<table>
<thead>
<tr>
<th>(54) Title</th>
<th>GARDEN EDGING SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(51) International Patent Classification(s)</td>
<td>A01G 1/08 (2006.01)</td>
</tr>
<tr>
<td>(21) Application No:</td>
<td>2014101255</td>
</tr>
<tr>
<td>(22) Date of Filing:</td>
<td>2014.10.15</td>
</tr>
<tr>
<td>(45) Publication Date:</td>
<td>2014.11.13</td>
</tr>
<tr>
<td>(45) Publication Journal Date:</td>
<td>2014.11.13</td>
</tr>
<tr>
<td>(45) Granted Journal Date:</td>
<td>2014.11.13</td>
</tr>
<tr>
<td>(45) Certified Journal Date:</td>
<td>2015.10.08</td>
</tr>
<tr>
<td>(71) Applicant(s)</td>
<td>ROBERT HAYSOM</td>
</tr>
<tr>
<td>(72) Inventor(s)</td>
<td>HAYSOM, ROBERT HENRY</td>
</tr>
<tr>
<td>(74) Agent / Attorney</td>
<td>Collison & Co, Gpo Box 2556, Adelaide, SA, 5001</td>
</tr>
<tr>
<td>(56) Related Art</td>
<td>JP 2000-300070</td>
</tr>
<tr>
<td></td>
<td>US 4628632</td>
</tr>
<tr>
<td></td>
<td>AU 2005244508</td>
</tr>
<tr>
<td></td>
<td>AU 2005202186</td>
</tr>
<tr>
<td></td>
<td>US 6379078</td>
</tr>
<tr>
<td></td>
<td>CA 2533097</td>
</tr>
<tr>
<td></td>
<td>GB 2518183</td>
</tr>
</tbody>
</table>
ABSTRACT

The present invention relates to a garden edging system, in particular a versatile and flexible garden edging system that can be used in a range of settings including but not limited to lawn, gardens, paving and bitumen. The garden edging system comprises of an edging strip with a plurality of channels disposed thereon to releasably engage with at least one retaining member being a guide member, connecting member or combination of both. Unlike existing edging systems, the present invention has that has improved flexibility so as to enable the edging strips to achieve any desired curvature or shape, yet still retain sufficient rigidity and strength.
GARDEN EDGING SYSTEM

FIELD OF THE INVENTION

[001] The present invention relates to a garden edging system, in particular a versatile and flexible garden edging system that can be used in a range of settings including but not limited to lawn, gardens, paving and bitumen.

DESCRIPTION OF THE PRIOR ART

[002] A desirable feature often used in landscape design is garden edging, which assists to separate different areas or different types of plants within the garden. Garden edging can used to create both straight and curved lines depending upon the desired effect and requirement.

[003] Traditionally, there are two types of garden edging systems available, the first type being those requiring a trench to be excavated along the desired position and layout of the edging. The edging is placed into the trench and back filled so as to secure the edging in place. However, this type of garden edging system is laborious and time consuming to install, as it requires both trenching and back filling.

[004] The second type of garden edging system comprises of edging that can be conveniently installed by driving the edging directly into the ground, thereby foregoing the need for trenching and backfilling. Alternatively, stakes may be used at various intervals along the edging to hold the edging in place.

[005] However, there are a number of problematic issues with edging of this second type. Firstly, the edging is often quite rigid so as to possess sufficient strength to withstand being driven into the ground. Consequently, the rigidity of the edging limits the flexibility of the edging and therefore the curvature that can be achieved in the edging is therefore limited.

[006] Utilizing stakes along the horizontal length of the edging can assist to improve and maintain some curvature in the edging but also to affix the edging in place. However, often the position and number of stakes that can be used is dictated by predetermined positions along the horizontal length of the edging. Again, this can limit the flexibility and versatility of the edging.
Accordingly, there is a need for garden edging that is robust but also flexible to accommodate for different landscape styles and designs. Additionally, there is a need for garden edging that can be conveniently manufactured and installed.

OBJECT OF THE INVENTION

It is an object of the present invention to provide a versatile garden edging system, compared to existing garden edging systems and products.

