Title	Floor covering, consisting of hard floor panels and method for manufacturing such floor panels
International Patent Classification(s)	E04F 015/04 F16B 005/00
Application No:	200020703 2000.03.07
Publication Date:	2000.06.01 2000.06.01
Accepted Journal Date:	2002.09.19
Divisional of:	199732569
Applicant(s):	Unilin Beheer B.V.
Inventor(s):	Stefan Simon Gustaaf Moriau; Mark Gaston Maurits Cappelle; Bernard Paul Joseph Thiers
Agent/Attorney:	DAVIES COLLISON CAVE, GPO Box 3876, SYDNEY NSW 2001
Related Art:	WO 96/27221 JP 3169967 JP 7180333
ABSTRACT

Floor covering, consisting of hard floor panels which, at least at the edges of two opposite sides, are provided with coupling parts, cooperating with each other, substantially in the form of a tongue and a groove, characterised in that the coupling parts are provided with integrated mechanical locking means which prevent the drifting apart of two coupled floor panels into a direction (R) perpendicular to the related edges and parallel to the underside of the coupled floor panels.
Applicant(s): Unilin Beheer B.V.
Hoogeveenenweg 28
LV Nieuwerkerk aan de IJssel NL-2913
The Netherlands

Address for Service: DAVIES COLLISON CAVE
Patent & Trade Mark Attorneys
Level 10, 10 Barrack Street
SYDNEY NSW 2000

Invention Title: Floor covering, consisting of hard floor panels and method for manufacturing such floor panels.

The following statement is a full description of this invention, including the best method of performing it known to me:-
FLOOR COVERING, CONSISTING OF HARD FLOOR PANELS AND METHOD FOR MANUFACTURING SUCH FLOOR PANELS

This invention relates to a floor covering.

According to one aspect of the present invention there is provided a floor covering including two or more floor panels which are generally square or rectangular in shape, each said floor panel including a composite core of HDF board or MDF board and having a first pair of opposed side edges and second pair of opposed side edges, said second pair of side edges including coupling parts formed in one piece with said core, said coupling parts configured to cooperate by coupling with cooperative coupling parts of an adjacent one of said panels; said coupling parts comprising a tongue and a groove including locking elements extending in the longitudinal direction of said second pair of side edges, said locking elements configured to lock together coupled adjacent ones of said panels in a direction perpendicular to the plane of the coupled panels and parallel to the plane of the coupled panels when cooperative coupling parts of the panels are engaged, the configuration being such that when adjacent ones of said floor panels are disposed substantially in the common plane of said floor panels, said floor panels are capable of being coupled together by laterally shifting the floor panels towards each other substantially in the said common plane such that the coupling parts snap together.

Preferably, the coupling parts and locking means are configured in such a manner that two of said panels can be engaged and/or disengaged by a relative turning movement between said panels with respect to one another.

In one preferred form the panels also include at the edges of the first pair of opposite sides further coupling parts substantially in the form of a tongue and a groove, whereby said further coupling parts are provided with mechanical locking means which are made in one piece with the core of the panels, whereby, in the coupled condition of two of such panels at the edges of said first pair of opposite sides, the respective coupling parts together with the respective locking means provide for locking in a direction perpendicular to the plane of the panels, as well as in a direction perpendicular to the coupled edges and
parallel to the plane of the panels.

Preferably, the coupling parts and locking means at the edges of at least one pair of opposite sides are configured such that two of said panels at these edges can be engaged and/or disengaged by a relative turning movement between said panels.

Preferably, at least the coupling parts and locking means at the edges of the first pair of opposite sides are configured in such a manner that two of said panels at these edges can be engaged at least by a relative turning movement between said panels.

Preferably, the coupling parts and locking means at the edges of the first pair of opposite sides are configured in such a manner that two of these floor panels at these edges can be engaged by shifting them laterally in a substantial planar fashion to each other.

Preferably, the coupling parts and locking means at the edges of the first pair of opposite sides are configured in such a manner that two of such panels at these edges can be laterally engaged exclusively by a relative turning movement between the panels.

Preferably, the coupling parts and locking means at the edges of both pairs of opposite sides are configured in such a manner that two of said panels at these edges can be laterally engaged by a turning movement and/or can be disengaged by a turning movement between said panels.

Preferably, the floor panels comprise elongated panels said first pair of edges being located at the long sides of the panels, and the second pair of edges being located at the short sides of the panels.

