COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

CONVENTION APPLICATION FOR A STANDARD PATENT

I, STEPHEN LESLIE ROSE, of The Cottage, Schoolhouse Lane, Abbots Bromley, Nr. Rugeley, Staffordshire WS15 3BT, United Kingdom hereby apply for the grant of a standard patent for an invention entitled:

"BUILDING CLADDING SYSTEM"

which is described in the accompanying complete specification.

DETAILS OF BASIC APPLICATION(S):

Number of basic application: 8719178

Name of Convention Country in which Basic Application was filed: United Kingdom

The address for service is:

G.R. Cullen & Co.,
79 Eagle Street,
Brisbane, Queensland, 4000,
Australia.

DATED this 12th day of August, 1988

STEPHEN LESLIE ROSE

By: [Signature]
Registered Patent Attorney

TO: THE COMMISSIONER OF PATENTS
AUSTRALIA.
COMMONWEALTH OF AUSTRALIA
THE PATENTS ACT 1952
DECLARATION IN SUPPORT OF AN
APPLICATION FOR A PATENT
In support of the Application made for a patent
for an invention entitled:
"Building Cladding System"

I/we

STEPHEN LESLIE ROSE
of The Cottage, Schoolhouse Lane, Abbots Bromley, Nr. Rugeley,
Staffordshire WS15 3BT, United Kingdom.
do solemnly and sincerely declare as follows:-

1. I am/ we are the applicant(s) for the patent - ROSE, STEPHEN LESLIE
(or, in the case of an application by a body corporate)

2. I am/ we are the actual inventor(s) of the invention referred to in the basic
application(s)
(or, where a person other than the inventor is the applicant)

3. The basic application(s) as defined by Section 141 of the Act was/were made
in United Kingdom on 13.8.87
by ROSE, STEPHEN LESLIE

4. The basic application(s) referred to in paragraph 2 of this Declaration was/were
the first application(s) made in a Convention country in respect of the invention(s)
the subject of the application.

Declared at Birmingham this 5th day of August 1988.

To: The Commissioner of Patents

G. R. CULLEN & COMPANY

Signature of Declarant(s)
A building cladding system comprising an infill panel mounted on frame members wherein at least one frame member has an outwardly facing abutment part against which an inwardly facing part of the infill panel is clamped by a clamping member, operating means to move the clamping member into clamping engagement with the infill panel and said means being accessible from a driving position inwardly of the panel.

A system according to Claim 1 wherein said operating means to move the clamping member comprises a first member extending inwardly from the clamping member to an intermediate position disposed inwardly of the panel and operatively engaged with means extending from the Intermediate position to said driving position, whereby the first member may be driven from said driving position, to move the clamping member into clamping engagement with the infill.

A method of cladding a building comprising mounting an infill panel on frame members wherein at least one frame member has an outwardly facing abutment part and clamping the infill panel against the abutment part by moving a clamping member into clamping engagement with the infill via an operating means which is accessible from a driving position inwardly of the panel.
COMMONWEALTH OF AUSTRALIA

The Patents Act 1952-1969

Name of Applicant: STEPHEN LESLIE ROSE

Address of Applicant: THE COTTAGE,
SCHOOLHOUSE LANE,
ABBOTS BROMLEY,
NR. RUGELEY,
STAFFORDSHIRE WS15 3BT,
UNITED KINGDOM

Actual Inventor: APPLICANT

Address for Service: G.R. CULLEN & COMPANY,
Patent & Trade Mark Attorneys,
Dalgety House,
79 Eagle Street,
BRISBANE. QLD. 4000
AUSTRALIA

COMPLETE SPECIFICATION FOR THE INVENTIONENTITLED:

"BUILDING CLADDING SYSTEM"

The following statement is a full description of the invention including the best method of performing it known to us:
Title: "Building Cladding System".

Description of Invention.

This Invention relates to a building cladding system comprising an infill member mounted on frame members.

An object of the invention is to provide a new and improved building cladding system.

According to the present Invention we provide a building cladding system comprising an infill panel mounted on frame members wherein at least one frame member has an outwardly facing abutment part against which an inwardly facing part of the infill panel is clamped by a clamping member, operating means to move the clamping member into clamping engagement with the infill panel and said means being accessible from a driving position disposed inwardly of the panel.

Said operating means to move the clamping member may comprise a first member extending inwardly from the clamping member to an intermediate position disposed inwardly of the panel and operatively engaged with means extending from the intermediate position to said driving position whereby the first member may be driven, from said driving position, to move the clamping member into clamping engagement with the infill.

Said means extending from the intermediate position to said driving position may comprise a second member which extends laterally of the first member.

The first and second members may be operatively connected by a cam surface associated with one member and a cam follower associated with the other member.