The present invention is a garden edging system comprising of a plurality of edging strips and edging strip connectors and fastening guides. Unlike existing edging systems, the present invention has improved flexibility so as to enable the edging strips to achieve any desired curvature or shape, yet still retain sufficient rigidity and strength.

The edging strip of the present garden edging system is formed of an extruded material, such as aluminum, plastic, rubber or any suitable material known within the art. The edging strip itself is substantially planar in shape and configuration, which enables the edging strip to possess sufficient flexibility so as to be curved and shaped as desired.

Notably, disposed on a face of the edging strip is a plurality of channels. The channels are adjacent one another along the vertical height of the edging strip and extend along the horizontal length of the edging strip.

The plurality of channels is adapted to receive a plurality of retaining members. The retaining members include edging strip connectors and/or fastening guides. To connect an edging strip to an adjacent edging strip, one end of an edging strip connector may be inserted into at least one of the channels of one edging strip, with the opposing end of the edging strip connector to be received by the corresponding channel of the adjacent edging strip.

A single edging strip connector may be utilized in any one of the plurality of channels. However, advantageously, where the particular join between the adjacent edging strips is required to be strengthened or reinforced, additional edging strip connectors may be inserted into any one of or all the channels of the edging strips.
Similarly, any number of fastening guides may be inserted into any one of or all of the plurality of channels of the edging strips. The fastening guides assist to secure the edging strips into the ground surface in the desired configuration.

The plurality of channels enable the fastening guides to be inserted and positioned at any point along the horizontal length of the edging strips. This is particularly advantageous at points of significant curvature in the edging strips, where the number of fastening guides utilized can be increased to ensure that the curvature of the edging strip is secured at the desired point along the edging strip.

Additionally, the edging strips are adapted to be extended not just in length but can also be extended height wise. The plurality of channels are also adapted to receive at least one height extension member, enabling one edging strip to be releasably connected atop a corresponding edging strip resulting in a combined edging strip of extended height. This is particularly advantageous to accommodate areas within the garden landscape where there may be differing heights between garden beds or paving.

The plurality of channels of the edging strips together with the edging strip connectors and fastening guides, provides a versatile garden edging system that is both flexible and sufficiently robust.

In addition to the ease of installation, the configuration of the edging strips, edging strip connectors and fastening guides are designed so as to also enable convenient manufacture.

Other objects and advantages of the present invention will become apparent from the following description, taking in connection with the accompanying drawings, wherein, by way of illustration and example, an embodiment of the present invention is disclosed.

SUMMARY OF THE INVENTION

According to the present invention, although this should not be seen as limiting the invention in any way, there is provided a garden edging system comprising:

- at least one edging strip having top and bottom longitudinal edges, a first and second face and first and second distal ends, the first and second distal ends are adapted to align with a first or second distal end of a corresponding edging strip;
a plurality of channels disposed on either the first or second faces of the edging strip and extending a longitudinal length between the first and second distal ends of the edging strip;

at least one retaining member,

wherein any one of the plurality of channels is adapted to releasably engage and receive the retaining member therein,

and wherein the channels are formed by a plurality of spaced parallel ribs, forming inwardly facing U-shaped channels, projecting from either the first or second faces, wherein the retaining member releasably engages with and is received between the pair of adjacent spaced U-shaped parallel ribs.

[021] Preferably, the channels are disposed on both the first and second face of the edging strip.

[022] Preferably, the channels are disposed in an alternating manner between the first and second faces of the edging strip.

[023] Preferably, the plurality of spaced parallel ribs comprise of at least one T-shaped cross section or at least on L-shaped cross section.

[024] Preferably, the retaining member comprises of a connecting member, wherein a first portion of the connecting member is received by any one of the channels of one edging strip and a second portion is received by a corresponding channel of a corresponding edging strip thereby joining the two edging strips together in an extended length.

[025] Preferably, the retaining member comprises of a height extension member, the height extension member adapted to releasably engage with the top longitudinal edge of one edging strip and the bottom longitudinal edge of a corresponding edging strip thereby joining the two edging strips together in an extended height.

[026] Preferably, the retaining member comprises of a guide member, wherein the guide member comprises a means to receive a ground-engaging member so as to secure the edging strip to a ground surface.
Preferably, the ground-engaging member comprise of members selected from the group consisting of spikes, stakes, rods, pins and combinations thereof.