Preferably, the locking means at least at one pair of edges comprise a locking element in the form of a protrusion provided at the lower side of the tongue and a locking element formed by a recess and/or an upward directed portion in the lip which borders the lower side of the groove.
Preferably, the edges of at least one pair of opposite sides comprises coupling parts which are realised in the shape of a tongue and a groove wherein the lip bordering the lower side of this groove extends beyond the lip bordering the upper side of this groove and wherein the locking means of said tongue and said groove comprise locking elements which are located at least partially in the portion of the lower lip which extends beyond the upper lip.

Preferably, the coupling parts of the edges of at least one pair of sides are provided with locking means showing contact surface which are located completely inside the groove.

Preferably, the coupling parts and the locking means are configured such that the panels in coupled condition, at the related edges, are connected in a manner free of play.

Preferably, the locking means of the edges of at least one pair of sides are provided with locking elements comprising contact surfaces which are perpendicular to the plane of the panels.
THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY
THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY
THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY
With the intention of better showing the characteristics according to the invention, in the following, as an example without any limitative character, several preferred forms of embodiment are described, with reference to the accompanying drawings, wherein:

5 figure 1 represents a floor panel of a floor covering according to the invention;

figure 2, on a larger scale, represents a cross section according to line II-II in figure 1;

10 figures 3 and 4 represent how two floor panels with coupling parts according to figure 2 match into each other;

figure 5, on a larger scale, represents a cross section according to line V-V in figure 1;

15 figures 6 and 7 represent how two floor panels with coupling parts according to figure 5 match into each other;

figures 8 to 11 represent a number of variants of coupling parts of floor panels;

20 figure 12 schematically represents how the floor parts can be provided with coupling parts;
figure 13 represents a cross-section according to line XIII-XIII in figure 12;

figures 14 to 21, on a larger scale and in cross section, represent the penetration of the milling cutters which are indicated in figure 12 with arrows F14 to F21;

figure 22 represents a floor panel according to the invention;

figure 23, on a larger scale, represents the coupling of two floor panels of figure 22;

figures 24 and 25 represent two manners of coupling floor panels according to figure 22 to each other.

The invention relates to a floor covering which is composed of hard floor panels 1, for example, such as shown in figure 1.

These floor panels 1 can be of various shape, for example, rectangular or square, or of any other shape.

In the most preferred form of embodiment, they shall be manufactured in an elongated form, such as shown in figure 1, for example, with a length of 1 to 2 meters. The thickness, however, can also vary, but is preferably
0.5 to 1.5 cm, and more particularly 0.8 cm.

Each floor panel 1 is, at least at the edges of two opposite sides 2-3, provided with coupling parts 4-5 which allow that two adjacent floor panels 1 can be coupled to each other.

According to the invention, the coupling parts 4-5, as represented in the figures 2 to 4, are provided with integrated mechanical locking parts 6 which prevent the drifting apart of two coupled floor panels 1 into a direction \(D \) perpendicular to the respective sides 2-3 and parallel to the underside 7 of the coupled floor panels 1; the coupling parts 4-5 and the locking means 6 are realized in one piece with the core 8 of the floor panels 1; the coupling parts 4-5 have such a shape that two subsequent floor panels 1 can be engaged into each other exclusively by snapping-together and/or turning, whereby each subsequent floor panel 1 can be laterally inserted into the previous; and the coupling parts 4-5 preferably provide in an interlocking free from play according to all directions in the plane which is situated perpendicular to the aforementioned edges.

In the case of floor panels 1 with an elongated shape, as represented in figure 1, the respective coupling parts 4-5 are situated at the longitudinal sides 2-3.

The coupling parts 4-5 can be realized in various forms, although the basic forms thereof will always be formed by a tongue 9 and a groove 10.

In the form of embodiment of figures 2 to 4, the related floor panel 1 is provided with coupling parts 4-5 and locking means 6 which allow to mutually engage two floor panels 1 by means of a turning movement, without the
In the represented example, the locking means 9 consist of a first locking element 11, formed by a protrusion with a bent round shape at the lower side 12 of the tongue 9, and a second locking element 13, formed by a recess with a bent hollow shape in the lower wall 14 of the groove 10.

The locking elements 11-13 provide for that two floor panels 1 which are coupled to each other can not perform a lateral movement in the horizontal plane in respect to each other.

