Azacyclohexane derivatives of structural formula I are selective inhibitors of stearoyl-coenzyme A delta-9 desaturase (SCD1) relative to other known stearoyl-coenzyme A desaturases. The compounds of the present invention are useful for the prevention and treatment of conditions related to abnormal lipid synthesis and metabolism, including cardiovascular disease, atherosclerosis; obesity; diabetes; neurological disease; metabolic syndrome; insulin resistance; and liver steatosis.
TITLE OF THE INVENTION
AZACYCLOHEXANE DERIVATIVES AS INHIBITORS OF STEAROYL-COEZYME A DELTA-9
DESATURASE

FIELD OF THE INVENTION
The present invention relates to azacyclohexane derivatives which are inhibitors of
stearoyl-coenzyme A delta-9 desaturase (SCD) and the use of such compounds to control, prevent and/or
treat conditions or diseases mediated by SCD activity. The compounds of the present invention are
useful for the control, prevention and treatment of conditions and diseases related to abnormal lipid
synthesis and metabolism, including cardiovascular disease; atherosclerosis; obesity; diabetes;
neurological disease; metabolic syndrome; insulin resistance; cancer; and hepatic steatosis.

BACKGROUND OF THE INVENTION
At least three classes of fatty acyl-coenzyme A (CoA) desaturases (delta-5, delta-6 and
delta-9 desaturases) are responsible for the formation of double bonds in mono- and polyunsaturated fatty
acyl-CoAs derived from either dietary sources or de novo synthesis in mammals. The delta-9 specific
stearoyl-CoA desaturases (SCDs) catalyze the rate-limiting formation of the cis-double bond at the C9-
C10 position in monounsaturated fatty acyl-CoAs. The preferred substrates are stearoyl-CoA and
palmitoyl-CoA, with the resulting oleoyl and palmitoleoyl-CoA as the main components in the
biosynthesis of phospholipids, triglycerides, cholesterol esters and wax esters (Dobrzyn and Natami,
Obesity Reviews, 6: 169-174 (2005)).

The rat liver microsomal SCD protein was first isolated and characterized in 1974
(Strittmatter et al., PNAS, 71: 4565-4569 (1974)). A number of mammalian SCD genes have since been
cloned and studied from various species. For example, two genes have been identified from rat (SCD1
and SCD2, Thiede et al., J. Biol. Chem., 261, 13230-13235 (1986)), Mihara, K., J. Biochem. (Tokyo),
108: 1022-1029 (1990)); four genes from mouse (SCD1, SCD2, SCD3 and SCD4) (Miyazaki et al., J.
Biol. Chem., 278: 33904-33911 (2003)); and two genes from human (SCD1 and ACOD4 (SCD2)),
Biochem. J., 388: 135-142 (2005)). The involvement of SCDs in fatty acid metabolism has been known
in rats and mice since the 1970's (Oshino, N., Arch. Biochem. Biophys., 149: 378-387 (1972)). This has
been further supported by the biological studies of a) Asebia mice that carry the natural mutation in the
SCD1 gene (Zheng et al., Nature Genetics, 23: 268-270 (1999)), b) SCD1-null mice from targeted gene
deletion (Ntambi, et al., PNAS, 99: 11482-11486 (2002), and c) the suppression of SCD1 expression
during leptin-induced weight loss (Cohen et al., Science, 297: 240-243 (2002)). The potential benefits of
pharmacological inhibition of SCD activity has been demonstrated with anti-sense oligonucleotide
activity reduced fatty acid synthesis and increased fatty acid oxidation in primary mouse hepatocytes.
Treatment of mice with SCD-ASOs resulted in the prevention of diet-induced obesity, reduced body adiposity, hepatomegaly, steatosis, postprandial plasma insulin and glucose levels, reduced \textit{de novo} fatty acid synthesis, decreased expression of lipogenic genes, and increased expression of genes promoting energy expenditure in liver and adipose tissues. Thus, SCD inhibition represents a novel therapeutic strategy in the treatment of obesity and related metabolic disorders.

There is compelling evidence to support that elevated SCD activity in humans is directly implicated in several common disease processes. For example, there is an elevated hepatic lipogenesis to triglyceride secretion in non-alcoholic fatty liver disease patients (Diraison, et al., \textit{Diabetes Metabolism}, 29: 478-485 (2003)); Donnelly, et al., \textit{J. Clin. Invest.}, 115: 1343-1351 (2005)). The postprandial \textit{de novo} lipogenesis is significantly elevated in obese subjects (Marques-Lopes, et al., \textit{American Journal of Clinical Nutrition}, 73: 252-261 (2001)). There is a significant correlation between a high SCD activity and an increased cardiovascular risk profile including elevated plasma triglycerides, a high body mass index and reduced plasma HDL (Attie, et al., \textit{J. Lipid Res.}, 43: 1899-1907 (2002)). SCD activity plays a key role in controlling the proliferation and survival of human transformed cells (Scaglia and Igal, \textit{J. Biol. Chem.}, (2005)).

The present invention is concerned with novel azacyclohexane derivatives as inhibitors of stearoyl-CoA delta-9 desaturase which are useful in the treatment and/or prevention of various conditions and diseases mediated by SCD activity including those related, but not limited, to elevated lipid levels, as exemplified in non-alcoholic fatty liver disease, cardiovascular disease, obesity, diabetes, metabolic syndrome, and insulin resistance.

\textbf{SUMMARY OF THE INVENTION}

The present invention relates to azacyclohexane derivatives of structural formula I:
These azacyclohexane derivatives are effective as inhibitors of SCD. They are therefore useful for the treatment, control or prevention of disorders responsive to the inhibition of SCD, such as diabetes, insulin resistance, lipid disorders, obesity, atherosclerosis, and metabolic syndrome.

The present invention also relates to pharmaceutical compositions comprising the compounds of the present invention and a pharmaceutically acceptable carrier.

The present invention also relates to methods for the treatment, control, or prevention of disorders, diseases, or conditions responsive to inhibition of SCD in a subject in need thereof by administering the compounds and pharmaceutical compositions of the present invention.

The present invention also relates to methods for the treatment, control, or prevention of Type 2 diabetes, insulin resistance, obesity, lipid disorders, atherosclerosis, and metabolic syndrome by administering the compounds and pharmaceutical compositions of the present invention.

The present invention also relates to methods for the treatment, control, or prevention of obesity by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat the condition.

The present invention also relates to methods for the treatment, control, or prevention of Type 2 diabetes by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat the condition.

The present invention also relates to methods for the treatment, control, or prevention of atherosclerosis by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat the condition.

The present invention also relates to methods for the treatment, control, or prevention of lipid disorders by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat the condition.

The present invention also relates to methods for treating metabolic syndrome by administering the compounds of the present invention in combination with a therapeutically effective amount of another agent known to be useful to treat the condition.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is concerned with azacyclohexane derivatives useful as inhibitors of SCD. Compounds of the present invention are described by structural formula I:
or a pharmaceutically acceptable salt thereof; wherein

each n is independently 0, 1 or 2;
each m is independently 0, 1, or 2;
each p is independently 0, 1, or 2;
X-Y is N-C(O), N-S(O)₂, N-CR₁R₂, CH-O, CH-S(O)ₚ, CH-NR₃, CH-CR₁R₂, or CH-C(O);
Ar is phenyl, naphthyl, or heteroaryl each of which is optionally substituted with one to five R₃a substituents;
HetAr is an optionally fused five-membered heteroaromatic ring selected from the group consisting of:

oxazolyl,
thiazolyl,
imidazolyl,
pyrazolyl,
isoazolyl,
isothiazolyl,
1,2,4-oxadiazolyl,
1,3,4-oxadiazolyl,
1,2,5-oxadiazolyl,
1,2,3-oxadiazolyl,
1,2,4-thiadiazolyl,
1,2,5-thiadiazolyl,
1,3,4-thiadiazolyl,
1,2,3-thiadiazolyl,
1,2,4-triazolyl,
1,2,3-triazolyl,
tetrazolyl,
benzthiazolyl,
benzoxazolyl,
benzimidazolyl,
benzisoxazolyl, and benzisothiazolyl;
in which the heteroaromatic ring is optionally substituted with one to two substituents independently selected from R3b;
R1 and R2 are each independently hydrogen or C1-3 alkyl, wherein alkyl is optionally substituted with one to three substituents independently selected from fluorine and hydroxy;

5 each R3a and each R3b is independently selected from the group consisting of:
 C1-6 alkyl,
 (CH2)nOR4,
 (CH2)n-phenyl,
 (CH2)n-naphthyl,
 10 (CH2)n-heteroaryl,
 (CH2)n-heterocyclyl,
 (CH2)nC3-7 cycloalkyl,
 halogen,
 (CH2)nN(R4)2,
 15 (CH2)nC=N,
 (CH2)nCO2R4,
 (CH2)nCOR4,
 NO2,
 (CH2)nNR4SO2R4
 20 (CH2)nSO2N(R4)2,
 (CH2)nS(O)pR4,
 (CH2)nNR4C(O)N(R4)2,
 (CH2)nC(O)N(R4)2,
 25 (CH2)nC(O)N(OR4)R4,
 O(CH2)nC(O)N(R4)2,
 CF3,
 30 CH2CF3,
 OCF3, and
 OCH2CF3;

in which phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are optionally substituted with one to three substituents independently selected from halogen, hydroxy, C1-4 alkoxy, C3-6 cycloalkyl, and C1-4 alkyl wherein alkyl is optionally substituted with hydroxy or one to three fluorines; and wherein any methylene (CH2) carbon atom in R3a or R3b is optionally substituted with one to two groups independently selected from fluorine, hydroxy, and C1-4 alkyl optionally substituted with one to five
fluorines; or two substituents when on the same methylene (CH\textsubscript{2}) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group; each R4 is independently selected from the group consisting of hydrogen, C\textsubscript{1-6} alkyl, (CH\textsubscript{2})\textsubscript{m}-phenyl, (CH\textsubscript{2})\textsubscript{m}-heteroaryl, (CH\textsubscript{2})\textsubscript{m}-naphthyl, and (CH\textsubscript{2})\textsubscript{m}C\textsubscript{3-7} cycloalkyl;

wherein alkyl, phenyl, heteroaryl, and cycloalkyl are optionally substituted with one to three groups independently selected from halogen, C\textsubscript{1-4} alkyl, and C\textsubscript{1-4} alkoxy, wherein alkyl and alkoxy are optionally substituted with one to five fluorines; or two R4 groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and NC\textsubscript{1-4} alkyl;

R5, R6, R7, R8, R9, R10, R11, and R12 are each independently hydrogen, fluorine, or C\textsubscript{1-3} alkyl, wherein alkyl is optionally substituted with one to three substituents independently selected from fluorine and hydroxy; and R13 is hydrogen or C\textsubscript{1-6} alkyl.

In one embodiment of the compounds of the present invention, n is 0.

In a second embodiment of the compounds of the present invention, X-Y is N-C(O). In a class of this embodiment, HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoaxazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazo1-2-yl each of which is optionally substituted with one to two substituents independently selected from R3b as defined above. In a subclass of this class, HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl each of which is monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b as defined above. In another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three substituents independently selected from R3a as defined above. In yet another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R3a substituents as defined above and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b as defined above.

In a third embodiment of the compounds of the present invention, X-Y is N-S(O)\textsubscript{2}. In a class of this embodiment, HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoaxazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazo1-2-yl each of which is optionally substituted with one to two groups independently selected from R3b as defined above. In a subclass of this class, HetAr is 2-thiazolyl or 1,3,4-thiadiazolyl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b as defined above. In another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R3a substituents as defined above. In yet another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R3a substituents as defined above and HetAr is
2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b as defined above.

In a fourth embodiment of the compounds of the present invention, X-Y is CH-O. In a class of this embodiment, HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoaxazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazol-2-yl each of which is optionally substituted with one to two groups independently selected from R3b as defined above. In a subclass of this class, HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b as defined above. In another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R3a substituents as defined above. In yet another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R3a substituents as defined above and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b as defined above. In a subclass of this subclass, heteroaryl is 2H-tetrazol-5-yl, 1,3,4-oxadiazol-2-yl, or 1,3,4-oxadiazol-3-yl. In a fifth embodiment of the compounds of the present invention, X-Y is CH-S(O)p. In a class of this embodiment, HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoaxazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazol-2-yl each of which is optionally substituted with one to two groups independently selected from R3b as defined above. In a subclass of this class, HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b as defined above. In another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R3a substituents as defined above. In yet another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R3a substituents as defined above and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b as defined above.

In a sixth embodiment of the compounds of the present invention, X-Y is N-CR1R2. In a class of this embodiment, HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoaxazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazol-2-yl each of which is optionally substituted with one to two groups independently selected from R3b as defined above. In a subclass of this class, HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b as defined above. In another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R3a substituents as defined above. In yet another class of this embodiment, R1 and R2 are hydrogen, Ar is phenyl or pyridyl optionally substituted with one to three R3a substituents as defined above, and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b as defined above.

In a seventh embodiment of the compounds of the present invention, X-Y is
CH-NR\(^{13}\). In a class of this embodiment, HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazol-2-yl each of which is optionally substituted with one to two groups independently selected from R\(^{3b}\) as defined above. In a subclass of this class, HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R\(^{3b}\) as defined above. In another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R\(^{3a}\) substituents as defined above. In yet another class of this embodiment, R\(^{1}\) and R\(^{2}\) are hydrogen, Ar is phenyl or pyridyl optionally substituted with one to three R\(^{3a}\) substituents as defined above, and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R\(^{3b}\) as defined above.

In an eighth embodiment of the compounds of the present invention, X-Y is CH-C(O). In a class of this embodiment, HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazol-2-yl each of which is optionally substituted with one to two groups independently selected from R\(^{3b}\) as defined above. In a subclass of this class, HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R\(^{3b}\) as defined above. In another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R\(^{3a}\) substituents as defined above. In yet another class of this embodiment, R\(^{1}\) and R\(^{2}\) are hydrogen, Ar is phenyl or pyridyl optionally substituted with one to three R\(^{3a}\) substituents as defined above, and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R\(^{3b}\) as defined above.

In a ninth embodiment of the compounds of the present invention, X-Y is CH-CR\(^{1}\)R\(^{2}\). In a class of this embodiment, HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazol-2-yl each of which is optionally substituted with one to two groups independently selected from R\(^{3b}\) as defined above. In a subclass of this class, HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R\(^{3b}\) as defined above. In another class of this embodiment, Ar is phenyl or pyridyl optionally substituted with one to three R\(^{3a}\) substituents as defined above. In yet another class of this embodiment, R\(^{1}\) and R\(^{2}\) are hydrogen, Ar is phenyl or pyridyl optionally substituted with one to three R\(^{3a}\) substituents as defined above, and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R\(^{3b}\) as defined above.

In a further embodiment of the compounds of the present invention, R\(^{5}\)-R\(^{12}\) are hydrogen.

In yet a further embodiment of the compounds of the present invention, each R\(^{3a}\) is independently selected from the group consisting of halogen, C\(_1\)-C\(_4\) alkyl, trifluoromethyl, C\(_1\)-C\(_4\) alkylsulfonyl, cyano, and C\(_1\)-C\(_4\) alkoxy.

In yet a further embodiment of the compounds of the present invention, each R\(^{3b}\) is independently selected from the group consisting of:

- halogen,
cyano,
C(O)N(R^4)_2,
C(O)R^4,
CO_2R^4,
5 CH_2OR^4, wherein CH_2 is optionally substituted with one to substitutes independently from hydroxy, fluorine, and methyl;
NR^4C(O)R^4,
SO_2N(R^4)_2, and
10 heteroaryl selected from the group consisting of 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-oxadiazol-2-yl, 2-thiazolyl, and 2H-tetrazol-5-yl, wherein heteroaryl is optionally substituted with one to two substitutes independently selected from halogen, hydroxy, C_1-4 alkoxy, C_3-6 cycloalkyl, and C_1-4 alkyl wherein alkyl is optionally substituted with hydroxy or one to three fluorines.

Illustrative, but nonlimiting examples, of compounds of the present invention that are useful as inhibitors of SCD are the following:
and pharmaceutically acceptable salts thereof.

Further illustrative of the present invention are the compounds selected from the group consisting of:

- \[
\text{H}_2\text{N} \quad \text{O} \quad \text{S} \quad \text{N} \quad \text{O} \quad \text{CF}_3
\]

and:

- \[
\text{HO} \quad \text{O} \quad \text{N} \quad \text{S} \quad \text{N} \quad \text{O} \quad \text{CF}_3
\]
and pharmaceutically acceptable salts thereof.

As used herein the following definitions are applicable.

"Alkyl", as well as other groups having the prefix "alk", such as alkoxy and alkanoyl, means carbon chains which may be linear or branched, and combinations thereof, unless the carbon chain is defined otherwise. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec- and tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, and the like. Where the specified number of carbon atoms permits, e.g., from C3-10, the term alkyl also includes cycloalkyl groups, and combinations of linear or branched alkyl chains combined with cycloalkyl structures. When no number of carbon atoms is specified, C1-6 is intended.

"Cycloalkyl" is a subset of alkyl and means a saturated carbocyclic ring having a specified number of carbon atoms. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like. A cycloalkyl group generally is monocyclic unless stated otherwise. Cycloalkyl groups are saturated unless otherwise defined.

The term "alkoxy" refers to straight or branched chain alkoxydes of the number of carbon atoms specified (e.g., C1-6 alkoxy), or any number within this range [i.e., methoxy (MeO-), ethoxy, isopropoxy, etc.].
The term "alkylthio" refers to straight or branched chain alkylsulfides of the number of carbon atoms specified (e.g., C\textsubscript{1-6} alkylthio), or any number within this range [i.e., methylthio (MeS-), ethylthio, isopropylthio, etc.].

The term "alkylamino" refers to straight or branched alkylamines of the number of carbon atoms specified (e.g., C\textsubscript{1-6} alkylamino), or any number within this range [i.e., methylamino, ethylamino, isopropylamino, t-butylamino, etc.].

The term "alkylsulfonyl" refers to straight or branched chain alkylsulfones of the number of carbon atoms specified (e.g., C\textsubscript{1-6} alkylsulfonyl), or any number within this range [i.e., methylsulfonyl (MeSO\textsubscript{2}-), ethylsulfonyl, isopropylsulfonyl, etc.].