Preferably, the top and bottom longitudinal edges of the edging strip are adapted to engage with the ground surface.

Preferably, the top and bottom longitudinal edges of the edging strip are adapted to be seated freely on the ground surface.

Preferably, the bottom longitudinal edge comprises of a plurality of ground engaging members to drive and anchor the edging strip to a depth below the ground surface.

Preferably, the top longitudinal edge terminates in a lip being U-shaped in cross section and the bottom longitudinal edge terminates in a corresponding lip being U-shaped in cross section, wherein the lips of the top and longitudinal edges form a channel with an adjacent parallel rib.

Preferably, the edging strip and retaining member are formed of an extruded material.

Preferably, the edging strip and retaining member are formed of extruded aluminum.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention and associated method of use, it will now be described with respect to the preferred embodiment which shall be described herein with reference to the accompanying drawings wherein:

Figure 1A is a perspective view of an embodiment of the garden edging system comprising an edging strip of indefinite length having a plurality of channels and a plurality guide members received within the channels of the edging strip;

Figure 1B illustrates a perspective view of an embodiment of the garden edging system with a plurality guide members utilizing an alternate ground-engaging member;

Figure 2A is a side view of the garden edging system with a guide member is received in the central channel of the edging strip;
Figure 2B is a side view of the garden edging system with a guide member is received in the top most channel of the edging strip;

Figure 3 is a side view illustrating the profile of the edging strip of the garden edging system;

Figure 4 is a perspective view of two edging strips being joined together via a connecting member to form an extended and linear length of edging;

Figure 5 is a perspective view of two edging strips being joined together via an alternative connecting member to form a extended and linear length of edging;

Figure 6 is a perspective view of two edging strips being joined together by a further alternative connecting member to form an angled join;

Figures 7A and 7B are perspective views of a connecting member being a height extension members that can be utilized with the edging strip, in particular these height extension members enable two respective edging strips to be joined together to extend the height of the overall edging strip;

Figures 8A and 8B are perspective views of the height extension members shown in Figures 7A and 7B joining together two respective edging strips;

Figure 9 is a perspective view of an edging strip with an alternative guide member received in two channels of the edging strip;

Figure 10A and 10B are alternate embodiments of alternative retaining members that can be utilized with the edging strip;

Figures 11A to 11F are side views of alternate embodiments of the bottom longitudinal edge comprising of a plurality of ground engaging members which assist to drive and anchor the edging strip to a depth below the ground surface;

Figure 12 is a perspective view of an embodiment of the edging strip with the bottom longitudinal comprising a plurality of ground engaging members adapted to engage with and be driven into the ground; and

Figures 13A to 13H are side views of alternate arrangements of the plurality of channels of the edging strip.
DETAILED DESCRIPTION OF THE INVENTION

[050] Referring to Figure 1A, there is illustrated an embodiment of the garden edging system 1 comprising of an edging strip 3. The edging strip 3 is substantially planar and of indefinite length. The substantially planar configuration of the edging strip 3 imparts a significant degree of flexibility in the edging strip 3, enabling the edging strip 3 to be flexed and curved to achieve any desired curvature.

[051] The edging strip 3 comprises a top longitudinal edge 5 and a bottom longitudinal edge 7, a first face 9 and a second face 11, and a first 13 distal end and a second 15 distal end. The first 13 and second 15 distal ends of the edging strip 3 are adapted to align with a first 13 or second 15 distal end of a corresponding edging strip 3.

[052] The edging strip 3 includes a plurality of channels 17 disposed on either the first 9 or second 11 faces of the edging strip 3 formed by inwardly facing channels. Figures 13A – 13H illustrates the various arrangements of the plurality of channels 17 that can be disposed on the first 9 and/or second 11 faces of the edging strip 3. The channels 17 are formed by a plurality of spaced parallel ribs 19 projecting from either the first 9 or second 11 faces of the edging strip 3. Whilst Figures 1 to 7, 9 and 13A – 13H illustrate the edging strip 3 having at least three channels 17 disposed on or between the first 9 and second 11 faces, it is readily understood that any number of spaced parallel ribs 19 may be disposed on the first 9 and second 11 faces to form any number of channels 17 thereon.