In order to obtain that two floor panels 1 can be inserted into each other by means of a turning movement, the curvatures preferably are circle-shaped. The bottom side 12 has a curvature with a radius R₁, the center of which coincides with the related upper edge 15 of the floor panel 1, whereas the lower wall 14 shows a curvature with a radius R₂ which is equal to the radius R₁, but whereby its center coincides with the related upper edge 16. Radii R₁ and R₂ may also be applied which are larger or smaller than the distance to the upper edge 15, 16 respectively, and/or which differ from each other in size.

The upper side 17 of the tongue 9 and the upper wall 18 of the groove 10 are preferably flat and preferably are situated in the horizontal plane.

The front sides 19 and 20 of the tongue 9 and the groove 10 of two interlocked floor panels 1 preferably do not fit closely against each other, such, that in between an intermediate space 21 is created into which possible dust remainders or such can be pushed away by means of the
The tongue 9 and the groove 10 preferably have shapes which are complementary to each other, such that the tongue 9 in the engaged condition of two floor panels 1 precisely sits against the upper wall 18 and the lower wall 14 of the groove 10, whereby a pressure P, executed onto the upper lip 22, is received not only by this lip 22, but by the complete structure, because this pressure can be transmitted through the tongue 9 and the lower lip 23.

It is, however, clear that a number of minor deviations to these complementary forms can occur which, anyhow, have no or almost no effect upon the receipt and transmission of pressure forces. For example, a chamfer 24 and a recess 25 can be provided, as represented in figures 2 to 4, as a result of which is obtained that the subsequent floor panels 1 can easily be pushed into each other, such that no possible ridges or such render the good insertion difficult.

As represented in the figures 5 to 7, the floor panels 1 according to the invention can also, along the sides 26-27 which are at a right angle to the sides 2-3, be provided with coupling parts 28-29 which have locking means 30, too. The coupling parts 28-29 are preferably also realized in the shape of a tongue 31 and a groove 32. Hereby, the locking means 30 do not have to be of the same nature as the locking means 6.

Preferably, at the sides 26-27 locking means are applied which allow for an engagement and interlocking by means of a translation movement T only, as represented in figures 6 and 7. To this aim, the locking means 30 consist of a snap-together connection with locking
elements 33 and 34 which grip behind each other.

As represented in figures 5 to 7, the locking element 33 preferably consists of a protrusion of the lower side 35 of the tongue 31 which can take place in a recess 36 in the lower wall 37 of the groove 32. The locking element 34 is formed by the upward directed part which limits the recess 36.

In this case, the locking elements 33-34 have contact planes 38-39 which are parallel to each other and preferably extend in an inclined manner, according to a direction which simplifies the snapping-together. The tangent line L which is determined by the contact planes 38-39, hereby forms an angle A with the underside 7 which is smaller than 90°.

The locking elements 33-34 preferably are provided with inclined portions 40 and 41 which, when engaging two floor panels 1, cooperate with each other in such a manner that the locking elements 33-34 can easily be pushed over each other until they grip behind each other by means of a snap-together effect.

The thickness W1 of the tongue 31 preferably is equal to the width W of the groove 32, such that the upper lip 42, when exerting a pressure P, is supported by the tongue 31 which, in its turn, then is supported by the lower lip 43.

Analogous to the chamfer 24 and recess 25, a recess 44 and a chamfer 45 are provided also at the edges 28-29.

It is noted that such a snap-together coupling can also be applied at the edges 2-3. Hereby, this can be a snap-together coupling analogous to these of figures 5 to 7,
but this can also be a snap-together coupling whereby other forms of coupling parts are applied, for example, such as represented in figures 8 and 9. Contrary to the locking elements 33-34 which consist of rather local protrusions, in the forms of embodiment of figures 8 and 9 use is made of locking elements 46-47 which, in comparison to the total width B of the coupling, extend over a rather large distance.

In this case, the locking elements 46-47 are also provided at the lower side 12 of the tongue 9 and the lower wall 14 of the groove 10.

According to figure 8, the locking elements 46-47 have contact surfaces 48-49 which are at an angle with the plane of the floor panel 1. Hereby, a coupling is obtained which is interlocked in a particularly fixed manner.

As represented in figure 9, the locking elements 46-47 possibly can be realized in such a manner that substantially only a linear contact is obtained, for example, because the contact surfaces directed towards each other are realized with different curvatures.