The term "alkylsulfinyl" refers to straight or branched chain alkylsulfoxides of the number of carbon atoms specified (e.g., C\textsubscript{1-6} alkylsulfinyl), or any number within this range [i.e., methylsulfinyl (MeSO-), ethylsulfinyl, isopropylsulfinyl, etc.].

The term "alkyloxycarbonyl" refers to straight or branched chain esters of a carboxylic acid derivative of the present invention of the number of carbon atoms specified (e.g., C\textsubscript{1-6} alkyloxycarbonyl), or any number within this range [i.e., methyloxycarbonyl (MeOCO-), ethyloxycarbonyl, or butyloxycarbonyl].

"Aryl" means a mono- or polycyclic aromatic ring system containing carbon ring atoms. The preferred aryls are monocyclic or bicyclic 6-10 membered aromatic ring systems. Phenyl and naphthyl are preferred aryls. The most preferred aryl is phenyl.

"Heterocyclyl" refer to saturated or unsaturated non-aromatic rings or ring systems containing at least one heteroatom selected from O, S and N, further including the oxidized forms of sulfur, namely SO and SO\textsubscript{2}. Examples of heterocycles include tetrahydrofuran (THF), dihydrofuran, 1,4-dioxane, morpholine, 1,4-dithiane, piperazine, piperidine, 1,3-dioxolane, imidazolidine, imidazoline, pyrroline, pyrrolidine, tetrahydropyran, dihydropyran, oxathiolane, dithiolane, 1,3-dioxane, 1,3-dithiane, oxathiane, thiomorpholine, 2-oxopiperidin-1-yl, 2-oxopyrrolidin-1-yl, 2-oxoazetidin-1-yl, 1,2,4-oxadiazin-5(6H)-one-3-yl, and the like.

"Heteroaryl" means an aromatic or partially aromatic heterocycle that contains at least one ring heteroatom selected from O, S and N. Heteroaryls thus includes heteroaryls fused to other kinds of rings, such as aryls, cycloalkyls and heterocycles that are not aromatic. Examples of heteroaryl groups include: pyrrolyl, isoxazolyl, isothiazolyl, pyrazolyl, pyridyl, oxazolyl, oxadiazolyl (in particular, 1,3,4-oxadiazol-2-yl and 1,2,4-oxadiazol-3-yl), thiadiazolyl, thiazolyl, imidazolyl, triazolyl, tetrazolyl, furyl, triazinyl, thienyl, pyrimidyl, benzisoxazolyl, benzoxazolyl, benzothiazolyl, benzothiadiazolyl, dihydrobenzofuranyl, indolyl, pyridazinyl, indazolyl, isoindolyl, dihydrobenzothienyl, indoliziny1, cinnolinyl, phthalazinyl, quinazoliny1, naphthyridinyl, carbazolyl, benzodioxolyl, quinoxaliny1, purinyl, furazanyl, isobenzofuranyl, benzimidazolyl, benzofurany1, benzothienyl, quinolyl, indolyl, isoquinolyl, dibenzofurany1, and the like. For heterocyclyl and heteroary1 groups, rings and ring systems containing from 3-15 atoms are included, forming 1-3 rings.
"Halogen" refers to fluorine, chlorine, bromine and iodine. Chlorine and fluorine are generally preferred. Fluorine is most preferred when the halogens are substituted on an alkyl or alkoxy group (e.g. CF₃O and CF₃CH₂O).

Compounds of structural formula I may contain one or more asymmetric centers and can thus occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and individual diastereomers. The present invention is meant to comprehend all such isomeric forms of the compounds of structural formula I.

Compounds of structural formula I may be separated into their individual diastereoisomers by, for example, fractional crystallization from a suitable solvent, for example methanol or ethyl acetate or a mixture thereof, or via chiral chromatography using an optically active stationary phase. Absolute stereochemistry may be determined by X-ray crystallography of crystalline products or crystalline intermediates which are derivatized, if necessary, with a reagent containing an asymmetric center of known absolute configuration.

Alternatively, any stereoisomer of a compound of the general structural formula I may be obtained by stereospecific synthesis using optically pure starting materials or reagents of known absolute configuration.

If desired, racemic mixtures of the compounds may be separated so that the individual enantiomers are isolated. The separation can be carried out by methods well known in the art, such as the coupling of a racemic mixture of compounds to an enantiomerically pure compound to form a diastereomeric mixture, followed by separation of the individual diastereomers by standard methods, such as fractional crystallization or chromatography. The coupling reaction is often the formation of salts using an enantiomerically pure acid or base. The diastereomeric derivatives may then be converted to the pure enantiomers by cleavage of the added chiral residue. The racemic mixture of the compounds can also be separated directly by chromatographic methods utilizing chiral stationary phases, which methods are well known in the art.

Some of the compounds described herein contain olefinic double bonds, and unless specified otherwise, are meant to include both E and Z geometric isomers.

Some of the compounds described herein may exist as tautomers, which have different points of attachment of hydrogen accompanied by one or more double bond shifts. For example, a ketone and its enol form are keto-enol tautomers. The individual tautomers as well as mixtures thereof are encompassed with compounds of the present invention.

It will be understood that, as used herein, references to the compounds of structural formula I are meant to also include the pharmaceutically acceptable salts, and also salts that are not pharmaceutically acceptable when they are used as precursors to the free compounds or their pharmaceutically acceptable salts or in other synthetic manipulations.

The compounds of the present invention may be administered in the form of a pharmaceutically acceptable salt. The term "pharmaceutically acceptable salt" refers to salts prepared
from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts of basic compounds encompassed within the term "pharmaceutically acceptable salt" refer to non-toxic salts of the compounds of this invention which are generally prepared by reacting the free base with a suitable organic or inorganic acid. Representative salts of basic compounds of the present invention include, but are not limited to, the following: acetate, benzenesulfonate, benzoate, bicinearonate, bisulfate, bitartrate, borate, bromide, camsylate, carbonate, chloride, clavulanate, citrate, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, hexylresorcinate, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, maleate, maleate, mandelate, mesylate, methylbromide, methyl nitrate, methylsulfate, mucate, napsylate, nitrate, N-methylglucamine ammonium salt, oleate, oxalate, pamoate (embonate), palmitate, pantothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, sulfate, subacetate, succinate, tannate, tartrate, teoclate, tosylate, triethiodide and valerate. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof include, but are not limited to, salts derived from inorganic bases including aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, mangamous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, cyclic amines, and basic ion-exchange resins, such as arginine, betaine, caffeine, choline, N,N-dibenzylethlenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.

Also, in the case of a carboxylic acid (-COOH) or alcohol group being present in the compounds of the present invention, pharmaceutically acceptable esters of carboxylic acid derivatives, such as methyl, ethyl, or pivaloyloxymethyl, or acyl derivatives of alcohols, such as acetyl, pivaloyl, benzoil, and aminoacyl, can be employed. Included are those esters and acyl groups known in the art for modifying the solubility or hydrolysis characteristics for use as sustained-release or prodrug formulations.

Solvates, in particular hydrates, of the compounds of structural formula I are included in the present invention as well.

The subject compounds are useful in a method of inhibiting the stearoyl-coenzyme A delta-9 desaturase enzyme (SCD) in a patient such as a mammal in need of such inhibition comprising the administration of an effective amount of the compound. The compounds of the present invention are therefore useful to control, prevent, and/or treat conditions and diseases mediated by high or abnormal SCD enzyme activity.
Thus, one aspect of the present invention concerns a method of treating hyperglycemia, diabetes or insulin resistance in a mammalian patient in need of such treatment, which comprises administering to said patient an effective amount of a compound in accordance with structural formula I or a pharmaceutically salt or solvate thereof.

A second aspect of the present invention concerns a method of treating non-insulin dependent diabetes mellitus (Type 2 diabetes) in a mammalian patient in need of such treatment comprising administering to the patient an antidiabetic effective amount of a compound in accordance with structural formula I.

A third aspect of the present invention concerns a method of treating obesity in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with structural formula I in an amount that is effective to treat obesity.

A fourth aspect of the invention concerns a method of treating metabolic syndrome and its sequelae in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with structural formula I in an amount that is effective to treat metabolic syndrome and its sequelae. The sequelae of the metabolic syndrome include hypertension, elevated blood glucose levels, high triglycerides, and low levels of HDL cholesterol.

A fifth aspect of the invention concerns a method of treating a lipid disorder selected from the group consisting of dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL and high LDL in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with structural formula I in an amount that is effective to treat said lipid disorder.

A sixth aspect of the invention concerns a method of treating atherosclerosis in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with structural formula I in an amount effective to treat atherosclerosis.

A seventh aspect of the invention concerns a method of treating cancer in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with structural formula I in an amount effective to treat cancer.

A further aspect of the invention concerns a method of treating a condition selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) fatty liver disease, (21) polycystic ovary syndrome, (22) sleep-disordered breathing, (23) metabolic syndrome, and (24) other conditions and disorders where insulin resistance is a component, in a mammalian patient in need of such treatment comprising administering to the patient a compound in accordance with structural formula I in an amount that is effective to treat said condition.
Yet a further aspect of the invention concerns a method of delaying the onset of a condition selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) fatty liver disease, (21) polycystic ovary syndrome, (22) sleep-disordered breathing, (23) metabolic syndrome, and (24) other conditions and disorders where insulin resistance is a component, and other conditions and disorders where insulin resistance is a component, in a mammalian patient in need of such treatment comprising administering to the patient a compound in accordance with structural formula I in an amount that is effective to delay the onset of said condition.

Yet a further aspect of the invention concerns a method of reducing the risk of developing a condition selected from the group consisting of (1) hyperglycemia, (2) low glucose tolerance, (3) insulin resistance, (4) obesity, (5) lipid disorders, (6) dyslipidemia, (7) hyperlipidemia, (8) hypertriglyceridemia, (9) hypercholesterolemia, (10) low HDL levels, (11) high LDL levels, (12) atherosclerosis and its sequelae, (13) vascular restenosis, (14) pancreatitis, (15) abdominal obesity, (16) neurodegenerative disease, (17) retinopathy, (18) nephropathy, (19) neuropathy, (20) fatty liver disease, (21) polycystic ovary syndrome, (22) sleep-disordered breathing, (23) metabolic syndrome, and (24) other conditions and disorders where insulin resistance is a component, and other conditions and disorders where insulin resistance is a component, in a mammalian patient in need of such treatment comprising administering to the patient a compound in accordance with structural formula I in an amount that is effective to reduce the risk of developing said condition.

In addition to primates, such as humans, a variety of other mammals can be treated according to the method of the present invention. For instance, mammals including, but not limited to, cows, sheep, goats, horses, dogs, cats, guinea pigs, rats or other bovine, ovine, equine, canine, feline, rodent, such as a mouse, species can be treated. However, the method can also be practiced in other species, such as avian species (e.g., chickens).

The present invention is further directed to a method for the manufacture of a medicament for inhibiting stearoyl-coenzyme A delta-9 desaturase enzyme activity in humans and animals comprising combining a compound of the present invention with a pharmaceutically acceptable carrier or diluent. More particularly, the present invention is directed to the use of a compound of structural formula I in the manufacture of a medicament for use in treating a condition selected from the group consisting of hyperglycemia, Type 2 diabetes, insulin resistance, obesity, and a lipid disorder in a mammal, wherein the lipid disorder is selected from the group consisting of dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, and high LDL.

The subject treated in the present methods is generally a mammal, preferably a human being, male or female, in whom inhibition of stearoyl-coenzyme A delta-9 desaturase enzyme activity is desired. The term "therapeutically effective amount" means the amount of the subject compound that
will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.

The term "composition" as used herein is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. Such term in relation to pharmaceutical composition, is intended to encompass a product comprising the active ingredient(s) and the inert ingredient(s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients. Accordingly, the pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier. By "pharmaceutically acceptable" it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.

The terms "administration of" and or "administering a" compound should be understood to mean providing a compound of the invention or a prodrug of a compound of the invention to the individual in need of treatment.

The utility of the compounds in accordance with the present invention as inhibitors of stearoyl-coenzyme A delta-9 desaturase (SCD) enzyme activity may be demonstrated by the following microsomal and whole-cell based assays:

1. SCD-induced rat liver microsome assay:

The activity of compounds of formula I against the SCD enzyme is determined by following the conversion of radiolabeled-stearoyl-CoA to oleoyl-CoA using SCD1-induced rat liver microsome and a previously published procedure with some modifications (Joshi, et al., J. Lipid Res., 18: 32-36 (1977)). After feeding wistar rats with a high carbohydrate/fat-free rodent diet (LabDiet # 5803, Purina) for 3 days, the SCD-induced livers were homogenized (1:10 w/v) in 250 mM sucrose, 1 mM EDTA, 5 mM DTT and 50 mM Tris-HCl (pH 7.5). After a 20 min centrifugation (18,000 x g/4 °C) to remove tissue and cell debris, the microsome was prepared by a 100,000 x g centrifugation (60 min) with the resulting pellet suspended in 100 mM sodium phosphate, 20% glycerol and 2 mM DTT. Test compound in 2 µL DMSO was incubated for 15 min at room temperature with 180 µL of the microsome (typically at about 100 µg/mL, in Tris-HCl buffer (100 mM, pH 7.5), ATP (5 mM), Coenzyme A (0.1 mM), Triton X-100 (0.5 mM) and NADH (2 mM)). The reaction was initiated by the addition of 20 µL of [3H]-Stearoyl-CoA (final concentration at 2 µM with the radioactivity concentration at 1 µCi/mL), and terminated by the addition of 150 µL of 1N sodium hydroxide. After 60 min at room temperature to hydrolyze the oleoyl-CoA and stearoyl-CoA, the solution was acidified by the addition of 150 µL of 15% phosphoric acid (v/v) in ethanol supplemented with 0.5 mg/mL stearic acid and 0.5 mg/mL oleic acid. [3H]-oleic acid and [3H]-stearic acid were then quantified on a HPLC that is equipped with a C-18 reverse
phase column and a Packard Flow Scintillation Analyzer. Alternatively, the reaction mixture (80 µL) was mixed with a calcium chloride-charcoal aqueous suspension (100 µL of 15% (w/v) charcoal plus 20 µL of 2 N CaCl₂). The resulting mixture was centrifuged to precipitate the radioactive fatty acid species into a stable pellet. Tritiated water from SCD-catalyzed desaturation of 9,10-[³H]-stearoyl-CoA was quantified by counting 50 µL of the supernatant on a scintillation counter.

II. Whole cell-based SCD (delta-9), delta-5 and delta-6 desaturase assays:

Human HepG2 cells were grown on 24-well plates in MEM media (Gibco cat# 11095-072) supplemented with 10% heat-inactivated fetal bovine serum at 37 °C under 5% CO₂ in a humidified incubator. Test compound dissolved in the media was incubated with the subconfluent cells for 15 min at 37 °C. [1-¹⁴C]-stearic acid was added to each well to a final concentration of 0.05 µCi/mL to detect SCD-catalyzed [¹⁴C]-oleic acid formation. 0.05 µCi/mL of [¹⁴C]-eicosatrienoic acid or [¹⁴C]-linolenic acid plus 10 µM of 2-amino-N-(3-chlorophenyl)benzamide (a delta-5 desaturase inhibitor) was used to index the delta-5 and delta-6 desaturase activities, respectively. After 4 h incubation at 37 °C, the culture media was removed and the labeled cells were washed with PBS (3 x 1 mL) at room temperature. The labeled cellular lipids were hydrolyzed under nitrogen at 65 °C for 1 h using 400 µL of 2N sodium hydroxide plus 50 µL of L-α-phosphatidylcholine (2 mg/mL in isopropanol, Sigma #P-3556). After acidification with phosphoric acid (60 µL), the radioactive species were extracted with 300 µL of acetonitrile and quantified on a HPLC that was equipped with a C-18 reverse phase column and a Packard Flow Scintillation Analyzer. The levels of [¹⁴C]-oleic acid over [¹⁴C]-stearic acid, [¹⁴C]-arachidonic acid over [¹⁴C]-eicosatrienoic acid, and [¹⁴C]-eicosatetraenoic acid (8,11,14,17) over [¹⁴C]-linolenic acid were used as the corresponding activity indices of SCD, delta-5 and delta-6 desaturase, respectively.

The SCD inhibitors of formula I generally exhibit an inhibition constant IC₅₀ of less than 1 µM and more typically less than 0.1 µM. Generally, the IC₅₀ ratio for delta-5 or delta-6 desaturases to SCD for a compound of formula I is at least about ten or more, and preferably about hundred or more.

In Vivo Efficacy of Compounds of the Present Invention:

The in vivo efficacy of compounds of formula I was determined by following the conversion of [¹⁴C]-stearic acid to [¹⁴C]oleic acid in animals as exemplified below. Mice were dosed with a compound of formula I and one hour later the radioactive tracer, [¹⁴C]-stearic acid, was dosed at 20 µCi/kg IV. At 3 h post dosing of the compound, the liver was harvested and then hydrolyzed in 10 N sodium hydroxide for 24 h at 80 °C, to obtain the total liver fatty acid pool. After phosphoric acid acidification of the extract, the amount of [¹⁴C]-stearic acid and [¹⁴C]-oleic acid was quantified on a HPLC that was equipped with a C-18 reverse phase column and a Packard Flow Scintillation Analyzer.
The subject compounds are further useful in a method for the prevention or treatment of the aforementioned diseases, disorders and conditions in combination with other agents.

The compounds of the present invention may be used in combination with one or more other drugs in the treatment, prevention, suppression or amelioration of diseases or conditions for which compounds of Formula I or the other drugs may have utility, where the combination of the drugs together are safer or more effective than either drug alone. Such other drug(s) may be administered, by a route and in an amount commonly used therefor, contemporaneously or sequentially with a compound of Formula I. When a compound of Formula I is used contemporaneously with one or more other drugs, a pharmaceutical composition in unit dosage form containing such other drugs and the compound of Formula I is preferred. However, the combination therapy may also include therapies in which the compound of formula I and one or more other drugs are administered on different overlapping schedules. It is also contemplated that when used in combination with one or more other active ingredients, the compounds of the present invention and the other active ingredients may be used in lower doses than when each is used singly. Accordingly, the pharmaceutical compositions of the present invention include those that contain one or more other active ingredients, in addition to a compound of Formula I.