[053] The garden edging system 1 further includes at least one retaining member 21. Any one of the plurality of channels 17 of the edging strip 3 are adapted to releasably engage with and receive the retaining member 21. The retaining member 21 the releasably engages with and is received between a pair of adjacent spaced parallel ribs 19.

[054] The retaining member 21 can comprise of either a guide member 23, a connecting member 25 or a combination of both. The guide member 23 is adapted to receive and guide a ground-engaging member 27 so as to secure the edging strip 3 to the ground 29. The guide member 23 can include at least one aperture 43, which is configured to receive a ground-engaging member 27. Figure 1A shows a pair of guide members 23 being utilized with the edging strip 3.
The ground-engaging member 27 is illustrated as a spike having a ground-engaging portion 31 and an upper portion 33 adapted so as to receive the application of force from a tool such as a hammer or other means, in order to drive the ground-engaging portion 31 into the ground 29 and thereby secure the edging strip 3 into position.

Figure 1B illustrates the edging strip 3 being secured in place with respect to the ground 29 by means of an alternate ground-engaging member 27 being a pin. It would be readily understood that the ground-engaging member 27 can comprise of members selected from but not limited to the group consisting of spikes, stakes, rods, pins and combinations thereof or any other fastening means known within the art.

The connecting member 25 is adapted to join two respective edging strips 3 together into a singular length. A first distal end 25a of the connecting member 25 is received by any one of the channels 17 of one edging strip 3 and a second distal end 25b of the connecting member 25 is received by a corresponding channel 17 of a corresponding edging strip 3 thereby joining the two edging strips 3 together in an extended length or configuration.

As illustrated in Figures 1A – 1B, 2A – 2B and 4 – 9, the guide members 23 and connecting members 25 are shaped and configured to nest within the channels 17 of the edging strip 3. The guide members 23 and connecting members 25 are adapted to form a releasable snap fit with the channels 17. Alternatively, the guide members 23 and connecting members 25 can form a sliding engagement with the channels 17. It would be readily appreciated that the retaining members 21 can comprise of any shape and configuration to enable a releasable engagement with the channels 17 of the edging strip 3.

Any number of retaining members 21 may be inserted and received by one or several of the channels 17 of the edging strip 3. As illustrated in Figures 1A – 1B, there are two guide members 23 inserted into separate channels 17 of the edging strip 3. One guide member 23 is inserted into the central most channel 17, whilst the second guide member 23 is inserted into the top most channel 17.

Advantageously, the number and position of the retaining members 21 can be varied as desired. For example, in the event the edging strip 3 is required to retain a particular curvature or position, additional guide members 23 can be inserted at the particular position along the length of the edging strip 3 to impart additional strength to secure the edging strip 3 in the desired position with respect to the ground 29.
Additionally, inserting the guide member 23 in any one of the channels 17 may vary the height at which the guide member 23 may be positioned. This can assist to impart additional strength at the lowest or highest point of the edging strip 3 as required.

Figures 2A – 2B illustrate the side view of the guide members 23 with respect to the edging strip 3. Figure 2A illustrates the guide member 23 being inserted into the central channel 17, whilst Figure 2B illustrates the guide member 23 inserted into the top most channel 17.

Figure 3 illustrates the side profile of the channels 17 of one embodiment of the edging strip 3, wherein it can be seen that the plurality of spaced parallel ribs 19 project from the first face 9. As illustrated in Figures 13A – 13H, the plurality of channels 17 can be disposed on either the first 9 or second 11 faces of the edging strip 3.

Additionally, in the accompanying Figures, the plurality of spaced parallel ribs 19 comprise of a T-shaped cross section. It is readily appreciated that the cross-section of the plurality of spaced parallel ribs 19 may comprise of any other appropriate shape so as to provide sufficient engagement of the retaining member 21.

The T-shape cross section provides sufficient engagement and retention of the retaining member 21, wherein the retaining member 21 is inserted into a channel 17, the retaining member 21 engages a portion of adjacent spaced parallel ribs 19.