The cam surface may comprise an inclined plane moveable by the second member and engaged by a cam follower connected to the first member.

The cam surface may be movable in a direction generally parallel to the infill panel and the cam follower may be moveable in a direction generally perpendicular to the infill panel.
The cam surface may be mounted on a transom and/or mullion and be moveable longitudinally thereof by the second member which may be moveable longitudinally thereof.

The first member may have a part which extends within an associated mullion or transom for engagement with the second member.

At least one frame member may have at least part of said outwardly facing abutment part removably attached to the remainder of the frame member and the frame member may comprise a transom and the transom may support the bottom edge of the panel.

Opposed upright frame members may have opposed transversely facing abutment parts which are spaced so as to permit of the infill panel being manoeuvred past associated outwardly facing abutment parts of the upright members.

An embodiment of the invention will now be described in more detail by way of example with reference to the accompanying drawings wherein;

FIGURE 1 is a fragmentary perspective view of part of a building clad with a building cladding system embodying the invention,

FIGURE 2 is a fragmentary vertical section through part of the building of Figure 1,

FIGURE 3 is a transverse cross-section through part of a mullion of the building of Figure 1,

FIGURE 4 is a transverse cross-section through another part of a mullion of the building of Figure 1,

FIGURE 5 is a transverse cross-section through a transom of the building of Figure 1, and

FIGURE 6 is a diagramatic illustration of an operating means employed in the building of Figure 1.

Referring to Figure 1 of the drawings, part of a building is illustrated comprising vertical structural columns 10 of conventional construction such as steel or concrete supporting a plurality of floor slabs 11 likewise of conventional construction, for example, concrete. Fixed by rag bolts 12 to the floor slabs 11 are angle brackets 13 to which are fastened, by bolts 14, a pair of mullion cleats 15, 16.

Referring now particularly to Figures 2 and 3 each mullion fixing cleat 15, 16 comprises a channel part defined between spaced parallel limbs 17 and a base 18. A mullion 19 of generally rectangular cross-section is received
within the channel and is secured to the limbs 17 by fixing bolts 20. The limbs 17 have outwardly extending flanges 21 which receive the bolts 14 for clamping to the bracket 13. The base 18 has a generally half cylindrical projection or rib 22 having an internally threaded bore 23. An adjusting ball screw 24 is threadedly received within the bore 23 of the upper, 15, of each pair of mullion cleats 15, 16 and its ball end 25 bears on the upper end of the bore 23 in the lower mullion cleat 16. Thus, by rotating the screw 24, the relative spacing between the pair of mullion cleats 15, 16 can be adjusted during assembly of the building prior to tightening of the bolts 14 to the bracket 13. The holes for the bolts 14 in the bracket 13 and/or the limbs 15 are formed, for example by being elongated in the vertical direction, to permit of such adjustment.

In the present example an upstand wall 30 is built in brick on the floor slab 11 and extends over a part of the height of each storey and is capped by a window sill 31. The floor slab 11 in the present example is provided with a suspending ceiling 32 and a suspended floor 33. The wall 30 in the present example carries a radiator 34. It should be appreciated that the wall 30 may be made of other material can be of different height and of course need not carry a radiator and neither need the floor slab be provided with a suspended floor and/or ceiling.

Extending horizontally between the mullions 19 are transoms 35a, b. In the present example the transoms 35a, b are positioned, as shown, so that one (35a) is spaced relatively closely above and another (35b) relatively closely below each floor slab 11 so that an opaque infill or cladding panel P can be received between the pair of transoms 35a, b positioned on opposite sides of an associated floor slab 11 whilst a glass glazing infill panel 45 can be received between the pair of transoms 35a, b which are positioned between adjacent floor slabs 11. The transoms 35a, b are positioned so that the opaque panel P obscures the upstand wall 30, floor slab 11 and space above the suspended ceiling 32.

As best shown in Figures 4 and 5 at the vertical position of transom 35a, b a transom cleat 36 is bolted to each mullion 19 at 37 whilst the cleat 36 is bolted to the transom 35a, b as shown at 38. As shown in Figures 3 and 4 each mullion is of generally rectangular box configuration having spaced parallel side walls 40 and spaced parallel front and rear walls 41, 42 respectively. The front wall 41 is provided with a pair of longitudinally
extending recesses 43 which receive sealing strips 44 of conventional configuration which sealingly engage a cladding Infill panel such as a double glazing unit 45. The Infill panels 45 are clamped to the mullion by means of a pressure bar 46 of generally T shape in cross-section and having a pair of longitudinally extending grooves 47 to receive sealing strips 48 similar to the sealing strips 44 and which are held in sealing engagement with the panels 45 by the pressure bar 46. The force exerted by the pressure bar 46 through the sealing strips 48 maintains the Infill panels in position.