The surfaces, directed towards each other, of the locking elements 46-47 hereby consist of bent surfaces. The tangent line L forms an angle A which is smaller than 90°, and even better is smaller than 70°.

Hereby, the locking element 46 preferably has two portions with a different curvature, on one hand, a portion 50 with a strong curvature and, on the other hand, a portion 51 with a weak curvature. The portion 50 with the strong curvature provides for the formation of a firm coupling. The portion 51 with the weak curvature
allows that the coupling parts 4-5 can be brought into each other easily. The intermediate space S forms a chamber which offers space for dust and similar which, when engaging two floor panels 1, gets there eventually.

In the case of a snap-together connection, for example, a connection, such as represented in figures 7 to 9, preferably always the tongue 9-31 has a shape, thickening towards below, which can cooperate with a widened portion in the groove 10.

In figure 10, a variant is represented whereby at least at the height of the upper edges 15-16, a sealing material 52 is provided, as a result of which a watertight sealing can be guaranteed. This sealing material 52 may consist of a strip or covering which is provided previously at the floor panel 1, either at one or both upper edges 15-16.

In figure 11, a further variant is represented, whereby the locking means 6 are formed by an upward directed portion 53 at the tongue 9 which, as a result of a turning movement, is brought behind a downward-directed portion 54 at the upper wall 18. More particularly, this is obtained by realizing the upper side 17 and the upper wall 18 with a curvature R3, the center of which is situated at the edges 15-16, and realizing the lower side 12 and the lower wall 14 with a radius R4, the center of which is also situated at the upper edges 15 and 16, respectively. These radii R3-R4 can be chosen otherwise, too.

In general, according to the invention, the difference between, on one hand, the radius R1, R3 respectively, and, on the other hand, the radius R2, R4 respectively, preferably should not be larger than 2 mm.
It is also preferred that the center of these radii is situated inside the circle C1, C2 respectively, which extends with a radius R5 of 3 mm around the upper edge 15, 16 respectively, such as, for example, indicated in figure 2.

Finally is noted that, according to the invention, the lower lip 23-43, as represented in figures 2 to 7, can be realized longer than the upper lip 22-42. This has as an advantage that the coupling parts 4-5-28-29 can be realized in an easier manner by means of a milling cutter or such. Furthermore, this simplifies the engagement of two floor panels 1, because each subsequent floor panel 1 during installation can be placed upon the protruding lower lip 23-43, as a result of which the tongue 9-31 and the groove 10-32 automatically are positioned in front of each other.

The embodiments whereby the lower lip 23 is equal to or shorter than the upper lip 22, in their turn, offer the advantage that no protruding lip 23 remains at the extreme edge of the floor which might cause problems in the finishing.

In order to allow for a smooth assembly, in order to guarantee the necessary stability and firmness and in order to limit the quantity of material to be cut away, the difference E between the upper lip 22-42 and the lower lip 23-43, measured in the plane of the floor panel and perpendicular to the longitudinal direction of the groove 10, should preferably be kept smaller than one time the total thickness F of the floor panel 1. For stability's sake, normally this total thickness F shall never be less than 5 mm.

The small dimension of the difference E offers the
advantage that the lower lip must not be strengthened by a reinforcement strip or the like.

According to a particular form of embodiment, the central line M1 through the tongue 9 and the groove 10 is situated lower than the center M2 of the floor panel 1, such that the upper lip 22-42 is thicker than the lower lip 23-43. In first instance, this is essential in this kind of connections, because then it is the lower lip 23-43 which bends, such that the upper side of the floor panel 1 is kept free of possible deformations.

As explained in the introduction, for the core 8 a material is chosen from the following series:

- a ground product which, by means of a binding agent or by means of melting together, is composed to a single compound;
- a product based on synthetic material;
- chip board with fine chips.

The invention shows its usefulness, in first instance, preferably with laminated flooring, due to the reasons explained in the introduction.

As represented in the examples of the figures 2 to 11, such laminated flooring preferably consists of a core 8 made of MDF board, HDF board or similar, whereby at least at the upper side of this core 8 one or more layers of material are provided.

More particularly, it is preferred that the laminated flooring is provided with a decorative layer 55 and a protective top layer 56. The decorative layer 55 is a layer, impregnated with resin, for example, made of paper, which can be imprinted with a variety of patterns, such as a wood pattern, a pattern in the form of stone,
cork, or similar or even with a fancy pattern. The protective top layer 56 preferably also consists of a layer saturated with resin, for example, melamine resin, made of a transparent material.