As illustrated in the accompanying Figures 1 to 7 and 13A – 13E, the top longitudinal edge 5 and bottom 7 longitudinal edge of the edging strip 3 each terminate in a lip 35 being of substantially U-shaped in cross section and facing inwardly. The lip 35 of the top longitudinal edge 5 forms a channel with the adjacent parallel rib 19. Similarly, the lip 35 of the bottom longitudinal edge 7 forms a channel with the adjacent parallel rib 19. Again, it would appreciated that the top 5 and bottom 7 longitudinal edges can comprise of any cross sectional shape known within the art so as to enable sufficient engagement and retention of the retaining member 21.

Additionally, both the top 5 and bottom 7 longitudinal edges of the edging strip 3 are adapted to engage with the ground 29. Accordingly, the edging strip 3 is versatile in that it may be rotated and positioned for use on either of the longitudinal edges.

Figures 4 to 6 illustrate the manner in which one edging strip 3 may be joined to a corresponding edging strip 3. Advantageously, the first 13 and second 15 distal ends
of the edging strip 3 are adapted to align with a first 13 or second 15 distal end of a corresponding edging strip 3. Therefore, any number of edging strips 3 can be joined together to form any desired length and shape.

[069] Figure 4 illustrates a singular connecting member 25 being used to join two corresponding edging strips 3. The singular connecting member 25 can be inserted such that a first distal end 25a is inserted into any one of the channels 17 of one edging strip 3 and the second distal end 25b is received by a corresponding channel 17 of the corresponding edging strip 3. Any number of connecting members 25 may be utilized to join the two edging strips 3. For example, a connecting member 25 may be inserted into every channel 17 of the two edging strips 3 so as to impart increased strength at the join.

[070] Figure 5 illustrates an alternative connecting member 25, being a multi-channel connector 37 adapted to be inserted into either multiple channels 17 or all the channels 17 of the two edging strips 3 simultaneously. A first distal end 37a is inserted into multiple channels 17 of one edging strip 3 and the second distal end 37b is inserted into the channels 17 of a corresponding edging strip 3. This multi-channel connector 37 imparts increased strength to the join but forgoes the need to insert separate and individual connecting members such as that shown in Figure 4.

[071] Figure 6 illustrates a further alternative connecting member 25, being a multi-channel corner connector 39 adapted to be inserted into either multiple channels 17 or all the channels 17 of the two edging strips 3 simultaneously to form an angled or corner join. A first distal end 39a is inserted into multiple channels 17 of one edging strip 3 and the second distal end 39b is inserted into the channels 17 of a corresponding edging strip 3. Again, the multi-channel corner connector 39 imparts increased strength at the corner join. However, a singular corner connector that engages with only a singular channel 17 of each of the edging strips 3 may also be used.

[072] It would be readily appreciated that any suitable angled connector known within the art may be used to connect two or more edging strips 3 at an angle.

[073] Additionally, the edging strip 3 can also be extended in height and not just length. In this regard, a connecting member 25, being a height extension member 26 is adapted to be inserted and releasably engage with the top most channel 17 of one edging strip and the bottom most channel 17 of a corresponding edging strip 3. Accordingly, the two edging strips 3 are arranged and connected one on top of the other thereby extending the height of the edging strip 3.
Figure 7A illustrates an embodiment of an additional retaining member 21 being a height extension member 26 that enables two edging strips 3 to be joined together to form an edging strip 3 of extended height. The height extension member 26 is adapted so as to be inserted and received by the top most channel 17 of one edging strip 3 and the bottom most channel 17 of a corresponding edging strip 3, thereby joining to two edging strips together 3. In particular, the height extension member 26 comprises of a first portion 38a that is adapted to engage with the top longitudinal edge 5 of one edging strip 3. The height extension member 26 also comprises of an second portion 38b that is adapted to engage with the bottom longitudinal edge 7 of a corresponding edging strip 3.

Figure 7B illustrates an alternative embodiment of a height extension member 26 that enables two edging strips 3 to be joined together to form an edging strip 3 of extended height. The height extension member 26 again comprises of a first portion 38a adapted to engage with the top longitudinal edge 5 of one edging strip 3 and a second portion 38b that is adapted to engage with the bottom longitudinal edge 7 of a corresponding edging strip 3. However, the first portion 38a further includes a first flange 40a that extends downwardly and the second portion 38b includes a second flange 40b that extends upwardly. The first 40a and second 40b flanges are intended to form an abutting or flush alignment against either first 9 or second 11 faces of the edging strip 3, depending on the orientation of the height extension member 26, so as to provide additional strength and rigidity in the join between the two edging strips 3.