At a level above the upstand wall 30 the pressure bar 46 is urged into clamping engagement with the panels 45 by means of a bolt 49 received in a screw threaded bore 50 in the end of a stem part 51 of the pressure bar 46. The bolt 49 passes through a longitudinally extending slot 52 in the front wall 41 which is bridged by a channel formation 53 formed on the internal surface of the front wall 41.

The base of the channel formation 53 is provided with discrete apertures 54 through which the bolts 49 pass.

The heads 56 of the bolts 49 are accessible from the interior of the building through a longitudinally extending slot 57 formed in the rear wall 42, which is bridged by a channel formation 59, formed on the internal surface of the rear wall 42. The base of the channel formation 59 is provided with discrete apertures 58 at the appropriate position for each bolt 49.

The slot 57 is closed in the region of the mullion fixing cleats by a nose provided on the mullion fixing cleats and by a suitable closure member of plastics or aluminium at positions spaced from the mullion fixing cleats.

A thermal break insulating member T of suitable material is provided between the stem 51 and the interior of the channel formation 53.

Referring now to Figure 4, at positions behind the upstand wall 30 where access cannot be gained to permit use of bolts 49 ball headed screw members 60 are engaged with the stem part 51 of the pressure bar 46 and project through slot 52, aperture 54 and aperture 58 into the interior of the channel formation 59. Longitudinally slidably mounted within the channel 59 is a channel member 61 having fixed thereto a plurality (corresponding to the member of screw members 60) of riser blocks 62 of suitable plastics material such as nylon. The riser blocks 62 have an inclined cam surface 64 at the higher end of which is provided a detent recess 65 which receives the ball head 63 when the assembly is in its securing position hereinafter to be described.
When the infill panel 45 is in its in-use position, the channel 61 extends upwardly and downwardly to positions generally midway between adjacent pairs of transoms 35a, b and access to the channel 61 to move the channel downwardly as hereinafter described, to secure the panel, is achieved from above, after removing the appropriate closure member along the channel 57 above wall 30. To move the channel 61 in an opposite direction i.e. upwardly, to enable a panel 45 to be replaced for example, access to the channel 61 is achieved from below, again after removing the appropriate closure member between the ceiling 32 and above the wall 30 of the floor below.

Referring now to Figure 5, each transom 35a, b comprises a generally rectangular elongate box section member 70 having at one end a projecting nose part 72 on the top of which an infill panel 45 is supported. The box section part 70 is provided with a longitudinally extending groove 73, similar to the grooves 43 of the mullions, in which is received a sealing strip 74 similar to the sealing strips 44. At the top of the box section part 70 is provided a glazing bead 75 which is retained on the part 70 by engagement of tongue parts 76 in recesses 77 of the part 70. A mastic seal 78 is provided between the glazing bead 75 and the part 70 and the glazing bead 75 has a groove 79 to mount a sealing strip 80 similar to the sealing strip 74.

Infill panels 45 are clamped against the sealing strips 74, 80 by a pressure bar 81 similar to the pressure bar 46 as hereinbefore described and carrying sealing strips 82. The stem 83 of the pressure bar 81 receives, in a threaded bore 84, one end of ball screws 85 which engage plastic riser blocks 86 carried in a channel 87 which is slidable longitudinally within a channel formation 88, all similar to the corresponding parts of the mullion. Spacer blocks 89 are provided beneath the infill panel 45 which is supported on the nose part 72. A thermal break insulator T of suitable synthetic plastics material is provided between the pressure bar 81 and its stem 83 and the nose part 72 in a similar manner to the thermal insulator T provided on the mullions. A cover cap 90 is clipped to the pressure bars 46, 81.

To erect the cladding, initially the transoms 35b below the floor slabs 11 are secured to their associated mullions and have the glazing beads 75 mounted thereon. The bolts 49 are slackened so that the pressure bar 46 is spaced away from the front surface 41 of the mullions with clearance for the panels 45 to be used and the channels 61 of the mullions are in the position shown in Figure 6A so that the pressure bar 46 is also in such a spaced
position in regions longitudinally of the mullions aligned with the upstand wall 30. Similarly, the sliding channel 87 of the transoms is moved in a direction so that the ball head of the screw 85 is at the lower end of the rising blocks so that the clamping bar 81 of the transom is similarly well spaced from the front surface of the part 70.

A cladding panel P is then offered up to its aperture defined by the transom 35b and a pair of mullions by offering a first vertical side of the panel into the recess afforded between the pressure bar 46 and front surface 41 of one of the mullions to give room for the opposite vertical side of the panel to move past the other mullion. The panel is then centralised so that opposite edge portions are received in the recesses of adjacent mullions between the pressure bar 46 and respective front surface 41.

At the same time the panel is dropped into the corresponding space of the transom 35b.