It is clear that still other layers can be applied, such as an intermediate layer 57 upon which the decorative layer 55 is provided.

Preferably, also a backing layer 58 shall be applied at the underside 7, forming a counterbalancing element for the top layers and, thus, guaranteeing the stability of the form of the floor panel 1. This backing layer 58 may consist of a material, for example paper, impregnated with a resin, for example, a melamine resin.

As represented schematically in figure 12, the tongue 9 and the groove 10, and preferably also the tongue 31 and the groove 32 are applied by means of a milling process. In the case that a profile has to be applied on all four sides, the floor panels 1 preferably shall be displaced by means of two perpendicular movements V1 and V2, whereby during the first movement profiles at two opposite edges are provided, in this case the longitudinal edges, by means of milling devices 59-60, whereas during the second movement profiles are provided at the other edges, in this case the small edges, by means of milling devices 61-62. During these processing, the floor panels 1 preferably are put with their decorative layer directed downward.

According to an important characteristic of the invention, each respective tongue 9-31 and groove 10-32 are realized by means of a milling process with at least two subsequent milling cycles by means of milling cutters which are positioned at different angles in reference to
the related floor panel 1.

This is illustrated in figures 13, 14 and 15, wherein it is represented how a groove 10 is realized by means of two milling cycles by means of two milling cutters 63 and 64. Figures 16 and 17 represent how the tongue 9 is realized by means of milling cutters 65 and 66.

The figures 18-19 and 20-21 represent similar views showing how the groove 32 and the tongue 31 are realized by means of milling cutters 67-68 and 69-70, positioned at an angle.

During each of the aforementioned milling cycles, each time substantially the final shape of one flank is realized. For example, the milling cutter 63 of figure 14 determines the final shape of the lower flank 71 of the groove 10, whereas the milling cutter 64 determines the final shape of the upper flank 72.

As mentioned in the introduction, preferably milling cutters 63 to 72 shall be applied, having diameters G which are at least 5 times, and even better at least 20 times larger than the thickness F of the floor panels 1.

Apart of the mentioned milling cutters, preferably still other milling cutters are applied, for example, in order to remove a part of the material to be removed already during a first premachining cycle.

In the figures 22 to 25, a particularly preferred form of embodiment of a floor panel 1 according to the invention is represented. Hereby, the parts which are taken over from the aforegoing forms of embodiment are indicated with corresponding references.
An important characteristic herein consists in that the coupling parts 4-5 are provided with locking means 6 which, in engaged condition, exert a tension force upon each other, as a result of which the engaged floor portions 1 are forced towards each other. As represented, this is realized preferably by providing the coupling parts with an elastically bendable portion, in this case the lip 43, which, in engaged condition, is at least partially bent and in this way creates a tension force which provides for that the engaged floor panels 1 are forced towards each other. The hereby resulting bending V, as well as the tension force K resulting herefrom, are indicated in the enlargement of figure 23.

In order to obtain that the tension force K results in pressing together the engaged floor panels 1, the bendable portion, in this case the lip 43, preferably is provided, as represented, with an inwardly inclined contact surface 73 which preferably can cooperate with a corresponding contact surface 74. These contact surfaces 73-74 are similar to the aforementioned contact surfaces 39-38 and also similar to the inclined portions of the lower lip of figures 2 to 4.

In the figures 2 and 5, the portions form complementary matching shapes; it is, however, clear that, by a modification, also a tension effect similar as in figure 23 can be realized.

Due to, on one hand, the contact under the angle A, and, on the other hand, the fact that a tension force K is created, a force component K1 is effected, as a result of which the floor panels 1 are drawn against each other.

Preferably, the angle A of the contact surfaces 73-74 in respect to the horizontal plane is situated between 30
and 70 degrees. In first instance in the case that use is
made of the embodiment whereby a tension force K is
realized, an angle A of 30 to 70 degrees is ideal in
order, on one hand, to effect an optimum pressing-
together of the floor panels 1 and, on the other hand, to
obtain that the floor panels 1 can easily be engaged,
respectively disassembled.

Although the pressing force K_1 preferably is delivered by
the aforementioned lip 43, the invention does not exclude
other forms of embodiment whereby this force is delivered
by other bendable portions.