Figures 8A – 8B illustrate the height extension members 26 shown in Figures 7A – 7B in use to join two respective edging strips 3 together, wherein it can be seen that the overall height of the combined edging strip 3 arrangement is greater than that of each individual edging strip 3. The first portion 38a of the height extension member 26 releasably engages with the top longitudinal edge 5 of a first edging strip 3 and the second portion 38b releasably engages with the bottom longitudinal edge 7 of the corresponding edging strip 3, which is positioned above the first edging strip 3.

The height extension member 26 is illustrated as having indefinite length as it would be readily appreciated that the height extension member 26 may comprise of any length. For example, the height extension member 26 be shorter than that of the edging strip 3 or alternatively may be of the same length as the edging strip 3. Further, it is appreciated that any number of edging strips 3 can be joined together in this manner to achieve any desired height.
Figure 9 illustrates a further alternative guide member 23, being a conjoined guide member 41, that is adapted to be simultaneously received by two channels 17 of the edging strip 3. This conjoined guide member 41 extends across two channels 17 and is configured to receive and retain at least one ground-engaging member 27 simultaneously at two positions along the length of the ground-engaging member 27. Advantageously, this conjoined guide member 41 effectively secures the ground-engaging member 27 into position and provides increased strength to the edging strip 3.

Figures 10A – 10B also illustrate further alternative guide member 23. These guide members 23 are adapted to engage with the top longitudinal edge 5 of the edging strip 3. For example, the guide member 23 illustrated in Figure 10A is adapted to form a nesting fit over the top longitudinal edge 5 and is adapted to receive a ground-engaging member 27 via aperture 43. By comparison, the alternative guide member 23 illustrated in Figure 10B is adapted to releasably engage with the U-shape channel 35 of the top longitudinal edge 5 and is also adapted to receive a ground engaging member 27 via aperture 43. It is readily appreciated that either of the alternative guide members 23 illustrated in Figures 10A – 10B may also be configured to be received by the upper most channel of the edging strip 3.

The edging strip 3 shown in Figures 1 – 7 and 13A – 13H illustrate an embodiment of the edging strip 3 whereby the top 5 and bottom 7 longitudinal edges are adapted to be seated freely on the ground surface 29. Referring now to Figures 11A – 11F, these figures illustrate alternative embodiments of the edging strip 3, and in particular focusing on the bottom longitudinal edge 7, which can comprise of a plurality of ground engaging members 45 which assist to drive and anchor the edging strip 3 to a depth below the ground surface 29.

It is readily appreciated that the plurality of ground engaging members 45 formed along the bottom longitudinal edge 7 of the edging strip 3 can comprise of any number of members. Additionally, the geometry and configuration of the plurality of ground engaging members 45 can deviate from that illustrated in Figures 11A – 11F. Effectively, the plurality of ground engaging members 45 can be formed of any shape and configuration known within the art, that enables the edging strip 3, on the application of force, to be driven into the ground 29.

Figure 12 illustrates one embodiment of the edging strip 3 wherein the bottom longitudinal edge 7 is formed of a plurality of ground engaging members 45, being a series of alternating triangular shaped members 47. The apex 49 of each of the
downward directing triangular shaped members 47 being the portion of each of the triangular shaped members 47 that would be driven into the ground 29 and assist to anchor the edging strip 3 within the ground 29.

[083] Figures 1 – 8 illustrate an embodiment of the edging strip 3 wherein the plurality of channels 17 is disposed on the first face 9 of the edging strip 3. Figures 13A to 13H illustrate alternate embodiments of the edging strip 3, wherein the configuration of the parallel ribs 19 forming the plurality of channels 17 themselves can differ and the channels 17 may be disposed on both or either of the first 9 and second 11 faces of the edging strip 3.

[084] For example in Figure 13A, the parallel ribs 19 disposed on the first face 9 of the edging strip 3 comprise of a combination of parallel ribs 19 having an L-shaped cross section and T-shaped cross section.

[085] Figure 13B illustrates an embodiment wherein the parallel ribs 19 project from the first face 9 of the edging strip 3.