Examples of other active ingredients that may be administered in combination with a compound of formula I, and either administered separately or in the same pharmaceutical composition, include, but are not limited to:

(a) dipeptidyl peptidase IV (DPP-IV) inhibitors;
(b) insulin sensitizers including (i) PPARγ agonists, such as the glitazones (e.g. troglitazone, pioglitazone, enoglitzazone, MCC-555, rosiglitazone, balaglitazone, and the like) and other PPAR ligands, including PPARα/γ dual agonists, such as KRP-297, muraglitazar, navelglitazar, Galida, TAK-559, PPARα agonists, such as fenofibric acid derivatives (gemfibrozil, clofibrate, fenofibrate and bezafibrate), and selective PPARγ modulators (SPPARγMs), such as disclosed in WO 02/060388, WO 02/08188, WO 2004/019869, WO 2004/020409, WO 2004/020408, and WO 2004/066963; (ii) biguanides such as metformin and phenformin, and (iii) protein tyrosine phosphatase-1B (PTP-1B) inhibitors;
(c) insulin or insulin mimetics;
(d) sulfonylureas and other insulin secretagogues, such as tolbutamide, glyburide, glipizide, glinepiride, and meglitinides, such as nateglinide and repaglinide;
(e) α-glucosidase inhibitors (such as acarbose and miglitol);
(f) glucagon receptor antagonists, such as those disclosed in WO 98/04528, WO 99/01423, WO 00/39088, and WO 00/69810;
(g) GLP-1, GLP-1 analogues or mimetics, and GLP-1 receptor agonists, such as exendin-4 (exenatide), liraglutide (NN-2211), CJC-1131, LY-307161, and those disclosed in WO 00/42026 and WO 00/59887;
(h) GIP and GIP mimetics, such as those disclosed in WO 00/58360, and GIP receptor agonists;

(i) PACAP, PACAP mimetics, and PACAP receptor agonists such as those disclosed in WO 01/23420;

(j) cholesterol lowering agents such as (i) HMG-CoA reductase inhibitors (lovastatin, simvastatin, pravastatin, cerivastatin, fluvastatin, atorvastatin, itavastatin, and rosuvastatin, and other statins), (ii) sequestrants (cholestyramine, colestipol, and dialkylaminoalkyl derivatives of a cross-linked dextran), (iii) nicotinyl alcohol, nicotinic acid or a salt thereof, (iv) PPARα agonists such as fenofibric acid derivatives (gemfibrozil, clofibrate, fenofibrate and bezafibrate), (v) PPARα/γ dual agonists, such as navelgitazar and muraglitazar, (vi) inhibitors of cholesterol absorption, such as beta-sitosterol and ezetimibe, (vii) acyl CoA:cholesterol acyltransferase inhibitors, such as avasimibe, and (viii) antioxidants, such as probucol;

(k) PPARδ agonists, such as those disclosed in WO 97/28149;

(l) antiobesity compounds, such as fenfluramine, dexfenfluramine, phentermine, sibutramine, orlistat, neuropeptide Y1 or Y3 antagonists, CB1 receptor inverse agonists and antagonists, β3 adrenergic receptor agonists, melanocortin-receptor agonists, in particular melanocortin-4 receptor agonists, ghrelin antagonists, bombesin receptor agonists (such as bombesin receptor subtype-3 agonists), and melanin-concentrating hormone (MCH) receptor antagonists;

(m) ileal bile acid transporter inhibitors;

(n) agents intended for use in inflammatory conditions such as aspirin, non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, azulfidine, and selective cyclooxygenase-2 (COX-2) inhibitors;

(o) antihypertensive agents, such as ACE inhibitors (enalapril, lisinopril, captopril, quinapril, tandolapril), A-II receptor blockers (losartan, candesartan, irbesartan, valsartan, telmisartan, and eprosartan), beta blockers and calcium channel blockers;

(p) glucokinase activators (GKAs), such as those disclosed in WO 03/015774; WO 04/076420; and WO 04/081001;

(q) inhibitors of 11β-hydroxysteroid dehydrogenase type 1, such as those disclosed in U.S. Patent No. 6,730,690; WO 03/104207; and WO 04/058741;

(r) inhibitors of cholesteryl ester transfer protein (CETP), such as torcetrapib; and

(s) inhibitors of fructose 1,6-bisphosphatase, such as those disclosed in U.S. Patent Nos. 6,054,587; 6,110,903; 6,284,748; 6,399,782; and 6,489,476.

Dipeptidyl peptidase-IV inhibitors that can be combined with compounds of structural formula I include those disclosed in US Patent No. 6,699,871; WO 02/076450 (3 October 2002); WO 03/004498 (16 January 2003); WO 03/004496 (16 January 2003); EP 1 258 476 (20 November 2002); WO 02/083128 (24 October 2002); WO 02/062764 (15 August 2002); WO 03/000250 (3 January 2003); WO 03/002530 (9 January 2003); WO 03/002531 (9 January 2003); WO 03/002553 (9 January 2003);
Antiobesity compounds that can be combined with compounds of structural formula I include fenfluramine, dexfenfluramine, phentermine, sibutramine, orlistat, neuropeptide Y₁ or Y₅ antagonists, cannabinoid CB₁ receptor antagonists or inverse agonists, melanocortin receptor agonists, in particular, melanocortin-4 receptor agonists, ghrelin antagonists, bombesin receptor agonists, and melanin-concentrating hormone (MCH) receptor antagonists. For a review of anti-obesity compounds that can be combined with compounds of structural formula I, see S. Chaki et al., “Recent advances in feeding suppressing agents: potential therapeutic strategy for the treatment of obesity,” Expert Opin. Ther. Patents, 11: 1677-1692 (2001); D. Spanswick and K. Lee, “Emerging antiobesity drugs,” Expert Opin. Emerging Drugs, 8: 217-237 (2003); and J.A. Fernandez-Lopez, et al., “Pharmacological Approaches for the Treatment of Obesity,” Drugs, 62: 915-944 (2002).

Neuropeptide Y₅ antagonists that can be combined with compounds of structural formula I include those disclosed in U.S. Patent No. 6,335,345 (1 January 2002) and WO 01/14376 (1 March 2001); and specific compounds identified as GW 59884A; GW 569180A; LY366377; and CGP-71683A.

Cannabinoid CB₁ receptor antagonists that can be combined with compounds of formula I include those disclosed in PCT Publication WO 03/007887; U.S. Patent No. 5,624,941, such as rimonabant; PCT Publication WO 02/076949, such as SLV-319; U.S. Patent No. 6,028,084; PCT Publication WO 98/41519; PCT Publication WO 00/10968; PCT Publication WO 99/02499; U.S. Patent No. 5,532,237; U.S. Patent No. 5,292,736; PCT Publication WO 03/086288; PCT Publication WO 03/087037; PCT Publication WO 04/048317; PCT Publication WO 03/007887; PCT Publication WO 03/06781; PCT Publication WO 03/075660; PCT Publication WO 03/077847; PCT Publication WO 03/082190; PCT Publication WO 03/082191; PCT Publication WO 03/087037; PCT Publication WO 03/086288; PCT Publication WO 04/012671; PCT Publication WO 04/029204; PCT Publication WO 04/040040; PCT Publication WO 01/64632; PCT Publication WO 01/64633; and PCT Publication WO 01/64634.

One particular aspect of combination therapy concerns a method of treating a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia, and dyslipidemia, in a mammalian patient in need of such treatment comprising administering to the patient a therapeutically effective amount of a compound of structural formula I and an HMG-CoA reductase inhibitor.

More particularly, this aspect of combination therapy concerns a method of treating a condition selected from the group consisting of hypercholesterolemia, atherosclerosis, low HDL levels, high LDL levels, hyperlipidemia, hypertriglyceridemia and dyslipidemia in a mammalian patient in need of such treatment wherein the HMG-CoA reductase inhibitor is a statin selected from the group consisting of lovastatin, simvastatin, pravastatin, cerivastatin, fluvastatin, atorvastatin, and rosuvastatin.

In another aspect of the invention, a method of reducing the risk of developing atherosclerosis in a human patient in need of such treatment is disclosed comprising administering to said patient an effective amount of a compound of structural formula I and an HMG-CoA reductase inhibitor.

More particularly, a method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment is disclosed wherein the HMG-CoA reductase inhibitor is a statin selected from the group consisting of: lovastatin, simvastatin, pravastatin, cerivastatin, fluvastatin, atorvastatin, and rosuvastatin.

In another aspect of the invention, a method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment is disclosed, wherein the HMG-CoA reductase inhibitor is a statin and further comprising administering a cholesterol absorption inhibitor.
More particularly, in another aspect of the invention, a method for delaying the onset or reducing the risk of developing atherosclerosis in a human patient in need of such treatment is disclosed, wherein the HMG-CoA reductase inhibitor is a statin and the cholesterol absorption inhibitor is ezetimibe.

In another aspect of the invention, a pharmaceutical composition is disclosed which comprises:

1. a compound of structural formula I;
2. a compound selected from the group consisting of:
 a. dipeptidyl peptidase IV (DPP-IV) inhibitors;
 b. insulin sensitizers including (i) PPARγ agonists, such as the glitazones (e.g. troglitazone, pioglitazone, englitazone, MCC-555, rosiglitazone, balaglitazone, and the like) and other PPAR ligands, including PPARαγ dual agonists, such as KRP-297, muraglitazar, naveglitazar, Galida, TAK-559, PPARα agonists, such as fenofibric acid derivatives (gemfibrozil, clofibrate, fenofibrate and bezafibrate), and selective PPARγ modulators (SPPARγM’s), such as disclosed in WO 02/060388, WO 02/08188, WO 2004/019869, WO 2004/020409, WO 2004/020408, and WO 2004/066963; (ii) biguanides such as metformin and phenformin, and (iii) protein tyrosine phosphatase-1B (PTP-1B) inhibitors;
 c. insulin or insulin mimetics;
 d. sulfonylureas and other insulin secretagogues, such as tolbutamide, glyburide, glipizide, glibenpiride, and meglitinides, such as nateglinide and repaglinide;
 e. α-glucosidase inhibitors (such as acarbose and miglitol);
 f. glucagon receptor antagonists, such as those disclosed in WO 98/04528, WO 99/01423, WO 00/39088, and WO 00/69810;
 g. GLP-1, GLP-1 analogues or mimetics, and GLP-1 receptor agonists, such as exendin-4 (exenatide), liraglutide (NN-2211), CJC-1131, LY-307161, and those disclosed in WO 00/42026 and WO 00/59887;
 h. GIP and GIP mimetics, such as those disclosed in WO 00/58360, and GIP receptor agonists;
 i. PACAP, PACAP mimetics, and PACAP receptor agonists such as those disclosed in WO 01/23420;
 j. cholesterol lowering agents such as (i) HMG-CoA reductase inhibitors (lovastatin, simvastatin, pravastatin, cerivastatin, fluvastatin, atorvastatin, itavastatin, and rosuvastatin, and other statins), (ii) sequestrants (cholestyramine, colestepl, and dialkylaminoalkyl derivatives of a cross-linked dextran), (iii) nicotinyl alcohol, nicotinic acid or a salt thereof, (iv) PPARα agonists such as fenofibric acid derivatives (gemfibrozil, clofibrate, fenofibrate and bezafibrate), (v) PPARα/γ dual agonists, such as naveglitazar and muraglitazar, (vi) inhibitors of cholesterol absorption, such as beta-sitosterol and
ezetimibe, (vii) acyl CoA:cholesterol acyltransferase inhibitors, such as avasimibe, and (viii) antioxidants, such as probucol;

(k) PPARδ agonists, such as those disclosed in WO 97/28149;
(l) antiobesity compounds, such as fenfluramine, dexfenfluramine, phentermine, sibutramine, orlistat, neuropeptide Y₁ or Y₅ antagonists, CB₁ receptor inverse agonists and antagonists, β₃ adrenergic receptor agonists, melanocortin-receptor agonists, in particular melanocortin-4 receptor agonists, ghrelin antagonists, bombesin receptor agonists (such as bombesin receptor subtype-3 agonists), and melanin-concentrating hormone (MCH) receptor antagonists;
(m) ileal bile acid transporter inhibitors;
(n) agents intended for use in inflammatory conditions such as aspirin, non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, azulfidine, and selective cyclooxygenase-2 (COX-2) inhibitors;
(o) antihypertensive agents, such as ACE inhibitors (enalapril, lisinopril, captopril, quinapril, tandolapril), A-II receptor blockers (losartan, candesartan, irbesartan, valsartan, telmisartan, and eprosartan), beta blockers and calcium channel blockers;
(p) glucokinase activators (GKAs), such as those disclosed in WO 03/015774; WO 04/076420; and WO 04/081001;
(q) inhibitors of 11β-hydroxysteroid dehydrogenase type 1, such as those disclosed in U.S. Patent No. 6,730,690; WO 03/104207; and WO 04/058741;
(r) inhibitors of cholesteryl ester transfer protein (CETP), such as torcetrapib; and
(s) inhibitors of fructose 1,6-bisphosphatase, such as those disclosed in U.S. Patent Nos. 6,054,587; 6,110,903; 6,284,748; 6,399,782; and 6,489,476; and
(3) a pharmaceutically acceptable carrier.

When a compound of the present invention is used contemporaneously with one or more other drugs, a pharmaceutical composition containing such other drugs in addition to the compound of the present invention is preferred. Accordingly, the pharmaceutical compositions of the present invention include those that also contain one or more other active ingredients, in addition to a compound of the present invention.

The weight ratio of the compound of the present invention to the second active ingredient may be varied and will depend upon the effective dose of each ingredient. Generally, an effective dose of each will be used. Thus, for example, when a compound of the present invention is combined with another agent, the weight ratio of the compound of the present invention to the other agent will generally range from about 1000:1 to about 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the present invention and other active ingredients will generally also be within the aforementioned range, but in each case, an effective dose of each active ingredient should be used.
In such combinations the compound of the present invention and other active agents may be administered separately or in conjunction. In addition, the administration of one element may be prior to, concurrent to, or subsequent to the administration of other agent(s).

The compounds of the present invention may be administered by oral, parenteral (e.g., intramuscular, intraperitoneal, intravenous, ICV, intracisternal injection or infusion, subcutaneous injection, or implant), by inhalation spray, nasal, vaginal, rectal, sublingual, or topical routes of administration and may be formulated, alone or together, in suitable dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles appropriate for each route of administration. In addition to the treatment of warm-blooded animals such as mice, rats, horses, cattle, sheep, dogs, cats, monkeys, etc., the compounds of the invention are effective for use in humans.

The pharmaceutical compositions for the administration of the compounds of this invention may conveniently be presented in dosage unit form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the carrier which constitutes one or more accessory ingredients. In general, the pharmaceutical compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation. In the pharmaceutical composition the active object compound is included in an amount sufficient to produce the desired effect upon the process or condition of diseases. As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.

The pharmaceutical compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glycercyl monostearate or glycercyl distearate may be employed. They may also be coated by the
techniques described in the U.S. Patents 4,256,108; 4,166,452; and 4,265,874 to form osmotic therapeutic tablets for control release.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.

Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.

The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.
Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.

The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleagenous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

The compounds of the present invention may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials are cocoa butter and polyethylene glycols.

For topical use, creams, ointments, jellies, solutions or suspensions, etc., containing the compounds of the present invention are employed. (For purposes of this application, topical application shall include mouthwashes and gargles.)

The pharmaceutical composition and method of the present invention may further comprise other therapeutically active compounds as noted herein which are usually applied in the treatment of the above mentioned pathological conditions.

In the treatment or prevention of conditions which require inhibition of stearoyl-CoA delta-9 desaturase enzyme activity an appropriate dosage level will generally be about 0.01 to 500 mg per kg patient body weight per day which can be administered in single or multiple doses. Preferably, the dosage level will be about 0.1 to about 250 mg/kg per day; more preferably about 0.5 to about 100 mg/kg per day. A suitable dosage level may be about 0.01 to 250 mg/kg per day, about 0.05 to 100 mg/kg per day, or about 0.1 to 50 mg/kg per day. Within this range the dosage may be 0.05 to 0.5, 0.5 to 5 or 5 to 50 mg/kg per day. For oral administration, the compositions are preferably provided in the form of tablets containing 1.0 to 1000 mg of the active ingredient, particularly 1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 50.0, 75.0, 100.0, 150.0, 200.0, 250.0, 300.0, 400.0, 500.0, 600.0, 750.0, 800.0, 900.0, and 1000.0 mg of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.

When treating or preventing diabetes mellitus and/or hyperglycemia or hypertriglyceridemia or other diseases for which compounds of the present invention are indicated, generally satisfactory results are obtained when the compounds of the present invention are administered
at a daily dosage of from about 0.1 mg to about 100 mg per kilogram of animal body weight, preferably given as a single daily dose or in divided doses two to six times a day, or in sustained release form. For most large mammals, the total daily dosage is from about 1.0 mg to about 1000 mg, preferably from about 1 mg to about 50 mg. In the case of a 70 kg adult human, the total daily dose will generally be from about 7 mg to about 350 mg. This dosage regimen may be adjusted to provide the optimal therapeutic response.

It will be understood, however, that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the host undergoing therapy.

Preparation of Compounds of the Invention:

The compounds of structural formula I can be prepared according to the procedures of the following Schemes and Examples, using appropriate materials and are further exemplified by the following specific examples. The compounds illustrated in the examples are not, however, to be construed as forming the only genus that is considered as the invention. The Examples further illustrate details for the preparation of the compounds of the present invention. Those skilled in the art will readily understand that known variations of the conditions and processes of the following preparative procedures can be used to prepare these compounds. All temperatures are degrees Celsius unless otherwise noted. Mass spectra (MS) were measured by electrospray ion-mass spectroscopy (ESMS).

Method A:

An appropriately substituted heteroaryl halide 1 is reacted with an appropriately substituted cyclic amine 2 in the presence of a base such as DBU and an alkali metal (K, Na, Cs) carbonate in a solvent such as THF, 1,4-dioxane, and DMF at a temperature range of about room temperature to about refluxing temperature. Extractive work up and purification by flash column chromatography gives desired product 3.