It is noted that the bending V is relatively small, for
example, several hundredths up to several tenths of a
millimeter, and does not have an influence upon the
placement of the floor covering. Furthermore is noted
that such floor covering generally is placed upon an
underlayer which is elastically compressible, as a result
of which the bending V of the lip 43 exclusively results
in the fact that the underlayer locally is compressed
somewhat more.

Due to the fact that the lip 43 is bent apart and that it
remains somewhat bent apart in engaged position, also the
advantage is effected that, when exerting a pressure upon
the floor covering, for example, when placing an object
thereupon, the pressing-together force is enhanced and,
thus, the development of gaps is counteracted even more.

It is noted that the inventor has found that, contrary to
all expectations, an ideal tension force can be realized
by manufacturing the coupling parts 4-5, including the
locking elements 33-34, and preferably the complete core
8, of HDF board or MDF board, although these materials
only allow a minor elastic deformation.
HDF and MDF also offer the advantage that smooth surfaces are obtained, as a result of which the locking elements can be moved easily over each other.

According to a variant of the invention, the tension force can also be delivered by means of an elastic compression of the material of the coupling parts, to which end these coupling parts, and preferably the complete core 8, then have to be manufactured in an elastically compressible material.

A further particular characteristic of the embodiment of figures 22 to 25 consists in that the floor panels 1 can be engaged by means of a turning movement, as represented in figure 24, as well as by means of shifting them towards each other, as represented in figure 25, preferably in such a manner that, during the engagement by means of the turning movement, a maximum bending \(V_m \) results in the coupling parts, more particularly in the lip 43, which bending \(V_m \) is less pronounced, if not non-existent, as in the figures 2 to 4, in comparison to the bending \(V_m \) which results when the floor panels 1 are engaged by means of shifting them towards each other.

The advantage of this consists in that the floor panels 1 can be engaged easily by means of a turning movement, without necessitating a tool therefore, whereas it still remains possible to engage the floor panels also by means of shifting them. This latter is useful, in first instance, when the last panel has to be placed partially under a door frame or similar. In this case, the floor panel 1 can be pushed under the door frame with the side which does not have to be engaged and subsequently, possibly by means of tools, can be snapped into the adjacent floor panel 1.
It is noted that the shapes of the coupling parts 4-5 shown in figures 22 to 25 can also be used for the coupling parts 28-29 of the short sides.

According to the invention, in the case that the four sides 2-3-26-27 are provided with coupling parts 4-5-28-29, these coupling parts can be realized in such a manner that in one direction a firmer engagement than in the other direction is effected. In the case of elongated floor panels 1, for example, such as represented in figure 1, the locking at the small sides 26-27 preferably shall be more pronounced than at the longitudinal sides 2-3. The length of the coupling at the small sides, namely, is smaller and, in principle, less firm. This is compensated by providing in a more pronounced locking.

This difference in engagement can be obtained by realizing the contact surfaces 73-74 under different angles.

Preferably, the aforementioned protrusion, more particularly the locking element 33, is bordered by at least two portions 75-76, respectively a portion 75 with a strong inclination which provides for the locking, and a portion 76 with a weaker inclination which renders the engagement of the coupling parts easier. In the embodiment of figures 22 to 25, these portions 75-76 are formed by straight planes, but, as already described in reference to figure 9, use can also be made of curved portions 50-51. In figure 5, these are the contact surface 38 and the inclined portion 40.