A transom 35a at the level of the top of the wall 30 is then fastened between its mullions by transom cleats 36 so that the top edge of the panel P is received in the recess between the clamping bar 81 and the box section 70 below the nose part 72. The transoms 35a at this level have the glazing beads 75 removed so that said infill panels 45 can be manoeuvred into position, as described above, beneath the transom next above, i.e. the transom 35b below the next above floor slab and then, when centralised between the mullions, the panel 45 is raised and the spacer blocks 89 inserted so that the top edge of the panel 45 is received in the recess between the clamping bar 81 and the box section 70 below the nose part 72 of the transom 35b. The glazing bead 75 is then engaged with the transom 35a.

The channels 61 of the mullions are then pushed downwardly in any convenient manner to cause the heads 63 of the screws 60 to move along the riser block 64 until they are received in the detent recesses 65 and so clamp the pressure bars 46 against the panels. Similarly, the channel 87 of the transom is slid to cause the pressure bar 83 thereof to be moved into clamping engagement with the panels.

In this example the pressure bars above the wall 30 are clamped into position using the screws 49 and similar screws 49 may be provided on the transoms. Of course, if desired, sliding channels and riser blocks together with ball headed screws may be used throughout the cladding system if desired.
Removal of the panels, for example, to replace a glazing or an opaque panel is essentially the reverse of the above described operation.

Although in the above described example the glazing panels have been shown as double glazed panels in which the inner sheets are engaged by an outwardly facing abutment part of the mullion and transom (provided by the seals 44 and 73, 80 respectively) and the outer sheets are engaged by a clamping member (provided by the pressure bar 46). If desired the infill panel may be of any other desired type and may, for example, have a peripheral frame in which an infill sheet or sheets is or are mounted, the frame being engaged by the outwardly facing abutment part and/or clamping member.

The features disclosed in the foregoing description, or the accompanying drawing, expressed in their specific forms or in terms of a means for performing the disclosed function, or a metal or process for attaining the disclosed result, or a class or group of substances or compositions, as appropriate, may, separately or any combination of such features, be utilised for realising the invention in diverse forms thereof.
The claims defining the invention are as follows:

1. A building cladding system comprising an infill panel mounted on frame members wherein at least one frame member has an outwardly facing abutment part against which an inwardly facing part of the infill panel is clamped by a clamping member, operating means to move the clamping member into clamping engagement with the infill panel and said means being accessible from a driving position inwardly of the panel.

2. A system according to Claim 1 wherein said operating means to move the clamping member comprises a first member extending inwardly from the clamping member to an intermediate position disposed inwardly of the panel and operatively engaged with means extending from the intermediate position to said driving position, whereby the first member may be driven from said driving position, to move the clamping member into clamping engagement with the infill.

3. A system according to Claim 2 wherein said means extending from the intermediate position to said driving position comprises a second member which extends laterally of the present member.

4. A system according to Claim 3 wherein the first and second members are operatively connected by a cam surface associated with one member and a cam follower associated with the other member.

5. A system according to Claim 4 wherein the cam surface comprises an inclined plane movable by the second member and engaged by a cam follower connected to the first member.

6. A system according to Claim 4 or Claim 5 wherein the cam surface is movable in a direction generally parallel to the infill panel and the cam follower is movable in a direction generally perpendicular to the infill panel.

7. A system according to Claim 6 wherein the cam surface is mounted on a transom and/or mullion is movable longitudinally thereof by the second member.
8. A system according to Claim 7 wherein the second member is movable longitudinally of the transom and/or mullion.

9. A system according to Claim 8 wherein the first member has a part which extends within an associated mullion or transom for engagement with the second member.

10. A system according to any one of the preceding claims wherein at least one frame member has at least part of said outwardly facing abutment part removably attached to the remainder of the frame member.

11. A system according to Claim 10 wherein said frame member having the abutment part removably attached thereto is a transom.

12. A system according to Claim 11 wherein the transom supports the bottom edge of the panel.

13. A system according to any one of the preceding claims wherein opposed upstanding frame members have opposed transversely facing abutment parts which are spaced so as to permit of the infill panel to be manoeuvred past associated outwardly facing abutment parts of the upright members.

14. A building cladding system substantially as hereinbefore described with reference to the accompanying drawings.

15. A building when clad with a building cladding system according to any one of the preceding claims.

16. A method of cladding a building comprising mounting an infill panel on frame members wherein at least one frame member has an outwardly facing abutment part and clamping the infill panel against the abutment part by moving a clamping member into clamping engagement with the infill via an operating means which is accessible from a driving position inwardly of the panel.

17. Any novel feature or novel combination of features disclosed herein and/or shown in the accompanying drawings.

DATED this 12th day of August, 1988.

STEPHEN LESLIE ROSE
By his Patent Attorneys
G.R. CULLEN & CO.
END