Method B:

An appropriately substituted heteroaryl dibromide 4 is reacted with an appropriately substituted cyclic amine 5 in the presence of a base such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) or
an alkali metal (K, Na, Cs) carbonate in a solvent such as N,N-dimethylformamide (DMF) at a temperature range of about room temperature to about refluxing temperature. Extractive work up and purification by flash column chromatography gives desired heteroaryl bromide 6. Reaction of heteroaryl bromide 6 with copper (I) cyanide in a solvent such as DMF, acetonitrile, and 1,4-dioxane at a temperature range of about room temperature to about refluxing temperature followed by extractive work up and purification by flash column chromatography gives desired heteroaryl cyanide 7.

Method C:

The heteroaryl cyanide 7 is converted into amidate 8 by reaction with an appropriate amine in the presence of a base such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and an alkali metal (K, Na, Cs) carbonate in a solvent such as N,N-dimethylformamide (DMF), EtOH, THF, and 1,4-dioxane at a temperature range of about room temperature to about refluxing temperature. Extractive work up and purification by flash column chromatography gives desired amidate 8. The amidate 8 is reacted with an appropriate (a) orthoformate ester in the presence of an acid, such as p-toluenesulfonic acid or BF3-etherate, (b) an acid chloride or an activated anhydride in a solvent such as pyridine, or (c) an ester, in the presence of a base such as sodium ethoxide in a solvent such as ethanol, to generate the biheteroaryl 9.

Method D:

An appropriately substituted heteroaryl bromide 10 is reacted with an appropriately substituted cyclic amine 11 in the presence of a base such as DBU or an alkali metal (K, Na, Cs)
carbonate in a solvent such as DMF at a temperature range of about room temperature to about refluxing temperature. Extractive work up and purification by flash column chromatography gives desired product 12.

\[
\text{12. COOR}^4 \quad \text{CO}_2\text{R}^4
\]

\[
\text{Het-Ar-Br} + \text{HN-X-Y-Ar} \xrightarrow{\text{Base}} \text{HetAr-N}_\text{X-Y-Ar}
\]

5 **Method E:**

The ester 12 is hydrolyzed with an alkaline base such as NaOH in a solvent such as aqueous THF with an alcoholic solvent such as MeOH at a temperature range of about room temperature to about refluxing temperature to give the carboxylic acid 13. The carboxylic acid 13 is converted to the corresponding acid chloride and then reacted with an appropriately substituted W-NH₂ amine to give the desired amide product 14. Alternatively, the carboxylic acid 13 is reacted with an appropriately substituted W-NH₂ amine in the presence of a standard peptide coupling reagent such as HATU or N,N'-dicyclohexylcarbodiimide (DCC) to give the desired amide product 14. The amide 14 can be reacted with an appropriate orthoformate ester in the presence of an acid such as pTSA or BF₃-etherate to generate the biheteroaryl 15. Alternatively, the amide can be converted to its thioamide by reaction with an appropriate reagent such as a Lawesson reagent or P₄S₁₀. The thioamide in turn can be converted to its corresponding heterocycle.

\[
\text{12. CO}_2\text{R}^4 \quad \text{CO}_2\text{H}
\]

\[
\text{Het-Ar-N}_\text{X-Y-Ar} \quad \text{Het-Ar-N}_\text{X-Y-Ar}
\]

\[
\text{H}_2\text{N-W} \xrightarrow{\text{ii)CR}^n(\text{OMe})_3} \text{Het-Ar-N}_\text{X-Y-Ar}
\]

\[
\text{Het-Ar-N}_\text{X-Y-Ar}
\]

\[
\text{p and W are each independently selected from S, O, NR(R=H or alkyl), CH=, and CR=}
\]

Method F:

An appropriately substituted heteroaryl bromide 10 is reacted with an appropriately substituted cyclic amine 16 in the presence of a base such as DBU and an alkali metal (K, Na, Cs) carbonate in a solvent such as DMF at a temperature range of about room temperature to about refluxing temperature.
temperature. Extractive work up and purification by flash column chromatography gives desired product 17.

\[
\begin{array}{c}
\text{COOR}^4 \\
\text{Het-Ar-Br}
\end{array}
\begin{array}{c}
\text{HN}
\end{array}
\begin{array}{c}
\text{N}
\end{array}
\begin{array}{c}
\text{Ar}
\end{array}
\xrightarrow{\text{Base}}
\begin{array}{c}
\text{CO}_2\text{R}^4 \\
\text{HetAr-} \\
\text{N}
\end{array}
\begin{array}{c}
\text{N}
\end{array}
\begin{array}{c}
\text{Ar}
\end{array}
\]

Method G:

The ester 17 is hydrolysed with an alkaline base such as NaOH in a solvent such as aqueous THF with an alcoholic solvent such as MeOH at a temperature range of about room temperature to about refluxing temperature to give the carboxylic acid 18. The carboxylic acid 18 is converted to the corresponding acid chloride and then reacted with an appropriately substituted \(R^4 \) \(R^4 \) \(NH \) amine to give the desired amide product 19. Alternatively, the carboxylic acid 18 is reacted with an appropriately substituted \(R^4 \) \(R^4 \) \(NH \) amine in the presence of a standard peptide coupling reagent such as HATU or \(N,N' \)-dicyclohexylcarbodiimide (DCC) to give the desired amide product 19.

\[
\begin{array}{c}
\text{CO}_2\text{R}^4 \\
\text{HetAr-N}
\end{array}
\begin{array}{c}
\text{N}
\end{array}
\begin{array}{c}
\text{Ar}
\end{array}
\xrightarrow{\text{aq. base}}
\begin{array}{c}
\text{CO}_2\text{H} \\
\text{HetAr-N}
\end{array}
\begin{array}{c}
\text{N}
\end{array}
\begin{array}{c}
\text{Ar}
\end{array}
\]

\[
\begin{array}{c}
\text{NHR}^4\text{R}^4
\end{array}
\begin{array}{c}
\text{HetAr-}
\end{array}
\begin{array}{c}
\text{N}
\end{array}
\begin{array}{c}
\text{N}
\end{array}
\begin{array}{c}
\text{Ar}
\end{array}
\]

Method H:

The heteroaryl halide 1 used in Methods A-B can be synthesed from the corresponding heteroarylamines 20. Treatment of 20 with t-butyl nitrite and anhydrous copper(II) halide in a solvent such as \(CH_3CN \) gives the desired heteroaryl halide 1.

\[
\begin{array}{c}
\text{R}^3
\end{array}
\begin{array}{c}
\text{Het-Ar-}
\end{array}
\begin{array}{c}
\text{NH}_2
\end{array}
\xrightarrow{\text{t-BuONO}}
\begin{array}{c}
\text{R}^3
\end{array}
\begin{array}{c}
\text{Het-Ar-}
\end{array}
\begin{array}{c}
\text{Cl}, \text{Br}, \text{or} \text{I}
\end{array}
\]

Method I:

Wherein X-Y is N-C(O) or N-CR\(^1\)R\(^2\), a \(t \)-butyloxycarbonyl (Boc) or benzyloxycarbonyl (Cbz) protected piperazine 21 is reacted with an aroyl halide or arylmethyl halide in the presence of a
base such as a tertiary amine, alkali metal carbonate, and alkali metal hydroxide. The intermediate is then deprotected in a standard manner to give the desired amine \(22\) for the condensation reaction with the appropriately substituted heteroaryl halide as shown in Method A.

\[
\begin{align*}
\text{Method J:} & \\
\text{Wherein X-Y is CH-O or CH-S, a Boc or Cbz protected 4-hydroxypiperidine \(23\) is activated as a mesylate, tosylate or halo (Br or I) derivative via standard conditions. The activated intermediate is then reacted with a ArOH or ArSH nucleophile. Alternatively, intermediate \(23\) can be reacted directly with the nucleophile under Mitsunobu conditions. Deprotection in a standard manner gives the desired amine \(24\) for the condensation reaction with the heteroaryl halide as shown in Method A.}
\end{align*}
\]

\[
\begin{align*}
\text{Method K:} & \\
\text{A sulfide intermediate \(25\) from Method K is oxidized with an oxidant such as meta-chloroperbenzoic acid (mCPBA), NaIO}_{4}, and MMPP) in a stoichiometric amount to give either the corresponding sulfoxide (n = 1) or sulfone (n = 2). Deprotection gives the desired amine \(26\) for the condensation reaction with the heteroaryl halide as shown in Method A.}
\end{align*}
\]
Method L:

An appropriately substituted heteroaryl bromide 6 is reacted with an appropriately substituted cyclic amide in the presence of copper (I) iodide and an amine such as N\'N\'‐dimethylethylenediamine and potassium phosphate in a solvent such as dioxane, N,N‐dimethylformamide (DMF) at a temperature range of about room temperature to about refluxing temperature. Extractive work up and purification by flash column chromatography gives desired heteroaryl amide 27.

\[
\begin{align*}
\text{Br} & \quad \text{HetAr} \quad \text{N} \quad \text{X} \quad \text{Y} \quad \text{Ar} \\
\text{Cul} & \quad \rightarrow \\
\text{nNH} & \quad \text{R} \quad \text{R'} \\
\text{n} & \quad = \quad 0, \quad 1, \quad 2, \quad 3 \\
\end{align*}
\]

Method M:

An appropriately substituted heteroaryl bromide 10 is reacted with of an appropriately substituted cyclic amine 28 in the presence of a base such as DBU and an alkali metal (K, Na, Cs) carbonate and in a solvent such as DMF, acetonitrile at a temperature range of about room temperature to about refluxing temperature. Extractive work up and purification by flash column chromatography gives desired product 29. The ester 29 is converted to the corresponding amide 30 by reaction with an appropriate amine such as ammonia. The amine 31 is coupled with an appropriate aroyl halide or arylmethyl halide in the presence of a base such as a tertiary amine, alkali metal carbonate, and alkali metal hydroxide.
PREPARATION OF INTERMEDIATES:

INTERMEDIATE 1

4-{{2-(Trifluoromethyl)phenoxy}piperidine}

To a solution of Boc-4-hydroxy-1-piperidine (25 g, 124 mmol), 2-hydroxybenzotri fluoride (22 g, 136 mmol) and triphenylphosphine (39 g, 149 mmol) in THF was added diethyl azodicarboxylate dropwise (23.5 mL, 149 mmol) at 0 °C. The mixture was then warmed to room temperature and stirred for 14 h. The mixture was concentrated and diluted with ethyl ether, washed with 1N NaOH, water then dried over Na₂SO₄. The mixture was concentrated and diluted with Et₂O/hexanes (35:65). The precipitated phosphine oxide was filtered and the filtrate was concentrated. The residue was purified by silica gel chromatography using Et₂O/hexanes (35:65) as eluent to give 1-piperidinecarboxylic acid, 4-{{2-(trifluoromethyl)phenoxy}-1,1-dimethylethyl ester as a solid.

15 Trifluoroacetic acid (26.3 mL, 342 mmol) was added to a solution of 1-piperidinecarboxylic acid, 4-{{2-(trifluoromethyl)phenoxy}-1,1-dimethylethyl ester (29.5 g, 85 mmol) in CH₂Cl₂ (171 mL). The mixture was stirred at room temperature for 16 h. The solvent was evaporated. The residue was diluted with
EtOAc (200 mL), washed with NaOH (3x100 mL, 2N), brine, dried over Na₂SO₄, and evaporated to give the title compound as an oil.

INTERMEDIATE 2

4-(2-Bromophenoxy)piperidine hydrochloride

To a solution of tert-butyl 4-hydroxypiperidine-1-carboxylate (31.4 g, 0.15 mmol) in dichloromethane (300 mL) was added MsCl (20.6 g, 0.18 mol) and Et₃N (22.7 g, 0.25 mol) at 0 °C. The mixture was further stirred for 3 h and filtered. The filtrate was evaporated in vacuo to give tert-butyl 4-[(methylsulfonyl)oxy]piperidine-1-carboxylate. ¹H NMR (400 MHz, CDCl₃) δ 4.84-4.91 (m, 1 H), 3.64-3.75 (m, 2 H), 3.24-3.35 (m, 2 H), 3.04 (s, 3 H), 1.91-2.02 (m, 2 H), 1.76-1.87 (m, 2 H), 1.48 (s, 9 H). MS: m/z 280 (MH⁺).

A solution of tert-butyl 4-[(methylsulfonyl)oxy]piperidine-1-carboxylate (83.5 g, 299 mmol) in DMF (300 mL) was added 2-bromophenol (62.07 g, 359 mmol) and Cs₂CO₃ (194.8 g, 598 mmol). The reaction mixture was heated at 70 °C overnight. The solvent was evaporated in vacuo, and the residue was purified by column chromatography to give tert-butyl 4-(2-bromophenoxy)piperidine-1-carboxylate. The product was used directly in next step without purification.

A solution of tert-butyl 4-[(methylsulfonyl)oxy]piperidine-1-carboxylate (40.0 g, 0.112 mol) in ethanol (25 mL) was added dropwise 5 N HCl in ethanol solution (30 mL). The reaction mixture was stirred at room temperature for 12 h. The solvent was evaporated in vacuo, and ether (20 mL) was added to the residue. The resulting precipitate was washed with ether to afford the title compound in the form of its hydrochloride salt. The product was used directly in next step without purification.

INTERMEDIATE 3

4-(2-Bromo-5-fluorophenoxy)piperidine hydrochloride

The title compound was prepared in the same manner as described for 4-(2-bromophenoxy)piperidine hydrochloride from tert-butyl 4-[(methylsulfonyl)oxy]piperidine-1-carboxylate
and 2-bromo-5-fluorophenol. \(^1\)H NMR (300 MHz, D\(_2\)O): \(\delta\) 7.44-7.49 (m, 1H), 6.83-6.88 (m, 1H), 6.50-6.67 (m, 1H), 4.67-4.73 (m, 1H), 3.30-3.39 (m, 2H), 3.13-3.23 (m, 2H), 2.03-2.08 (m, 4H).

INTERMEDIATE 4

![Intermediate 4](image)

4-(2-Bromo-4-fluorophenoxy)piperidine hydrochloride

The title compound was prepared in the same manner as described for 4-(2-bromophenoxy)piperidine hydrochloride from tert-butyl 4-[(methylsulfonyl)oxy]piperidine-1-carboxylate and 2-bromo-4-fluorophenol. \(^1\)H NMR (300 MHz, D\(_2\)O): \(\delta\) 7.28-7.29 (m, 1H), 6.87-7.18 (m, 2H), 4.65 (m, 1H), 3.34-3.39 (m, 2H), 3.10-3.25 (m, 2H), 2.03-2.26 (m, 4H).

The following Examples are provided to illustrate the invention and are not to be construed as limiting the scope of the invention in any manner.

EXAMPLE 1

![Example 1](image)

Methyl 2-[4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl]-1,3-thiazole-5-carboxylate

Step 1: 1-[2-(Trifluoromethyl)benzoyl]piperazine

To a solution of tert-butyl piperazine-1-carboxylate (34 g, 183 mmol) and triethylamine (31 mL, 221 mmol) in CH\(_2\)Cl\(_2\) (400 mL) at 0 °C was added dropwise 2-trifluoromethylbenzoyl chloride over 5-10 min. The cooling bath was removed and the mixture was stirred at room temperature for 2 h. After dilution with water, the mixture was extracted with CH\(_2\)Cl\(_2\). The CH\(_2\)Cl\(_2\) extract was washed with water, dried (Na\(_2\)SO\(_4\)) and concentrated to give tert-butyl 4-[2-(trifluoromethyl)benzoyl]piperazine-1-carboxylate as a pale yellow gum which solidified on standing overnight.

To a solution of above tert-butyl 4-[2-(trifluoromethyl)benzoyl]piperazine-1-carboxylate in CH\(_2\)Cl\(_2\) (500 mL) was added TFA (67.5 mL). The mixture of was stirred at room temperature overnight. Volatile materials were removed in vacuo. The residue was diluted with CH\(_2\)Cl\(_2\) and washed
with saturated NaHCO₃. The aqueous was extracted five times with CH₂Cl₂. The combined CH₂Cl₂ extracts were washed with brine, dried (Na₂SO₄) and concentrated to give the title compound as a pale yellow gum which solidified on standing. ¹H NMR (500 MHz, CDCl₃): δ 7.71 (m, 1H), 7.61 (m, 1H), 7.52 (m, 1H), 7.34 (m, 1H), 3.83 (m, 2H), 3.17 (t, 2H), 2.96 (t, 2H), 2.80 (m, 2H).

Step 2: Methyl 2-{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxylate
To a solution of methyl 2-bromo-1,3-thiazole-5-carboxylate (800 mg, 3.6 mmol) and 1-[2-(trifluoromethyl)benzoyl]piperazine (1.0 g, 3.9 mmol) in THF (12 mL) was added DBU (1.1 mL, 7.2 mmol). The mixture was heated at 80 °C for 5 h after which it was filtered and the solvent was evaporated. The crude product was purified by Combiflash (SiO₂, gradient elution 40-80 % EtOAc/Hexanes) to yield the title compound as a solid. ¹H NMR (500 MHz, CDCl₃): δ 3.35 (d, 2 H), 3.53 (s, 2 H), 3.63-3.75 (m, 2 H), 3.85-3.91 (m, 4 H), 4.04-4.08 (m, 1 H), 7.37 (d, 1 H), 7.58 (t, 1 H), 7.65 (t, 1 H), 7.76 (d, 1 H), 7.89 (s, 1 H); MS (+ESI) m/z 400 (MH⁺).

EXAMPLE 2

![Structure Image]

2-{4-[2-(Trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxylic acid
To a solution of Example 1 (540 mg, 1.35 mmol) in THF (2.7 mL) was added 10 N NaOH (1.3 mL, 13.5 mmol). The reaction mixture was warmed at 50 °C for 5 h after which time the THF was evaporated. The mixture was acidified to pH 1 with 2 N HCl and extracted with (3 x 5 mL) EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated to give the title compound as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 3.36-3.40 (m, 2 H), 3.54-3.62 (m, 2 H), 3.67-3.79 (m, 2 H), 3.86-3.93 (m, 1 H), 4.07-4.13 (m, 1 H), 7.39 (d, 1 H), 7.60 (t, 1 H), 7.67 (t, 1 H), 7.78 (d, 1 H), 7.99 (s, 1 H); MS (+ESI) m/z 386 (MH⁺).