In the preferred form of embodiment, the floor panels 1 according to the invention comprise coupling parts 4-5 and/or 28-29 showing one of the following or the combination of two or more of the following features:
- a curvature 77 at the lower side of the tongue 9 and/or a curvature 78 at the lip 43 which form a guidance when turning two floor panels 1 into each other, with the advantage that the floor panels 1 can be engaged into each other easily during installing;
- roundings 79-80 at the edges of the locking elements 33-34, with the advantages that the locking elements can easily shift over each other during the engagement, respectively disassembly of the floor panels 1 and that the locking elements are not damaged, for example, crumble away at their edges, even if the floor panels are engaged, respectively disassembled, repeatedly;
- dust chambers 81, or spaces 21 as in figure 4, between all sides, directed laterally towards each other, of the engaged floor panels 1, with the advantage that inclusions which get between the floor panels 1 during the engagement do not exert a disadvantageous influence upon the good engagement;
- a shaping of the tongue 9 which is such, for example, by the presence of a chamfer 82, that the upper side of the tongue 9 already with the first contact becomes situated under the lower side of the upper lip 42 when the floor panels 1 are pushed towards each other at the same level, as indicated in figure 25, with the advantage that the front extremity of the tongue 9 does not press against the front side of the upper lip 42 when the floor panels are pushed towards each other at the same level;
- a ramp surface 83, hereinbefore also called inclined portion 41, formed at the free extremity of the lower lip 43, with the advantage that the locking elements 33-34 shift smoothly over each other and that the lower lip 43 is bent uniformly;
- in the engagement direction only one important contact point which is formed by a section 84 at the
location of the top side of the floor panels 1, with the advantage that the aforementioned tension force is optimally transferred to the upper side of the floor panels 1 and that the development of openings between the floor panels 1 is counteracted;
- contact surfaces 85-86, more particularly abutment surfaces, formed by the upper side of the tongue 9 and the upper side of the groove 10 which, over the largest portion of their length, run parallel to the plane which is defined by the floor panels 1, as well as contact surfaces cooperating with each other, formed by curvatures 77-78, with the advantage that no mutual displacement in height between two engaged floor panels 1 is possible, even if the insertion depth of the tongue 9 into the groove 10 should vary due to which causes whatsoever, in other words, that no height differences may occur between the adjacent floor panels.

In the form of embodiment of figures 22 to 25, all these characteristics are combined; it is, however, clear that, as becomes evident from figures 2 to 11, these features can also be present separately or in a limited combination.

As becomes evident from figures 5 to 7 and 22 to 25, an important characteristic of the preferred form of embodiment of the invention consists in that the locking means 6, in other words, the portion providing for the snap-together and engagement effect, are situated in that portion of the lower lip 23-43 which extends beyond the upper lip 22-42, more particularly, that the lowermost point 87 of the locking part 33 is situated under the top layer of the floor panel 1. For clarity's sake, this top layer is indicated in the figures 22 to 25 only as a single layer.
It is noted that the combination of features, that the lower lip 23-43 extends further than the upper lip 22-42, that the locking means 6 are formed at least by means of a portion which inwardly slopes downward, and that this portion, at least partially, is located in the portion of the lower lip 23-43 which extends beyond the upper lip 22-42, is particularly advantageous, among others, in comparison with the couplings for floor panels described in the documents WO 94/01628, WO 94/26999, WO 96/27719 and WO 96/27721. The sloping portion offers the advantage that the floor panels 1 can be disassembled again. The fact that this sloping portion is situated in the further extending portion of the lower lip 23-43 additionally to this offers the advantage that no deformations can occur during coupling which manifest themselves up to the top layer.

According to a preferred characteristic of the invention, the aforementioned portion, i.e. the contact surface 39 or 73, preferably extends in such a manner that the distance up to the upper edge 16 diminishes from below in upward direction, in other words, such that, as represented in figure 22, the distance X2 is smaller than the distance X1. This is also the case in figure 7.

Still preferably, this portion only starts at a clear distance E1 from the upper lip 42.

It is obvious that the coupling parts 22 to 25 can also be realized by means of said milling process.

According to a particular characteristic of the invention, the floor panels 1 are treated at their sides 2-3 and/or 26-27 with a surface densifying agent, more particularly a surface hardening agent, which preferably is chosen from the following series of products:
impregnation agents, pore-sealing agents, lacquers, resins, oils, paraffines and similar.

In figure 22, such impregnation 88 is represented schematically. This treatment can be performed over the complete surface of the sides 2-3 and/or 26-27 or only over well-defined portions hereof, for example, exclusively the surfaces of the tongue 9 and the groove 10.

The treatment with a surface densifying agent offers, in combination with the snap-together effect, the advantage that in various aspects better coupling features are obtained. As a result of this, the coupling parts 4-5 and/or 28-29 better keep their shape and strength, even if the floor panels 1 are engaged and disassembled repeatedly. Especially in the case that for the core 8 use is made of HDF, MDF or similar, by means of this treatment such a better quality of surface condition is obtained, that no abrasion of material occurs during engaging, respectively during disassembling.

This treatment also offers the advantage that, at least in the case of a surface hardening, the aforementioned elastic tensioning effect is enhanced.

The present invention is in no way limited to the forms of embodiment described by way of example and represented in the figures, however, can such floor covering and the pertaining floor panels 1 be realized in various forms and dimensions without leaving the scope of the invention.