[086] Figure 13C illustrates an embodiment wherein the plurality of channels 17 are disposed in an alternating fashion on both the first 9 and second 11 faces of the edging strip 3. This alternating arrangement of the plurality of channels 17 enables the edging strip 3 to be strengthened on both sides as desired wherein a retaining member 21 can be received by any one of the channels 17 either side of the edging strip 3.

[087] Figures 13D – 13H illustrate further alternate embodiments of the edging strip 3 wherein the plurality of channels 17 are disposed and formed on both the first 9 and second 11 faces of the edging strip 3. Again, as the plurality of channels 17 are disposed on both the first 9 and second 11 faces of the edging strip 3, this enables retaining members 21 to be received by any one of the channels 17 on either side of the edging strip 3 and therefore can increase the structural strength of the edging strip 3. For example, guide members 23 can be received by channels 17 on both the first 9 and second 11 face of the edging strip 3 and can ensure that the edging strip 3 is secured in an upright manner. Similarly, connecting members 25 can received by channels 17 on both the first 9 and second 11 face, which serves to increase the strength of the join between two corresponding edging strips 3.

[088] As described above and illustrated in accompanying Figures 1 – 13, the garden edging system 1 is particularly versatile, as the substantially planar configuration of
the edging strip 3 enables the edging strip 3 to be manipulated to any desired curvature and length.

[089] Notably, in addition to the increased flexibility of the edging strip 3, the strength of the edging strip 3 is retained through the inclusion of the plurality of channels 17. These channels 17 enable any number of guide members 23 to be utilized along the length of the edging strip 3 to secure the edging strip 3 to the ground 29 in the desired configuration. Additionally, any number of connecting 25 members may be utilized to join two or more edging strips 3 together.

[090] It would also be readily appreciated that the edging system 1 of the present invention, including both the edging strip 3 and the retaining member 21 may be formed of an extruded material including but not limited to aluminum, plastic, rubber or any suitable material known within the art.

[091] Although the invention has been herein shown and described in what is conceived to be the most practical and preferred embodiment, it is recognized that departures can be made within the scope of the invention, which is not to be limited to the details described herein but it is to be accorded the full scope of the appended claims so as to embrace any and all equivalent devices and apparatus.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A garden edging system comprising:

 at least one edging strip having top and bottom longitudinal edges, a first and
 second face and first and second distal ends, the first and second distal ends are
 adapted to align with a first or second distal end of a corresponding edging strip;

 a plurality of channels disposed on either the first or second faces of the
 edging strip and extending a longitudinal length between the first and second distal
 ends of the edging strip;

 at least one retaining member,

 wherein any one of the plurality of channels is adapted to releasably engage
 and receive the retaining member therein,

 and wherein the channels are formed by a plurality of spaced parallel ribs,
 forming inwardly facing U-shaped channels, projecting from either the first or second
 faces, wherein the retaining member releasably engages with and is received
 between the pair of adjacent spaced U-shaped parallel ribs.

2. The garden edging system according to claim 1, further characterized wherein the
 plurality of spaced parallel ribs comprise at least one T-shaped cross section or at
 least one L-shaped cross section.

3. The garden edging system according to claim 1 or 2, further characterized wherein the
 retaining member comprises at least :

 a. a connecting member, wherein a first portion of the connecting member is
 received by any one of the channels of one edging strip and a second portion
 is received by a corresponding channel of a corresponding edging strip
 thereby joining the two edging strips together in an extended length; or
 b. a height extension member, the height extension member adapted to
 releasably engage with the top longitudinal edge of one edging strip and the
 bottom longitudinal edge of a corresponding edging strip thereby joining the
 two edging strips together in an extended height; or
 c. a guide member, wherein the guide member comprises a means to receive a
 ground-engaging member so as to secure the edging strip to the ground.
4. The garden edging system according to any one of claims 1 to 3, further characterized wherein the retaining member comprises of a guide member, wherein the guide member comprises a means to receive a ground-engaging member so as to secure the edging strip to the ground.

5. The garden edging system according to claims any one of claims 1 or 2, further characterized wherein the channels are disposed on both the first and second face of the edging strip.
FIGURE 8A
FIGURE 10A

FIGURE 10B