EXAMPLE 3
N-Methyl-2-{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxamide

A mixture of the 2-{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxylic acid (60 mg, 0.17 mmol), HATU (95 mg, 0.25 mmol), DIPEA (108 µL, 0.6 mmol) and methylamine hydrochloride (21 mg, 0.31 mmol) in DMF (0.52 mL) was stirred at room temperature for 15 h. The reaction mixture was diluted with water (2 mL) and extracted with EtOAc (3 x 1 mL). The combined organic layers were dried over Na₂SO₄. Evaporation of the solvent followed by purification by CombiFlash (SiO₂, gradient elution 80-100 % EtOAc/Hexanes) afforded the title compound as a solid.

\[
{^1}H \text{ NMR (500 MHz, acetone-d₆): } \delta 2.83 (d, 3 H), 3.34-3.58 (m, 4 H), 3.68 (t, 2 H), 3.83-3.89 (m, 1 H), 3.94-4.01 (m, 1 H), 7.51 (s, 1 H), 7.57 (d, 1 H), 7.71 (d, 2 H), 7.78 (t, 1 H), 7.85 (d, 1 H); MS (+ESI) m/z 398 (MH⁺).
\]

EXAMPLE 4

2-{4-[2-(Trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxamide

To a solution of the 2-{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxylic acid (60 mg, 0.15 mmol) in THF (1.5 mL) was added oxalyl chloride (27 µL, 0.31 mmol) followed by 1 drop of DMF. The reaction mixture was stirred for 0.5 h after which the solvent was evaporated. The reaction mixture was re-dissolved in THF (1.5 mL) and ammonia gas was bubbled through it for 1 min. After an additional 1 h, the THF was evaporated. The mixture was diluted with saturated NaHCO₃ (1 mL) and extracted (3 x 1 mL) with EtOAc. The combined organic layers were dried over Na₂SO₄. Evaporation of the solvent followed by trituration with ether (2 x 1 mL) gave the title compound as a white solid.

\[
{^1}H \text{ NMR (500 MHz, CDCl₃): } \delta 3.33-3.37 (m, 2 H), 3.50-3.56 (m, 2 H), 3.65-3.75 (m, 2 H), 3.85-3.92 (m, 1 H), 4.05-4.09 (m, 1 H), 5.54 (s, 2 H), 7.38 (d, 1 H), 7.58-7.68 (m, 3 H), 7.77 (d, 1 H); MS (+ESI) m/z 385 (MH⁺).
\]
EXAMPLE 5

\[\text{N-(Cyclopropylmethyl)-2-\{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl\}-1,3-thiazole-5-carboxamide} \]

The title compound was prepared in the same manner as described in Example 3 with 2-\{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl\}-1,3-thiazole-5-carboxylic acid and cyclopropylmethylamine.

\[^1\text{H NMR (500 MHz, acetone-\text{d}_6): \delta 7.85 (d, 1 H), 7.78 (dd, 2 H), 7.71 (t, 1 H), 7.60 (s, 1 H), 7.57 (d, 1 H), 4.00-3.94 (m, 1 H), 3.89-3.83 (m, 1 H), 3.68 (t, 2 H), 3.58-3.52 (m, 2 H), 3.44-3.42 (m, 1 H), 3.38 (dd, 1 H), 3.19 (t, 2 H), 1.07-1.01 (m, 1 H), 0.46-0.44 (m, 2 H), 0.23 (q, 2 H); MS (+ESI) m/z 439 (M\text{H}^+)}. \]

EXAMPLE 6

\[\text{N-(2-Cyclopropylethyl)-2-\{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl\}-1,3-thiazole-5-carboxamide} \]

The title compound was prepared in the same manner as described in Example 3 with 2-\{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl\}-1,3-thiazole-5-carboxylic acid and cyclopropylethylamine.

\[^1\text{H NMR (500 MHz, acetone-\text{d}_6): \delta 7.85 (d, 1 H), 7.80-7.76 (m, 1 H), 7.74 (s, 1 H), 7.70 (t, 1 H), 7.57 (d, 1 H), 7.52 (s, 1 H), 3.99-3.95 (m, 1 H), 3.88-3.82 (m, 1 H), 3.68 (t, 2 H), 3.58-3.50 (m, 2 H), 3.45-3.35 (m, 4 H), 1.46 (q, 2 H), 0.78-0.70 (m, 1 H), 0.45-0.39 (m, 2 H), 0.07 (q, 2 H); MS (+ESI) m/z 475 (M+Na).} \]
EXAMPLE 7

Ethyl 5-{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl}-1,3,4-oxadiazole-2-carboxylate

The title compound was prepared in the same manner as described for Example 1, Step 2 from 1-[2-(trifluoromethyl)benzoyl]piperazine and ethyl 5-bromo-1,3,4-oxadiazole-2-carboxylate.

1H NMR (500 MHz, acetone-d_6): δ 7.85 (d, 1 H), 7.79 (t, 1 H), 7.71 (t, 1 H), 7.57 (d, 1 H), 4.42 (q, 2 H), 4.02-3.88 (m, 2 H), 3.80-3.72 (m, 2 H), 3.67-3.57 (m, 2 H), 3.50-3.40 (m, 2 H), 1.37 (t, 3 H); MS (+ESI) m/z 399 (M$^+$).

EXAMPLE 8

1-(1,3-Thiazol-2-yl)-4-[2-(trifluoromethyl)benzoyl]piperazine

The title compound was prepared in the same manner as described for Example 1, Step 2 from 1-[2-(trifluoromethyl)benzoyl]piperazine and ethyl 2-bromothiazole.

1H NMR (500 MHz, CDCl$_3$): δ 7.73 (d, 1 H), 7.62 (t, 1 H), 7.55 (t, 1 H), 7.35 (d, 1 H), 7.20 (d, 1 H), 6.63 (d, 1 H), 4.04-3.98 (m, 1 H), 3.93-3.87 (m, 1 H), 3.63-3.55 (m, 2 H), 3.44 (t, 2 H), 3.32 (t, 2 H); MS (+ESI) m/z 342 (M$^+$).

EXAMPLE 9

2-{4-[2-(Trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-benoxazole

The title compound was prepared in the same manner as described for Example 1, Step 2 from 1-[2-(trifluoromethyl)benzoyl]piperazine and 2-chloro-1,3-benoxazole.
1H NMR (500 MHz, CDCl3): δ 7.75 (1 H, d), 7.64 (1 H, t), 7.57 (1 H, t), 7.38 (2 H, t), 7.29 (1 H, d), 7.20-7.18 (1 H, m), 7.07-7.05 (1 H, m), 4.08-4.02 (1 H, m), 3.91-3.83 (2 H, m), 3.80-3.74 (1 H, m), 3.67-3.59 (2 H, m), 3.36-3.32 (2 H, m). MS (+ESI) m/z 376.1 (MH+).

EXAMPLE 10

![Chemical Structure](image)

2-{4-[2-(Trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-benzothiazole

The title compound was prepared in the same manner as described for Example 1, Step 2 from 1-[2-(trifluoromethyl)benzoyl]piperazine and 2-chloro-1,3-benzothiazole.

1H NMR (400 MHz, CDCl3): δ 7.77 (d, 1 H), 7.67-7.56 (m, 4 H), 7.40-7.32 (m, 2 H), 7.14 (t, 1 H), 4.10-4.04 (m, 1 H), 3.96-3.90 (m, 1 H), 3.81-3.70 (m, 2 H), 3.61 (t, 2 H), 3.36 (t, 2 H). MS (+ESI) m/z 392.1 (MH+).

EXAMPLE 11

![Chemical Structure](image)

Methyl 2-{4-[2-(trifluoromethyl)benzyl]piperazin-1-yl}-1,3-thiazole-5-carboxylate

Step 1: Methyl 2-piperazin-1-yl-1,3-thiazole-5-carboxylate

A mixture of methyl 2-bromo-1,3-thiazole-5-carboxylate (150 mg, 0.68 mmol) and piperazine (174 mg, 2.0 mmol) in acetonitrile (8.4 mL) was heated at 60 °C for 1 h. The mixture was filtered and the solvent was evaporated. The crude product was purified by CombiFlash (SiO2, 89:10:1 CH3Cl2/MeOH/NH4OH) to yield the title compound as a solid.

Step 2: Methyl 2-{4-[2-(trifluoromethyl)benzyl]piperazin-1-yl}-1,3-thiazole-5-carboxylate

A mixture of methyl 2-piperazin-1-yl-1,3-thiazole-5-carboxylate (150 mg, 0.66 mmol), 1-(bromomethyl)-2-(trifluoromethyl)benzene (173 mg, 0.73 mmol) and DBU (0.19 mL, 1.3 mmol) in THF (3.3 mL) was heated at 60 °C for 8 h. The mixture was filtered and the solvent was evaporated. The
crude product was purified by Combiflash (SiO₂, gradient elution 30-60 % EtOAc/Hexanes) to yield the title compound as a solid.

\[\text{H}^1 \text{NMR (500 MHz, CDCl}_3\text{)}: \delta 7.90 (s, 1 H), 7.81 (d, 1 H), 7.67 (d, 1 H), 7.56 (t, 1 H), 7.39 (t, 1 H), 3.84 (s, 3 H), 3.74 (s, 2 H), 3.61 (t, 4 H), 2.62 (t, 4 H). MS (+ESI) m/z 386.1 (MH⁺).

\]

EXAMPLE 12

![Chemical Structure](image)

2-\{4-\[2-(Trifluoromethyl)benzyl\]piperazin-1-yl\}-1,3-thiazole-5-carboxamide

To a solution of the methyl 2-\{4-[2-(trifluoromethyl)benzyl]piperazin-1-y1\}-1,3-thiazole-5-carboxylate (100 mg, 0.3 mmol) in a 4 mL vial was added NaCN (1.3 mg, 0.03 mmol) and the mixture was saturated with ammonia gas for 3 min. The vial was sealed and the mixture warmed at 50 °C for 96 h. The solvent was evaporated and the crude product was purified by Combiflash (SiO₂, gradient elution 5-10 % MeOH/EtOAc) to yield the title compound as a solid.

\[\text{H}^1 \text{NMR (500 MHz, CDCl}_3\text{)}: \delta 7.81 (d, 1 H), 7.66 (t, 2 H), 7.56 (t, 1 H), 7.39 (t, 1 H), 5.67 (s, 2 H), 3.75 (s, 2 H), 3.60 (s, 3 H), 2.62 (t, 4 H). MS (+ESI) m/z 371 (MH⁺).

EXAMPLE 13

![Chemical Structure](image)

Methyl 2-\{4-[2-(methylsulfonyl)phenoxy]piperidin-1-yl\}-1,3-thiazole-5-carboxylate

The title compound was prepared in the same manner as described for Example 1, Step 2 from 4-[2-(methylsulfonyl)phenoxy]piperidine and methyl-2-bromo-1,3-thiazole-5-carboxylate.

\[\text{H}^1 \text{NMR (500 MHz, CDCl}_3\text{)}: \delta 8.02 (d, 1 H), 7.88 (s, 1 H), 7.62-7.60 (m, 1 H), 7.15 (t, 1 H), 7.09 (d, 1 H), 4.92-4.90 (m, 1 H), 3.86 (d, 5 H), 3.77-3.71 (m, 2 H), 2.73 (s, 3 H), 2.12-2.10 (m, 4 H). MS (+ESI) m/z 397 (MH⁺).

EXAMPLE 14
Methyl 2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboxylate

The title compound was prepared in the same manner as described for Example 1, Step 2 from 4-[2-(trifluoromethyl)phenoxy]piperidine and methyl 2-bromo-1,3-thiazole-5-carboxylate.

1H NMR (500 MHz, CDCl$_3$): δ 7.90 (s, 1 H), 7.62 (d, 1 H), 7.51 (t, 1 H), 7.06-7.02 (m, 2 H), 4.82 (d, 1 H), 3.85 (s, 3 H), 3.80-3.70 (m, 4 H), 2.12-2.02 (m, 4 H). MS (+ESI) m/z 387 (MH$^+$).

EXAMPLE 15

(2-{4-[2-(Trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazol-5-yl)methanol

To a solution of methyl 2-4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxylate (100 mg, 0.25 mmol) in THF (1.2 mL) was added LAH (0.27 mL, 1 M in THF) at -78 °C. After 0.5 h, the reaction was quenched by addition of 1 drop of 15% aqueous NaOH. The mixture was
warmed to room temperature, filtered and the solvent was evaporated. The crude product was purified by Combiflash (SiO₂, gradient elution 1-5 % MeOH/EtOAc) to yield the title compound as a solid.

\[^1H \text{ NMR (500 MHz, CDCl}_3): \delta 7.76 (d, 1 H), \ 7.65 (t, 1 H), \ 7.58 (t, 1 H), \ 7.37 (d, 1 H), \ 7.07 (s, 1 H), \ 4.70 (s, 2 H), \ 4.04-3.98 (m, 1 H), \ 3.94-3.88 (m, 1 H), \ 3.63-3.55 (m, 2 H), \ 3.49-3.42 (m, 2 H), \ 3.38-3.32 (m, 2 H). \]

\[\text{MS (+ESI) m/z 372 (MH}^+). \]

EXAMPLE 17

![Chemical structure of Example 17](image)

2-\{4-[2-(Trifluoromethyl)phenoxy]piperidin-1-yl\}-1,3-thiazole-5-carboxamide

The title compound was prepared in the same manner as described for Example 12 from methyl 2-\{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl\}-1,3-thiazole-5-carboxylate.

\[^1H \text{ NMR (500 MHz, acetone-d}_6): \delta 7.79 (s, 1 H), \ 7.67-7.61 (m, 2 H), \ 7.38 (d, 1 H), \ 7.12 (t, 1 H), \ 5.02 (s, 1 H), \ 3.76 (t, 2 H), \ 3.71-3.67 (m, 2 H), \ 2.16 (t, 2 H), \ 2.00-1.94 (m, 2 H). \text{MS (+ESI) m/z 372 (MH}^+). \]

EXAMPLE 18

![Chemical structure of Example 18](image)

2-\{4-[3-(Trifluoromethyl)phenoxy]piperidin-1-yl\}-1,3-thiazole-5-carboxamide

The title compound was prepared in the same manner as described for Example 12 from methyl 2-\{4-[3-(trifluoromethyl)phenoxy]piperidin-1-yl\}-1,3-thiazole-5-carboxylate.

\[^1H \text{ NMR (500 MHz, acetone-d}_6): \delta 1.89-1.95 (m, 2 H), \ 2.17 (s, 2 H), \ 3.56-3.62 (m, 2 H), \ 3.87 (dd, 2 H), \ 4.92 (s, 1 H), \ 7.30-7.36 (m, 3 H), \ 7.56 (t, 1 H), \ 7.79 (s, 1 H). \text{MS (+ESI) m/z 372.1 (MH}^+). \]

EXAMPLE 19
2-(2-{4-[2-(Trifluoromethyl)benzoyl]piperazin-1-yl]-1,3-thiazol-5-yl}propan-2-ol

To a solution of methyl 2-{4-{2-(trifluoromethyl)benzoyl}piperazin-1-yl}-1,3-thiazole-5-carboxylate (100 mg, 0.25 mmol) in THF (1.3 mL) was added methyl magnesium bromide (0.20 mL, 0.63 mmol, 3.0 M in Et₂O) at -78 °C. After 1 h, the reaction was quenched with saturated ammonium chloride (1 mL). The THF was evaporated and aqueous layer extracted (3 x 1 mL) with EtOAc. The combined organic layers were dried over Na₂SO₄. The solvent was evaporated and the crude product purified by Combiflash (SiO₂, gradient elution 70-100 % EtOAc/Hexanes) to yield the title compound as a foam.

¹H NMR (500 MHz, acetone-d₆): δ 1.56 (s, 6 H), 3.31-3.45 (m, 4 H), 3.55 (t, 2 H), 3.80-3.86 (m, 1 H), 3.91-3.97 (m, 1 H), 4.38 (s, 1 H), 6.97 (s, 1 H), 7.55 (d, 1 H), 7.70 (t, 1 H), 7.77 (t, 1 H), 7.84 (d, 1 H). MS (+ESI) m/z 400.1 (MH⁺).

EXAMPLE 20

1-(5-Bromo-1,3-thiazol-2-yl)-4-{2-(trifluoromethyl)phenoxylpiperidine

The title compound was prepared in the same manner as described for Example 1, Step 2 from 4-{2-(trifluoromethyl)phenoxylpiperidine and 2,5-dibromo-1,3-thiazole.

¹H NMR (400 MHz, acetone-d₆): δ 1.90-2.05 (m, 2H), 2.10-2.20 (m, 2H), 3.54-3.75 (m, 4H), 5.00 (m, 1H), 7.10-7.20 (m, 2H), 7.38 (d, 1H), 7.60-7.70 (m, 2H); MS (+ESI) m/z 407, 409 (MH⁺).
2-(4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl)-1,3-thiazole-5-carbonitrile

A solution of 1-(5-bromo-1,3-thiazol-2-yl)-4-[2-(trifluoromethyl)benzoyl]-piperazine (100 mg, 0.24 mmol) and CuCN (43 mg, 0.48 mmol) in DMF (1.1 mL) was heated at 160 °C for 16 h. The reaction mixture was cooled to room temperature, diluted with water (2 mL) and extracted with EtOAc (3 x 1 mL). The combined organic layers were washed with water (1 mL) and dried over Na2SO4. The solvent was evaporated and the crude product purified by CombiFlash (SiO2, gradient elution 40-60 % EtOAc/Hexanes) to yield the title compound as a foam.

1H NMR (500 MHz, CDCl3): δ 3.35-3.39 (m, 2 H), 3.49-3.56 (m, 2 H), 3.62-3.76 (m, 2 H), 3.85-3.91 (m, 1 H), 4.07-4.15 (m, 1 H), 7.37 (d, 1 H), 7.57-7.71 (m, 3 H), 7.77 (d, 1 H). MS (+ESI) m/z 367 (MH+).

EXAMPLE 22

1-[5-(1,3,4-Oxadiazol-2-yl)-1,3-thiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine

Step 1: 2-[4-{2-(Trifluoromethyl)phenoxy]piperidin-1-yl]-1,3-thiazole-5-carbohydrazide

A mixture of methyl 2-{4-[3-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboxylate (200 mg, 0.52 mmol) and hydrazine hydrate (0.16 mL, 5.2 mmol) in MeOH (1 mL) was heated at 80 °C for 3 h. The solvent was evaporated and the solid was slurried with Et2O (2 mL) and filtered to give the title compound as a crystalline solid.