For example, the various characteristics which are described by means of the represented forms of embodiment, may be combined with each other or not.
Furthermore, all embodiments of coupling elements described before can be applied at the longer side as well as the shorter side.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", "consisting of" and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A floor covering including two or more floor panels which are generally square or rectangular in shape, each said floor panel including a composite core of HDF board or MDF board and having a first pair of opposed side edges and second pair of opposed side edges, said second pair of side edges including coupling parts formed in one piece with said core, said coupling parts configured to cooperate by coupling with cooperative coupling parts of an adjacent one of said panels; said coupling parts comprising a tongue and a groove including locking elements extending in the longitudinal direction of said second pair of side edges, said locking elements configured to lock together coupled adjacent ones of said panels in a direction perpendicular to the plane of the coupled panels and parallel to the plane of the coupled panels when cooperative coupling parts of the panels are engaged, the configuration being such that when adjacent ones of said floor panels are disposed substantially in the common plane of said floor panels, said floor panels are capable of being coupled together by laterally shifting the floor panels towards each other substantially in the said common plane such that the coupling parts snap together.

2. Floor covering according to claim 1, wherein said coupling parts and locking means are configured in such a manner that two of said panels can be engaged and/or disengaged by a relative turning movement between said panels with respect to one another.

3. Floor covering according to claim 1 or 2, wherein said panels also include at the edges of the first pair of opposite sides further coupling parts substantially in the form of a tongue and a groove, whereby said further coupling parts are provided with mechanical locking means which are made in one piece with the core of the panels, whereby, in the coupled condition of two of such panels at the edges of said first pair of opposite sides, the respective coupling parts together with the respective locking means provide for locking in a direction perpendicular to the plane of the panels, as well as in a direction perpendicular to the coupled edges and parallel to the plane of the panels.

4. Floor covering according to claim 3, wherein that the coupling parts and locking means at the edges of at least one pair of opposite sides are configured such that two of
said panels at these edges can be engaged and/or disengaged by a relative turning movement between said panels.

5. Floor covering according to claim 4, wherein at least the coupling parts and locking means at the edges of the first pair of opposite sides are configured in such a manner that two of said panels at these edges can be engaged at least by a relative turning movement between said panels.

6. Floor covering according to any of the claims 3 to 5, wherein the coupling parts and locking means at the edges of the first pair of opposite sides are configured in such a manner that two of these floor panels at these edges can be engaged by shifting them laterally in a substantial planar fashion to each other.

7. Floor covering according to claim 5, wherein the coupling parts and locking means at the edges of the first pair of opposite sides are configured in such a manner that two of such panels at these edges can be laterally engaged exclusively by a relative turning movement between the panels.

8. Floor covering according to any one of the claims 3 to 7, wherein the coupling parts and locking means at the edges of both pairs of opposite sides are configured in such a manner that two of said panels at these edges can be laterally engaged by a turning movement and/or can be disengaged by a turning movement between said panels.

9. Floor covering according to any one of the preceding claims, wherein the floor panels comprise elongated panels said first pair of edges being located at the long sides of the panels, and the second pair of edges being located at the short sides of the panels.

10. Floor covering according to any one of the preceding claims, wherein said locking means at least at one pair of edges comprise a locking element in the form of a protrusion provided at the lower side of the tongue and a locking element formed by a recess and/or upward directed portion in the lip which borders the lower side of the groove.
11. Floor covering according to claim 10 wherein the edges of at least one pair of opposite sides comprises coupling parts which are realised in the shape of a tongue and a groove wherein the lip bordering the lower side of this groove extends beyond the lip bordering the upper side of this groove and wherein the locking means of said tongue and said groove comprise locking elements which are located at least partially in the portion of the lower lip which extends beyond the upper lip.

12. Floor covering according to any one of the claims 1 to 10 wherein the coupling parts of the edges of at least one pair of sides are provided with locking means showing contact surface which are located completely inside the groove.

13. Floor covering according to any of the preceding claims, wherein the coupling parts and the locking means are configured such that the panels in coupled condition, at the related edges, are connected in a manner free of play.

14. Floor covering according to any of the preceding claims wherein the locking means of the edges of at least one pair of sides are provided with locking elements comprising contact surfaces which are perpendicular to the plane of the panels.

Dated this 26th day of July, 2002

UNILIN BEHEER B.V

By Its Patent Attorneys

DAVIES COLLISON CAVE
Fig. 1

Fig. 8