claimed in any preceding claim wherein the height of the space formed between said first and second plates about the periphery of said interleaving plates, is adjusted to minimise the passage of sludge therethrough.

- 19 -
11. A filter apparatus according to claim 1 and substantially as hereinbefore set forth with reference to any one of Figures 1 to 5 of the accompanying drawings.

DATED THIS 18TH DAY OF JANUARY, 1979.

Sanae HAYASHIDA and Gorou SASAKI
By Their Patent Attorneys:

CLEMENT HACK & CO.