1H NMR (500 MHz, CDCl3): δ 2.03-2.11 (m, 4 H), 3.69-3.77 (m, 4 H), 4.82 (s, 1 H), 7.02-7.06 (m, 3 H), 7.51 (t, 1 H), 7.64 (t, 2 H). MS (+ESI) m/z 387 (MH+).

Step 2: 1-[5-(1,3,4-Oxadiazol-2-yl)-1,3-thiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine

A mixture of 2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carbohydrazide (150 mg, 0.39 mmol), trimethylorthoformate (300 µl) and p-toluenesulfonylic acid (p-TSA) (7 mg, 39 µM) was heated at 100 °C for 3 h. The solvent was evaporated and the residue was purified by CombiFlash (SiO2, gradient elution 70-100% EtOAc/hexanes) to yield the title compound as a solid.

1H NMR (400 MHz, CDCl3): δ 2.02-2.14 (m, 4 H), 3.71-3.83 (m, 4 H), 4.84 (s, 1 H), 7.04 (t, 2 H), 7.51 (t, 1 H), 7.61 (d, 1 H), 7.84 (s, 1 H), 8.35 (s, 1 H). MS (+ESI) m/z 387 (MH+).

EXAMPLE 23
1-[5-(1,2,4-Oxadiazol-3-yl)-1,3-thiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine

Step 1: 1-(5-Bromo-1,3-thiazol-2-yl)-4-[2-(trifluoromethyl)phenoxy]piperidine

The title compound was prepared in the same manner as described for Example 22, Step 1 from 4-[2-(trifluoromethyl)phenoxy]piperidine and 2,5-dibromo-1,3-thiazole.

1H NMR (400 MHz, acetone-d$_6$): δ 1.90-2.05 (m, 2H), 2.10-2.20 (m, 2H), 3.54-3.75 (m, 4H), 5.00 (m, 1H), 7.10-7.20 (m, 2H), 7.38 (d, 1H), 7.60-7.70 (m, 2H). MS (+ESI) m/z 407, 409 (MH$^+$).

Step 2: 2-{4-[2-(Trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carbonitrile

A solution of 1-(5-bromo-1,3-thiazol-2-yl)-4-[2-(trifluoromethyl)phenoxy]piperidine (1.1 g, 2.7 mmol) and CuCN (484 mg, 5.4 mmol) in DMF (6.7 mL) was heated at 160 $^\circ$C for 3 h. The reaction mixture was cooled to room temperature, diluted with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with water (10 mL) and dried over Na$_2$SO$_4$. The solvent was evaporated and the crude product was purified by Combiflash (SiO$_2$, gradient elution 20-40 % EtOAc/hexanes) to yield the title compound as a solid.

1H NMR (500 MHz, CDCl$_3$): δ 2.02 (dd, 2 H), 2.11 (dd, 2 H), 3.70-3.78 (m, 4 H), 4.84 (s, 1 H), 7.02-7.06 (m, 2 H), 7.49-7.53 (m, 1 H), 7.61 (t, 1 H), 7.69 (s, 1 H). MS (+ESI) m/z 354 (MH$^+$).

Step 3: N'-Hydroxy-2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboximidamide

To a solution of 2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carbonitrile (130 mg, 0.36 mmol) in EtOH (2.5 mL) was added water (1.2 mL), hydroxyamine hydrochloride (102 mg, 1.5 mmol) followed by Na$_2$CO$_3$ (78 mg, 0.74 mmol). The mixture was heated at 80 $^\circ$C for 2 h, cooled, and evaporated. The residue was diluted with water (2 mL), extracted with EtOAc (3 x 2 mL), the combined organic extracts was dried over Na$_2$SO$_4$, filtered, and evaporated. The product was recrystallized from EtOAc/hexanes.

1H NMR (500 MHz, CDCl$_3$): δ 2.07 (t, 4 H), 3.69-3.75 (m, 4 H), 4.78 (dd, 2 H), 7.02-7.06 (m, 2 H), 7.37 (s, 1 H), 7.51 (t, 1 H), 7.62 (d, 1 H). MS (+ESI) m/z 387 (MH$^+$).

Step 4: 1-[5-(1,2,4-Oxadiazol-3-yl)-1,3-thiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine

To a solution of N'-hydroxy-2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboximidamide (40 mg, 0.1 mmol) in THF (0.5 mL) was added triethyl orthoformate (0.5
mL) followed by BF$_3$-etherate (15 µL, 0.12 mmol). After 2 h, the solvent was evaporated and the residue was diluted with water (1 mL) and extracted with EtOAc (3 x 1 mL). The combined organic extracts were dried over Na$_2$SO$_4$ and evaporated. Purification by CombiFlash (SiO$_2$, gradient elution 20-40% EtOAc/hexanes) gave the title compound as a solid.

1H NMR (400 MHz, CDCl$_3$): δ 2.04-2.15 (m, 4 H), 3.72-3.83 (m, 4 H), 4.82-4.86 (m, 1 H), 7.05 (t, 2 H), 7.52 (t, 1 H), 7.63 (d, 1 H), 7.95 (s, 1 H), 8.67 (s, 1 H). MS (+ESI) m/z 397 (MH$^+$).

EXAMPLE 24

![Example 24 Diagram]

1-(2-{4-[2-(Trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazol-5-yl)pyrrolidin-2-one

A mixture of 1-(5-bromo-1,3-thiazol-2-yl)-4-[2-(trifluoromethyl)phenoxy]piperidine, example 20 (150 mg, 0.37 mmol), 2-pyrrolidinone (42 µL, 0.55 mmol), copper (I) iodide (10 mg, 0.05 mmol), N’N’-dimethylethylenediamine (14 µL, 0.13 mmol) and potassium phosphate (156 mg, 0.74 mmol) in dioxane (0.5 mL) was heated at 100-110°C overnight. After cooling to room temperature, the mixture was diluted with water and extracted three times with EtOAc. The combined organic extracts were dried (Na$_2$SO$_4$) and concentrated. CombiFlash silica gel chromatography (10 g, 50-100% EtOAc in hexanes in 20 min, 20mL/min, 15 mL/fraction) gave a white solid which was swished with hexanes:Et$_2$O (1:1) to give the title compound as a white solid.

1H NMR (400 MHz, acetone-d$_6$): δ 7.65 (m, 2H), 7.38 (m, 1H), 7.12 (m, 1H), 6.80 (s, 1H), 4.96 (m, 1H), 3.85 (m, 2H), 3.70 (m, 2H), 3.52 (m, 2H), 2.52 (m, 2H), 2.28 (m, 2H), 2.15 (m, 2H), 1.95 (m, 2H). MS (+ESI) m/z 412 (MH$^+$).

EXAMPLE 25

![Example 25 Diagram]

N,N-Dimethyl-2-{4-[2-(trifluoromethyl)phenyl]oxy}-1-piperidinyl)-1,3-thiazole-5-carboxamide

Step 1: 2-[4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl]-1,3-thiazole-5-carboxylic acid
The title compound was prepared in the same manner as described in Example 2 with methyl 2-{4-{2-(trifluoromethyl)phenoxy)piperidin-1-yl}-1,3-thiazole-5-carboxylate and NaOH.

\[\text{MS (+:ESI) m/z 373 (MH+)}. \]

Step 2: N,N-Dimethyl-2-{4-{2-(trifluoromethyl)phenyl}oxy-1-piperidinyl}-1,3-thiazole-5-carboxamide

The title compound was prepared in the same manner as described in Example 3 with 2-{4-{2-(trifluoromethyl)benzoyl}piperazin-1-yl}-1,3-thiazole-5-carboxylic acid and dimethylamine hydrochloride.

\[\text{MS (+:ESI) m/z 400 (MH+)}. \]

EXAMPLE 26

![Structure 26](image)

1-(1,3-Thiazol-2-yl)-4-{2-(trifluoromethyl)phenyl}oxy)piperidine

The title compound was prepared in the same manner as described in Example 1, Step 2 from 4-{2-(trifluoromethyl)phenoxy)piperidine and 2-bromo-1,3-thiazole.

\[\text{MS (+:ESI) m/z 329 (MH+)}. \]

EXAMPLE 27

![Structure 27](image)

2,2,2-Trifluoro-1-{2-{4-{2-(trifluoromethyl)phenyl}oxy-1-piperidinyl}-1,3-thiazol-5-yl]ethanone

A solution of 1-(1,3-thiazol-2-yl)-4-{2-(trifluoromethyl)phenyl}oxy)piperidine, example 26 (200 mg, 0.6 mmol) and trifluoroacetic anhydride (340 µL, 2.4 mmol) in benzene (3 mL) was heated at 60 °C for 1 h. The mixture was concentrated and purified by CombiFlash (SiO\textsubscript{2}, gradient elution 5-20 % EtOAc/hexanes) to yield the title compound as a solid.
EXAMPLE 28

2-(4-{[2-(Trifluoromethyl)phenoxyl]piperidin-1-yl}-1,3-thiazole-5-sulfonamide

Step 1:

2-(4-{[2-(Trifluoromethyl)phenol]oxy}-1-piperidinyl)-1,3-thiazole-5-sulfonic acid

To a solution of 1-(1,3-thiazol-2-yl)-4-[2-(trifluoromethyl)phenol]oxy)piperidine (1.1 g, 3.3 mmol) in THF (33 mL) was added trimethylsilylchlorosulfonate (0.78 mL, 5 mmol) at 0 °C. The reaction mixture was then warm to room temperature and stirred for 1 h. The mixture was diluted with EtO (33 mL), filtered and washed with EtO to afford the title product as a white solid.

1H NMR (500 MHz, CD3OD): δ 2.12-2.27 (in, 4 H), 3.74-3.92 (in, 4 H), 5.01 (s, 1 H), 7.12 (t, 1 H), 7.30 (d, 1 H), 7.53 (d, 1 H), 7.58-7.66 (in, 2 H).

MS (+ESI) m/z 409 (MH+).

Step 2:

2-(4-{[2-(Trifluoromethyl)phenol]oxy}piperidin-1-yl)-1,3-thiazole-5-sulfonyl chloride

To a solution of 2-(4-{[2-(trifluoromethyl)phenol]oxy}-1-piperidinyl)-1,3-thiazole-5-sulfonic acid (100 mg, 0.25 mmol) in CH2Cl2 (1.2 mL) was added PCl5 (104 mg, 0.5 mmol). The reaction mixture was heated at 60 °C for 0.5 h. The mixture was poured into 5 mL of water, extracted with CH2Cl2 (3 x 1 mL) and dried over Na2SO4. Evaporation of the solvent followed by purification by Combiflash (SiO2, gradient elution 20-40% EtOAc/hexanes) gave the title compound as a solid.

1H NMR (500 MHz, CDCl3): δ 2.06 (s, 2 H), 2.12-2.22 (m, 2 H), 3.67-3.86 (m, 4 H), 4.90 (s, 1 H), 7.01-7.10 (m, 2 H), 7.54 (t, 1 H), 7.64 (d, 1 H), 7.92 (s, 1 H). MS (+ESI) m/z 427 (MH+).

Step 3:

2-(4-{[2-(Trifluoromethyl)phenol]oxy}piperidin-1-yl)-1,3-thiazole-5-sulfonyl chloride

To a solution of 2-(4-{[2-(trifluoromethyl)phenol]oxy}piperidin-1-yl)-1,3-thiazole-5-sulfonyl chloride (49 mg, 1.1 mmol) in THF (1 mL) was added 30 % aqueous ammonia (2 mL). The mixture was stirred at room temperature for 0.5 h, then warmed to 40 °C for 1 h. The mixture was extracted with EtOAc (3 x 2 mL) and dried over Na2SO4. Evaporation of the solvent followed by recrystallization with MeOH/EtO gave the title compound as a solid.

1H NMR (500 MHz, CDCl3): δ 2.05 (d, 2 H), 2.11 (d, 2 H), 3.67-3.79 (m, 4 H), 4.85 (s, 2 H), 4.89 (s, 1 H), 7.00-7.10 (m, 2 H), 7.52 (t, 1 H), 7.63 (d, 1 H), 7.71 (s, 1 H). MS (+ESI) m/z 408 (MH+).

EXAMPLE 29

- 52 -
N-Hydroxy-2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboxamide

The title compound was prepared in the same manner as described in Example 3 with 2-{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxylic acid and hydroxylamine hydrochloride.

1H NMR (500 MHz, acetone-d_6): δ 1.93-2.02 (m, 2 H), 2.11-2.20 (m, 2 H), 3.66-3.83 (m, 4 H), 4.98-5.05 (m, 1 H), 7.12 (t, 1 H), 7.37 (d, 1 H), 7.60-7.68 (m, 2 H), 7.80 (s, 1 H). MS (+ESI) m/z 388 (MH$^+$).

EXAMPLE 30

N-Hydroxy-N-methyl-2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboxamide

The title compound was prepared in the same manner as described in Example 3 with 2-{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxylic acid and N-methylhydroxylamine hydrochloride.

1H NMR (500 MHz, acetone-d_6): δ 1.93-2.01 (m, 2 H), 2.11-2.18 (m, 2 H), 3.06 (s, 1 H), 3.30 (s, 3 H), 3.64-3.79 (m, 4 H), 4.97-5.02 (m, 1 H), 7.12 (t, 1 H), 7.36 (d, 1 H), 7.60-7.68 (m, 2 H), 7.97 (d, 1 H). MS (+ESI) m/z 402 (MH$^+$).

EXAMPLE 31

N-Methyl-2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboxamide

The title compound was prepared in the same manner as described in Example 3 with 2-{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxylic acid and methylamine hydrochloride.
1H NMR (500 MHz, acetone-\textsubscript{d}\textsubscript{6}): \(\delta\) 1.93-2.01 (m, 2 H), 2.10-2.17 (m, 2 H), 2.84 (d, 3 H), 3.63-3.78 (m, 4 H), 4.97-5.02 (m, 1 H), 7.12 (t, 1 H), 7.36 (d, 1 H), 7.45 (s, 1 H), 7.60-7.68 (m, 2 H), 7.71 (s, 1 H). MS (+ESI) m/z 386 (MH+).

EXAMPLE 32

![Chemical Structure](image)

N-methoxy-2-(4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl)-1,3-thiazole-5-carboxamide

The title compound was prepared in the same manner as described in Example 3 with 2-(4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl)-1,3-thiazole-5-carboxylic acid and O-methylhydroxylamine hydrochloride.

1H NMR (500 MHz, acetone-\textsubscript{d}\textsubscript{6}): \(\delta\) 1.94-2.02 (m, 2 H), 2.12-2.19 (m, 2 H), 3.74 (d, 7 H), 4.99-5.04 (m, 1 H), 7.12 (t, 1 H), 7.37 (d, 1 H), 7.60-7.68 (m, 2 H), 7.79 (s, 1 H), 10.34 (s, 1 H). MS (+ESI) m/z 402.1 (MH+).

EXAMPLE 33

![Chemical Structure](image)

2-(4-[2-(Trifluoromethyl)phenoxy]piperidin-1-yl)-1,3-thiazole-5-carboxydrazide

The title compound was prepared in the same manner as described in Example 3 with 2-(4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl)-1,3-thiazole-5-carboxylic acid and hydrazine.

1H NMR (500 MHz, CDCl\textsubscript{3}): \(\delta\) 2.00-2.12 (m, 4 H), 3.68-3.79 (m, 4 H), 4.82 (s, 1 H), 6.99-7.08 (m, 2 H), 7.52 (t, 1 H), 7.63 (d, 1 H), 7.68 (s, 1 H). MS (+ESI) m/z 387 (MH+).

EXAMPLE 34

![Chemical Structure](image)

1-[5-(3-Methyl-1,2,4-oxadiazol-5-yl)-1,3-thiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine
To a solution of methyl 2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboxylate (150 mg, 0.39 mmol) and acetamide oxime (43 mg, 0.58 mmol) in THF (1.9 mL) was added NaH (32 mg, 7.7 mmol, 60% in mineral oil). After 5 min, the mixture was heated at 70 °C for 1 h. The solvent was evaporated. The mixture was diluted with water (2 mL), extracted with EtOAc (3 x 2 mL) and dried over Na₂SO₄. Evaporation of the solvent followed by purification by Combiflash (SiO₂, gradient elution 30-50% EtOAc/hexanes) gave the title compound as a solid.

'H NMR (500 MHz, CDCl₃): δ 2.01-2.13 (m, 4 H), 2.40 (s, 3 H), 3.70-3.82 (m, 4 H), 4.83 (s, 1 H), 6.99-7.05 (m, 2 H), 7.50 (t, 1 H), 7.60 (d, 1 H), 7.96 (s, 1 H).

MS (+ESI) m/z 411 (MH⁺).

EXAMPLE 35

\[\begin{align*}
\text{N} & \text{O} \\
\text{S} & \text{F} \\
\text{N} & \text{O} \\
\end{align*}\]

1-[5-(3-Cyclopropyl-1,2,4-oxadiazol-5-yl)-1,3-thiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine

The title compound was prepared in the same manner as described in Example 34 with methyl 2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboxylate and N-hydroxycyclopropanecarboxamide.

\[\begin{align*}
\text{O} & \text{N} \\
\text{S} & \text{F} \\
\text{N} & \text{O} \\
\end{align*}\]

\[\begin{align*}
\text{O} & \text{N} \\
\text{S} & \text{F} \\
\text{N} & \text{O} \\
\end{align*}\]

\[\begin{align*}
\text{O} & \text{N} \\
\text{S} & \text{F} \\
\text{N} & \text{O} \\
\end{align*}\]

EXAMPLE 36

\[\begin{align*}
\text{N} & \text{O} \\
\text{S} & \text{F} \\
\text{N} & \text{O} \\
\end{align*}\]

1-[5-(5-Methyl-1,2,4-oxadiazol-3-yl)-1,3-thiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine

To a mixture of N'-hydroxy-2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboximidamide from example 23, step 3 (2 g, 5.2 mmol) in EtOH (10 mL) was added sodium metal (476 mg, 20.7 mmol). The mixture was stirred at room temperature until all the sodium metal dissolved. EtOAc (10 mL) was added and the mixture was heated at 60 °C for 1 h. The solvent was evaporated and the residue was diluted with water (50 mL), extracted with EtOAc (3 x 25 mL) and dried.
Evaporation of the solvent followed by recrystallization from CH₂Cl₂/hexanes gave the title compound as a solid.

\(^1\)H NMR (500 MHz, CDCl₃): δ 2.02-2.13 (m, 4 H), 2.62 (s, 3 H), 3.70-3.81 (m, 4 H), 4.82 (s, 1 H), 6.99-7.07 (m, 2 H), 7.51 (t, 1 H), 7.61 (d, 1 H), 7.88 (s, 1 H). MS (+ESI) m/z 411.1 (MH⁺).

EXAMPLE 37

1-(2-{4-[2-(Trifluoromethyl)phenoxylpiperidin-1-yl]-1,3-thiazol-5-yl}azetidin-2-one

The title compound was prepared in the same manner as described in Example 24 with 1-(5-bromo-1,3-thiazol-2-yl)-4-[2-(trifluoromethyl)benzoyl]piperazine and 2-azetidinone.

\(^1\)H NMR (500 MHz, CDCl₃): δ 1.99-2.10 (m, 2 H), 2.15 (dd, 2 H), 3.26 (t, 2 H), 3.69-3.79 (m, 4 H), 3.84 (d, 2 H), 4.83 (s, 1 H), 6.86 (s, 1 H), 6.98-7.08 (m, 2 H), 7.51 (t, 1 H), 7.61 (d, 1 H). MS (+ESI) m/z 398 (MH⁺).

EXAMPLE 38

1-{5-[5-(Fluoromethyl)-1,2,4-oxadiazol-3-yl]-1,3-thiazol-2-yl}]-4-[2-(trifluoromethyl)phenoxylpiperidine

The title compound was prepared in the same manner as described in Example 36 with N'-hydroxy-2-{4-[2-(trifluoromethyl)phenoxylpiperidin-1-yl]-1,3-thiazole-5-carboximidamide and fluoroethyl acetate. The product is the more polar component of the reaction on TLC.

\(^1\)H NMR (500 MHz, CDCl₃): δ 2.04-2.14 (m, 4 H), 3.72-3.82 (m, 4 H), 4.83 (s, 1 H), 5.54 (s, 1 H), 5.63 (s, 1 H), 7.01-7.07 (m, 2 H), 7.52 (t, 1 H), 7.62 (d, 1 H), 7.94 (s, 1 H). MS (+ESI) m/z 429 (MH⁺).
The title compound was isolated from the same reaction for Example 38 as the less polar component of the reaction on TLC.

\[\text{H NMR (500 MHz, CDCl}_3\): } \delta 2.01-2.13 \text{ (m, 4 H), 3.69-3.80 (m, 4 H), 4.46 (s, 2 H), 4.83 (s, 1 H), 6.99-7.08 (m, 2 H), 7.52 (t, 1 H), 7.63 (d, 1 H), 7.70 (s, 1 H), 9.63 (s, 1 H). MS (+ESI) m/z 427 (MH\(^+\)).}

EXAMPLE 41

3-(2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazol-5-yl)-4 H-1,2,4-oxadiazin-5(6H)-one

A mixture of 2-{4-[3-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboxamide (60 mg, 0.16 mmol) and 1,2-dichloroethyl ethyl ether (30 µL, 0.24 mmol) in DMF (0.3 mL) was heated at 120 °C for 2 h. The mixture was then diluted with water (2 mL) and extracted with EtOAc (3 x 1 mL). The combined organic layers were washed with water (2 mL) then dried over Na\(_2\)SO\(_4\).

Evaporation of the solvent followed by purification by Combiflash (SiO\(_2\), gradient elution 20-60% EtOAc/hexanes) gave the title compound as a solid.

\[\text{H NMR (400 MHz, CDCl}_3\): } \delta 2.04-2.15 \text{ (m, 4 H), 3.76 (t, 4 H), 4.80-4.86 (m, 1 H), 7.05 (t, 2 H), 7.15 (s, 1 H), 7.52 (t, 1 H), 7.63 (d, 2 H), 7.77 (s, 1 H). MS (+ESI) m/z 396 (MH\(^+\)).} \]
To a mixture of N-hydroxy-2-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3-thiazole-5-carboximidamide (0.5 g, 1.3 mmol) in EtOH (4.3 mL) was added sodium metal (297 mg, 12.9 mmol). The mixture was stirred at room temperature until all the sodium metal had dissolved. Ethyl glycolate (0.37 mL, 3.9 mmol) was added and the mixture heated at 75 °C for 4h. Solvent was evaporated and the mixture was diluted with water (5 mL), extracted with EtOAc (3 x 5 mL) and dried over Na₂SO₄. Evaporation of the solvent followed by recrystallization from CH₂Cl₂/hexanes gave the title compound as a solid (0.39 g).

'H NMR (400 MHz, CDCl₃): δ 2.09-2.17 (m, 4 H), 3.73-3.84 (m, 4 H), 4.85 (s, 1 H), 4.94 (s, 2 H), 7.02-7.10 (m, 2 H), 7.53 (t, 1 H), 7.64 (d, 1 H), 8.03 (s, 1 H). MS (+ESI) m/z 427 (MH⁺).

EXAMPLE 42

Ethyl-5-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-oxadiazole-2-carboxylate

The title compound was prepared in the same manner as described for Example 1, Step 2 from 4-[2-(trifluoromethyl)phenoxy]piperidine and ethyl 5-bromo-1,3,4-oxadiazole-2-carboxylate.

'H NMR (500 MHz, CDCl₃): δ 1.45 (t, 3 H), 1.99-2.13 (m, 4 H), 3.75 (ddd, 2 H), 3.88 (dt, 2 H), 4.49 (q, 2 H), 4.83 (s, 1 H), 6.99-7.09 (m, 2 H), 7.48-7.54 (m, 1 H), 7.63 (d, 1 H). MS (+ESI) m/z 386 (MH⁺).

EXAMPLE 43

5-{4-[2-(Trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-oxadiazole-2-carboxamide

The title compound was prepared in the same manner as described for Example 12 from ethyl-5-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-oxadiazole-2-carboxylate.

'H NMR (400 MHz, CDCl₃): δ 1.98-2.13 (m, 4 H), 3.70-3.79 (m, 2 H), 3.85 (s, 1 H), 5.94 (s, 1 H), 6.96 (s, 1 H), 6.99-7.10 (m, 2 H), 7.53 (t, 1 H), 7.64 (d, 1 H). MS (+ESI) m/z 357 (MH⁺).
Step 1: **Methyl 2-piperazin-1-yl-1,3-thiazole-5-carboxylate**

A mixture of methyl 2-bromo-1,3-thiazole-5-carboxylate (3 g, 13.5 mmol) and piperazine (3.5 g, 40.5 mmol) in acetonitrile (135 mL) was heated at 80 °C for 1 h. The mixture was then filtered and the solvent was evaporated. Purification of the crude mixture by Combiflash (SiO₂, 89:10:1 - CH₂Cl₂/Methanol/Ammonium Hydroxide) gave the title compound as a solid.

1H NMR (500 MHz, DMSO-d₆): δ 2.79 (4 H, d, J = 5.79 Hz), 3.45 (4 H, t, J = 5.01 Hz), 3.76 (3 H, s), 7.88 (1 H, s). MS (+ESI) m/z 228 (MH⁺).

Step 2: **2-Piperazin-1-yl-1,3-thiazole-5-carboxamide**

Aqueous ammonia (26 mL, 30% in water) was added to methyl 2-piperazin-1-yl-1,3-thiazole-5-carboxylate (3.0 g, 13.2 mmol) in a thick wall glass flask. The flask was sealed and the mixture heated at 50 °C for 18 h. The solvent was evaporated and the solid obtained was used in the next step without further purification.

1H NMR (500 MHz, DMSO-d₆): δ 2.80 (4 H, s), 3.58 (4 H, s), 7.15 (1 H, s), 7.70 (1 H, s), 7.80 (1 H, s). MS (+ESI) m/z 213 (MH⁺).

Step 3: **2-(4-[5-Fluoro-2-(trifluoromethyl)benzoyl]piperazin-1-yl)-1,3-thiazole-5-carboxamide**

To a mixture of 2-piperazin-1-yl-1,3-thiazole-5-carboxamide (100 mg, 0.47 mmol) in DMF (1.2 mL) was added triethylamine (0.13 mL, 0.94 mmol) followed by 5-fluoro-2-(trifluoromethyl)benzoyl chloride (86 μL, 0.57 mmol). After 2 h, the DMF was evaporated and the mixture was slurried with water (2 mL), filtered and washed with water followed by Et₂O to give the product as a solid.

1H NMR (500 MHz, acetone-d₆): δ 3.39-3.45 (m, 1 H), 3.47-3.64 (m, 3 H), 3.70 (t, 2 H), 3.80-3.88 (m, 1 H), 3.94-4.01 (m, 1 H), 7.46 (dd, 2 H), 7.81 (s, 1 H), 7.94 (dd, 1 H). MS (+ESI) m/z 403 (MH⁺).
2-{4-[4-Fluoro-2-(trifluoromethyl)benzoyl]piperazin-1-yl}-1,3-thiazole-5-carboxamide

The title compound was prepared in the same manner as described for Example 44, step 3 from 2-piperazin-1-yl-1,3-thiazole-5-carboxamide and 4-fluoro-2-(trifluoromethyl)benzoyl chloride.

1H NMR (500 MHz, acetone-d$_6$): δ 3.40-3.48 (m, 2 H), 3.48-3.63 (m, 3 H), 3.83-3.90 (m, 1 H), 3.89-3.98 (m, 2 H), 7.56-7.62 (m, 1 H), 7.63-7.69 (m, 2 H), 7.82 (d, 1 H). MS (+ESI) m/z 403 (MH$^+$).

EXAMPLE 46

\[
\begin{align*}
&\text{Step 1: } 2-{4-[2-(\text{Trifluoromethyl})\text{benzoyl}]piperazin-1-yl}-1,3-thiazole-5-carboximidamide \\
&\text{The title compound was prepared in the same manner as described for Example 23, Step 3 from 2-\{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl]-1,3-thiazole-5-carbonitrile and hydroxylamine.} \\
&\text{\textit{1}H NMR (500 MHz, acetone-d$_6$): δ 3.36-3.44 (m, 2 H), 3.49 (q, 2 H), 3.63 (t, 2 H), 3.83-3.87 (m, 1 H), 3.95-3.97 (m, 1 H), 5.48 (s, 1 H), 7.56 (t, 2 H), 7.70 (t, 1 H), 7.78 (t, 1 H), 7.84 (d, 1 H). MS (+ESI) m/z 400 (MH$^+$).} \\
&\text{Step 2: } [3-(2-{4-[2-(\text{Trifluoromethyl})\text{benzoyl}]piperazin-1-yl]-1,3-thiazol-5-yl})-1,2,4-oxadiazol-5-yl]methanol \\
&\text{The title compound was prepared in the same manner as described in Example 36 with 2-\{4-[2-(trifluoromethyl)benzoyl]piperazin-1-yl]-1,3-thiazole-5-carboximidamide and ethyl glycolate.} \\
&\text{\textit{1}H NMR (500 MHz, CDC$_3$): δ 2.99 (s, 1 H), 3.38 (t, 2 H), 3.56 (t, 2 H), 3.68-3.76 (m, 2 H), 3.90-3.96 (m, 1 H), 4.07-4.11 (m, 1 H), 4.93 (s, 2 H), 7.39 (d, 1 H), 7.60 (t, 1 H), 7.67 (t, 1 H), 7.78 (d, 1 H), 8.03 (s, 1 H). MS (+ESI) m/z 440 (MH$^+$).}
\end{align*}
\]

EXAMPLE 47

\[
\begin{align*}
&\text{N-(5-{4-[2-(\text{Trifluoromethyl})\text{phenoxy}])piperidin-1-yl}-1,3,4-thiadiazol-2-yl)acetamide} \\
&\text{Step 1: } 5-{4-[2-(\text{Trifluoromethyl})\text{phenoxy}])piperidin-1-yl}-1,3,4-thiadiazol-2-amine
\end{align*}
\]
To a solution of 4-[2-(trifluoromethyl)phenoxy)piperidine hydrochloride (5.5 g, 2.2 mmol) in DMF (50 mL) was added 5-bromo-1,3,4-thiadiazol-2-amine (3.3 g, 2.2 mmol) and K$_2$CO$_3$ (9.1 g, 6.6 mmol). The reaction was heated at 80°C with stirring overnight. After cooling, the salt was removed by filtration and the filtrate was evaporated in vacuo. The residue was washed with ethyl acetate to afford the title compound.

1H NMR (400 MHz, DMSO-d$_6$): δ 7.57-7.60 (m, 2H), 7.29-7.35 (m, 1H), 7.03-7.05 (m, 1H), 6.46 (s, 2H), 4.84 (s, 1H), 3.22-3.30 (m, 4H), 1.91-2.01 (m, 2H), 1.68-1.78 (m, 2H). MS: m/z 345 (MH$^+$).

Step 2: N-(5-{4-[2-(Trifluoromethyl)phenoxy}piperidin-1-yl}-1,3,4-thiadiazol-2-yl)acetamide

To a solution of 5-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-thiadiazol-2-amine (0.2 g, 0.58 mmol) in THF (5 mL) was added triethylamine (175 mg, 1.7 mmol), followed by acetyl chloride (68.3 mg, 0.87 mmol) at ambient temperature. The resulting solution was stirred for 3 h. The salt was removed by filtration, the filtrate evaporated, and the residue purified with preparative TLC to afford the title compound.

1H NMR (400 MHz, CDCl$_3$): δ 7.59 (d, $J=7.6$ Hz, 1H), 7.49 (t, $J=7.6$ Hz, 1 H), 6.99-7.03 (m, 2H), 4.77 (t, $J=4.0$ Hz, 1H), 3.59-3.72 (m, 4H), 2.39 (s, 3H), 2.04-2.07 (m, 4H). MS: m/z 387 (MH$^+$).

EXAMPLE 48

1-[5-(1,2,4-Oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]-piperidine

Step 1: 5-{4-[2-(Trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-thiadiazole-2-carbonitrile

To a suspension of 5-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-thiadiazol-2-amine (20.6 g, 0.06 mol) in acetonitrile (300 mL) was added CuCN (10.68 g, 0.12 mol) and t-butyl nitrite (6.2 g, 0.06 mol) at room temperature. The reaction mixture was heated at 50-60°C for 2 h until TLC indicated the starting material was consumed. The reaction mixture was poured onto water (100 mL) and dichloromethane (100 mL) was added. The solid was removed by filtration and the filtrate was extracted with dichloromethane (3 x 200 mL), dried with anhydrous Na$_2$SO$_4$. Solvents were removed in vacuo to afford the crude product, which was purified by column chromatography (5:1 petroleum ether/ethyl acetate as eluant) to afford the title compound.

1H NMR (400 MHz, CDCl$_3$): δ 7.61 (d, $J=7.6$ Hz, 1 H), 7.50 (t, $J=8.0$ Hz, 1 H), 6.93-7.06 (m, 2 H), 4.86 (br s, 1 H), 3.77-3.83 (m, 4 H), 2.01-2.20 (m, 4 H). MS: m/z 355 (MH$^+$).
Step 2: \(N^\prime\)-Hydroxy-5-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-thiadiazole-2-carboximidamide

To a solution of 5-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-thiadiazole-2-carbonitrile (2.12 g, 6 mmol) in ethanol (30 mL) was added hydroxylamine hydrochloride (2.07 g, 30 mmol) and potassium carbonate (4.14 g, 30 mmol). The reaction mixture was stirred at room temperature overnight until HPLC indicated the starting material was consumed completely. The solid was collected by filtration which was washed with water and ethanol to afford the title compound.

\(^1\)H NMR (300 MHz, DMSO-d$_6$): \(\delta \) 10.1 (s, 1 H), 7.59-7.62 (m, 2 H), 7.35 (d, \(J=8.7 \) Hz, 1 H), 7.08 (t, \(J=7.8 \) Hz, 1 H), 5.91 (br, 2 H), 4.85-4.95 (m, 1 H), 3.54-3.62 (m, 4 H), 2.03-2.10 (m, 2 H), 1.72-1.84 (m, 2 H). MS: m/z 388 (M$^+$).

Step 3: 1-[5-(1,2,4-Oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine

To a solution of \(N^\prime\)-hydroxy-5-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-thiadiazole-2-carboximidamide (0.387 g, 1 mmol) in trimethyl orthoformate (4 mL) was added BF$_3$OEt$_2$ (0.1 mL). The reaction mixture was heated at 100 °C overnight until HPLC indicated the starting material was consumed. The excess trimethyl orthoformate was removed in vacuo. The residue was purified by preparative HPLC to afford the title compound.

\(^1\)H NMR (300 MHz, CDCl$_3$): \(\delta \) 8.83 (s, 1 H), 7.60 (d, \(J=7.8 \) Hz, 1 H), 7.50 (t, \(J=7.8 \) Hz, 1 H), 6.99-7.06 (m, 2 H), 4.81-4.86 (m, 1 H), 3.80-3.84 (m, 4 H), 2.03-2.16 (m, 4 H). MS: m/z 398 (M$^+$).

EXAMPLE 49

![Chemical Structure](image)

1-[5-(5-Methyl-1,2,4-oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine

To a solution of \(N^\prime\)-hydroxy-5-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-thiadiazole-2-carboximidamide (0.387 g, 1 mmol) in pyridine (4 mL) was added acetic anhydride (0.122 g, 1.2 mmol). The reaction mixture was heated at 100 °C overnight until HPLC indicated the starting material was consumed. The reaction mixture was poured into water, and the pH was adjusted to 7 with 2 N HCl and then the mixture was extracted with dichloromethane. The solvent was removed in vacuo. The residue was purified by preparative HPLC to afford the title compound.

\(^1\)H NMR (400 MHz, CDCl$_3$): \(\delta \) 7.60 (d, \(J=7.6 \) Hz, 1 H), 7.50 (t, \(J=8.0 \) Hz, 1 H), 7.00-7.05 (m, 2 H), 4.82-4.83 (m, 1 H), 3.80-3.83 (m, 4 H), 2.69 (s, 3 H), 2.07-2.15 (m, 4 H). MS: m/z 412 (M$^+$).
EXAMPLE 50

1-[5-(2H-Tetrazol-5-yl)-1,3,4-thiadiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine

A solution of 5-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl}-1,3,4-thiadiazole-2-carbonitrile (0.708 g, 2 mmol) in isopropanol (5 mL) and water (10 mL) was added sodium azide (0.26 g, 4 mmol) and ZnBr\(_2\) (0.45 g, 2 mmol). The reaction mixture was heated at 120 °C in sealed tube for 24 h. After cooling, ethyl acetate (50 mL) and 2M HCl (20 mL) were added and the mixture was extracted with ethyl acetate. The ethyl acetate extract was dried with anhydrous Na\(_2\)SO\(_4\) and evaporated in vacuo. The residue was triturated with chloroform to afford the title compound which was recrystallized with methanol and ether. \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): \(\delta\) 7.60-7.62 (m, 2 H), 7.37 (d, \(J=8.7\) Hz, 1 H), 7.08 (t, \(J=8.7\) Hz, 1 H), 4.86-4.95 (m, 1 H), 3.56-3.64 (m, 4 H), 2.00-2.15 (m, 2 H), 1.75-1.89 (m, 2 H). MS: m/z 398 (MH\(^+\)).

EXAMPLE 51

1-[5-(5-Methyl-1,3,4-oxadiazol-2-yl)-1,3,4-thiadiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine

A mixture of 1-[5-(2H-tetrazol-5-yl)-1,3,4-thiadiazol-2-yl]-4-[2-(trifluoromethyl)phenoxy]piperidine (Example 50) (0.20 g, 0.5 mmol) and acetic anhydride (1 mL) was heated at 120 °C overnight until HPLC indicated the starting material was consumed completely. After cooling, dichloromethane (10 mL) and saturated solution of NaHCO\(_3\) (20 mL) were added and the mixture was extracted with dichloromethane. The organic phase was dried with anhydrous Na\(_2\)SO\(_4\), evaporated in vacuo and purified by preparative TLC to afford the title compound.

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.60 (d, \(J=7.8\) Hz, 1 H), 7.47 (t, \(J=8.1\) Hz, 1 H), 6.99-7.06 (m, 2 H), 4.83-4.86 (m, 1 H), 3.80-3.84 (m, 4 H), 2.65 (s, 3 H), 2.06-2.14 (m, 4 H). MS: m/z 412 (MH\(^+\)).
4-(2-Bromophenoxy)-1-[5-(5-methyl-1,2,4-oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]piperidine

Step 1: 5-Bromo-1,3,4-thiadiazole-2-carbonitrile

To a suspension of 5-bromo-1,3,4-thiadiazol-2-amine (10 g, 0.055 mol) and cuprous cyanide (10.5 g, 0.119 mol) in acetonitrile (200 mL) at 0 °C was added dropwise t-BuONO (12 g, 0.116 mol) over 20 min. The suspension was stirred at room temperature until TLC showed that the reaction was completed. The reaction mixture was then filtered and the filtrate was concentrated in vacuo to give the crude product which was purified by chromatography to give the title product.

13C NMR (300 MHz, CDCl$_3$): δ 77.3, 109.0, 141.7.

Step 2: 5-[4-(2-Bromophenoxy)piperidin-1-yl]-1,3,4-thiadiazole-2-carbonitrile

To a mixture of 4-(2-bromophenoxy)piperidine hydrochloride (0.68 g, 2.3 mmol) and 5-bromo-1,3,4-thiadiazole-2-carbonitrile (0.4 g, 2.1 mmol) in DMF (10 mL) was added K$_2$CO$_3$ (0.869 g, 6.3 mmol) under nitrogen atmosphere. The mixture was stirred at 90°C for 4 h. The solid was removed by filtration. The filtrate was concentrated in vacuo. The residue was diluted with water and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over anhydrous Na$_2$SO$_4$, filtered and purified by column chromatography to give the title compound.

1H (400 MHz, CDCl$_3$): δ 7.55-7.57 (m, 1H), 7.26-7.30 (m, 1H), 6.82-6.96 (m, 2H), 4.78 (m, 1H), 3.74-3.95 (m, 4H), 1.99-2.17 (m, 4H). MS: m/z 364 (MH$^+$).

Step 3: 5-[4-(2-Bromophenoxy)piperidin-1-yl]-N-hydroxy-1,3,4-thiadiazole-2-carboximidamide

To a solution of 5-[4-(2-bromophenoxy)piperidin-1-yl]-1,3,4-thiadiazole-2-carbonitrile (0.32 g, 0.92 mmol) in ethanol (10 mL) was added hydroxylamine hydrochloride (0.32 g, 4.6 mmol) and potassium carbonate (0.64 g, 4.6 mmol). The reaction mixture was stirred at room temperature overnight until HPLC indicated the starting material was consumed completely. The solid was collected by filtration, washed with water and ethanol to afford the desired product which was used in the next step without purification.

Step 4: 4-(2-Bromophenoxy)-1-[5-(5-methyl-1,2,4-oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]piperidine

To a solution of 5-[4-(2-bromophenoxy)piperidin-1-yl]-N-hydroxy-1,3,4-thiadiazole-2-carboximidamide (0.07 g, 0.176 mmol) in pyridine (2 mL) was added acetic anhydride (0.21 mmol) and
the mixture was stirred at 120 °C overnight. The solution was concentrated in vacuo and the crude product was purified by the preparative HPLC to give the title compound.

\[\text{HNMR (CDCl}_3, 400 \text{ MHz): } \delta 7.54-7.57 (m, 1H), 7.24-7.28 (m, 1H), 6.94-6.96 (m, 1H), 6.85-6.89 (m, 1H), 4.74 (s, 1H), 3.87-3.94 (m, 2H), 3.74-3.80 (m, 2H). 2.71 (s, 3H). 2.02-2.11 (m, 4H). \text{ MS: m/z 422 (MH}^+) \].

EXAMPLE 53

![Chemical Structure](image)

4-(2-Bromo-5-fluorophenoxy)-1-[5-(5-methyl-1,2,4-oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]piperidine

The title compound was prepared in the same manner as described for Example 52, Steps 2-4 from 4-(2-bromo-5-fluorophenoxy)piperidine hydrochloride and 5-bromo-1,3,4-thiadiazole-2-carbonitrile. \(\text{HNMR (400 MHz, CDCl}_3): \delta 7.45-7.48 (m, 1H), 6.65-6.68 (m, 1H), 6.60 (m, 1H), 4.69 (m, 1H), 3.75-3.88 (m, 4H), 2.65 (s, 3H), 2.05 (m, 4H). \text{ MS: m/z 440 (MH}^+) \).
4-(2-Bromophenoxy)-1-[(5-(5-methyl-1,3,4-oxadiazol-2-yl)-1,3,4-thiadiazol-2-yl)piperidine

Step 1: 4-(2-Bromophenoxy)-1-[(5-(1H-tetrazol-5-yl)-1,3,4-thiadiazol-2-yl)piperidine

To a suspension of 5-[4-(2-bromophenoxy)piperidin-1-yl]-1,3,4-thiadiazole-2-carbonitrile, example 52, step 2 (0.3 g, 0.8 mmol) and ZnBr₂ (0.171 g, 0.8 mmol) in isopropanol (4 mL) and H₂O (2 mL) was added sodium azide (0.168 g, 1.64 mmol) in a sealed tube. The mixture was stirred at 120 °C overnight, cooled to room temperature and then adjusted to pH 4 with 2M HCl. The reaction mixture was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo to give the crude product, which was purified by preparative TLC to afford title compound.

¹H NMR (300 MHz, CDCl₃): δ 7.30-7.38 (m, 1H), 7.06-7.13 (m, 1H), 6.70-6.89 (m, 1H), 6.63-6.67 (m, 1H), 4.60 (m, 1H), 3.65-3.71 (m, 2H), 3.41-3.54 (m, 2H), 3.15 (s, 1H), 1.90-2.02 (m, 4H). MS: m/z 408 (MH⁺).

Step 2: 4-(2-Bromophenoxy)-1-[(5-(5-methyl-1,3,4-oxadiazol-2-yl)-1,3,4-thiadiazol-2-yl)piperidine

A mixture of 4-(2-bromophenoxy)-1-[5-(1H-tetrazol-5-yl)-1,3,4-thiadiazol-2-yl)piperidine (130 mg, 0.3 mmol) and acetic anhydride (2 mL) was stirred in sealed tube under nitrogen at 120 °C overnight. The mixture was concentrated in vacuo to give the crude product, which was purified by preparative HPLC to give the title compound.

¹H NMR (400 MHz, CDCl₃): δ 7.57-7.58 (m, 1H), 7.26-7.29 (m, 1H), 6.68-6.96 (m, 2H), 5.30 (m, 1H), 3.89-3.95(m, 2H), 3.61-3.62 (m, 2H), 2.65(s, 3H), 2.02-2.1 (m, 4H). MS: m/z 422 (MH⁺).

EXAMPLE 56

3-Bromo-4-[(1-(5-(5-methyl-1,2,4-oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl)piperidin-4-yl)oxy]pyridine

Step 1: 3-Nitro-4-(piperidin-4-yloxy)pyridine hydrochloride

To a solution of tert-butyl 4-hydroxy piperidine-1-carboxylate (7.27 g, 36 mmol) in DMF (100 mL) was added NaH (1.68 g, 60% in paraffin, 42 mmol) and 4-chloro-3-nitropyridine (4.77 g, 30
mmol). The reaction mixture was heated at 60 °C overnight and monitored by HPLC. The solvent was evaporated in vacuo. The residue was purified by column chromatography with 1:1 petroleum ether/ethyl acetate to afford tert-butyl 4-[(3-nitropyridin-4-yl)oxy]piperidine-1-carboxylate, which was deprotected as described for 4-(2-bromophenoxy)piperidine hydrochloride to give the title compound.

\[^1H \text{NMR (400 MHz, DMSO-d}_6) : \delta 9.24 \text{ (br, 1H), 9.03 \text{ (s, 1H), 5.14 \text{ (m, 1H), 3.11 \text{ (m, 4H), 2.13 \text{ (m, 2H), 1.92 \text{ (m, 2H). MS: m/z 260 (MH}^+)}.} \]

Step 2:

4-{[1-{5-(5-Methyl-1,2,4-oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]piperidin-4-yl}oxy]-3-nitopyridine

The title compound was prepared in the same manner as described for Example 52, step 2 to step 4, from 3-nitro-4-(piperidin-4-yl oxy)pyridine hydrochloride and 5-bromo-1,3,4-thiadiazole-2-carbonitrile. \[^1H \text{NMR (300 MHz, CDCl}_3) : \delta 9.04 \text{ (s, 1H), 8.65 \text{ (d, J=6 Hz, 1H), 7.06 \text{ (d, J=6 Hz, 1H), 5.01 \text{ (m, 1H), 3.79-3.87 \text{ (m, 4H), 2.69 \text{ (s, 3H), 2.15 \text{ (m, 4H). MS: m/z 390 (MH}^+)}.} \]

Step 3:

4-{[1-{5-(5-Methyl-1,2,4-oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]piperidin-4-yl}oxy]pyridin-3-amine

To a solution of 4-{[1-{5-(5-methyl-1,2,4-oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]piperidin-4-yl}oxy]-3-nitropyridine (0.49 g, 1.26 mmol) in EtOH (10 mL) and water (5 mL) was added powder Fe (0.84 g, 15.1 mmol) and NH\(_4\)Cl (1.348 g, 25.2 mmol). The mixture was stirred for 40 h at room temperature until HPLC indicated the starting material was consumed. The solid was removed by filtration and the solvent was evaporated in vacuo. The residue was dissolved in water (10 mL) and the pH was adjusted to 8 with NaHCO\(_3\) solution. The mixture was then extracted with chloroform (5×20 mL). The combined organic layers were dried over Na\(_2\)SO\(_4\) and concentrated to afford the title product which was used in next step without further purification.

Step 4:

3-Bromo-4-{[1-{5-(5-methyl-1,2,4-oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]piperidin-4-yl}oxy]pyridin-3-amine

To a solution of 4-{[1-{5-(5-methyl-1,2,4-oxadiazol-3-yl)-1,3,4-thiadiazol-2-yl]piperidin-4-yl}oxy]pyridin-3-amine (0.4 g, 0.61 mmol, 50-60% purity) from step 3 in acetonitrile (10 mL) was added CuBr\(_2\) (0.50 g, 2.23 mmol) and t-butyl nitrite (0.23 g, 2.23 mmol) at room temperature. The reaction mixture was heated at 50-60 °C for 2 h until TLC indicated the starting material was consumed. The reaction mixture was poured into 2 N HCl (10 mL). Dichloromethane (10 mL) was added and the mixture was stirred for 15 min. The pH was adjusted to 8 with NaHCO\(_3\), and the mixture was extracted with dichloromethane (3 x 20 mL), dried with anhydrous Na\(_2\)SO\(_4\) and the solvents were removed in vacuo. The residue was purified by preparative TLC with dichloromethane/MeOH = 10/1 to afford the title compound.
1H NMR (400 MHz, CDCl$_3$): δ 8.80 (s, 1H), 8.721 (s, 1H), 7.33 (s, 1H), 5.12 (m, 1H), 3.86 (m, 4H), 2.69 (s, 3H), 2.17-2.23 (m, 4H). MS: m/z 423, 425 (MH$^+$).

EXAMPLE 57

![Chemical structure](image)

[3-(5-{4-[(3-Bromopyridin-4-yl)oxy]piperidin-1-yl}-1,3,4-thiadiazol-2-yl)-1,2,4-oxadiazol-5-yl]methanol

Step 1: 5-{4-[(3-Bromopyridin-4-yl)oxy]piperidin-1-yl}-1,3,4-thiadiazole-2-carboxamide

To a solution of 5-{4-[3-nitropyridin-4-yl]oxy}piperidin-1-yl]-1,3,4-thiadiazole-2-carbonitrile (0.84 g, 2.53 mmol) prepared from 3-nitro-4-(piperidin-4-yl)oxy)pyridine hydrochloride and 5-bromo-1,3,4-thiadiazole-2-carbonitrile in the same manner as described for Example 52, step 2 in EtOH (6 mL) and water (3 mL) was added powder Fe (0.85 g, 15.2 mmol) and NH$_4$Cl (1.406 g, 25.3 mmol) with stirring for 6 h at room temperature until HPLC indicated the starting material was consumed. The solid was removed by filtration and the solvent was evaporated in vacuo. The residue was dissolved in water (10 mL) and pH was adjusted to 8 with NaHCO$_3$ solution. The solution was extracted with ethyl acetate (3x30 mL). The combined organic layers were dried over Na$_2$SO$_4$ and concentrated to afford the crude mixture containing 5-{4-[3-aminopyridin-4-yl]oxy}piperidin-1-yl]-1,3,4-thiadiazole-2-carbonitrile and 5-{4-[3-aminopyridin-4-yl]oxy}piperidin-1-yl]-1,3,4-thiadiazole-2-carboxamide which was used in next step without further purification.

To a solution of the crude mixture of 5-{4-[(3-aminopyridin-4-yl)oxy]piperidin-1-yl]-1,3,4-thiadiazole-2-carbonitrile and 5-{4-[(3-aminopyridin-4-yl)oxy]piperidin-1-yl]-1,3,4-thiadiazole-2-carboxamide (0.73 g, 50% purity) in acetonitrile (10 mL) was added CuBr$_2$ (1.156 g, 5.18 mmol) and t-butyl nitrite (0.534 g, 5.18 mmol) at room temperature. The reaction mixture was heated at 50-60°C for 30 min until TLC indicated the starting material was consumed. After cooling to room temperature, aqueous ammonia solution (25%, 1.45 g, 10.36 mmol) and 50 mL of water were added and stirred for 30 min. The solution was extracted with dichloromethane (3 x 30 mL), washed by saturated brine (30 mL), dried over anhydrous Na$_2$SO$_4$ and removed the solvents in vacuo and purified by preparative TLC with 50:1 dichloromethane/MeOH to afford the title compound.

1H NMR (400 MHz, DMSO-d$_6$): δ 8.56 (s, 1H), 8.38 (d, 1H, J=6 Hz), 8.13 (s, 1 H), 7.65 (s, 1H), 7.30 (s, 1H, J=6Hz), 4.90-5.02 (m, 1H), 3.69-3.70 (m, 2H), 3.60-3.62 (m, 2H), 2.08-2.10 (m, 2H), 1.82-1.85 (m, 2H).

Step 2: 5-{4-[(3-Bromopyridin-4-yl)oxy]piperidin-1-yl]-1,3,4-thiadiazole-2-carbonitrile
To a solution of 5-{4-[(3-bromopyridin-4-yl)oxy]piperidin-1-yl}-1,3,4-thiadiazole-2-carboxamide (0.37 g, 0.963 mmol) in THF (6 mL) was added triethylamine (0.156 g, 1.54 mmol). After cooling to 0°C with ice water, trifluoromethanesulfonic anhydride anhydride (0.303 g, 1.44 mmol) was added and the mixture was warmed to room temperature. After stirring for 3 h, water (20 mL) was added and the mixture was extracted with dichloromethane (3 x 10mL). The combined organic layers were dried over Na₂SO₄ and concentrated to afford the title compound.

'H NMR (400 MHz, CDCl₃): δ 8.63 (s, 1H), 8.42 (s, 1H), 6.89 (s, 1H), 4.93 (s, 1H), 3.80-3.92 (m, 4H), 2.06-2.19 (m, 4H). MS: m/z 366, 368 (MH⁺).

Step 3: 5-{4-{(3-Bromopyridin-4-yl)oxy}piperidin-1-yl}-N'-hydroxy-1,3,4-thiadiazole-2-carboximide

A solution of 5-{4-{(3-bromopyridin-4-yl)oxy}piperidin-1-yl}-1,3,4-thiadiazole-2-carbonitrile (0.23 g, 0.628 mmol) in ethanol (5 mL) was added NH₂OH·HCl (0.131 g, 3.14 mmol) and potassium carbonate (0.433 g, 3.14 mmol). The reaction mixture was stirred at room temperature overnight until HPLC indicated the starting material was consumed completely. The solid was collected by filtration, washed with water and ethanol to afford the title compound.

'H NMR (400 MHz, DMSO-d₆): δ 10.10 (br, 1H), 8.56 (s, 1H), 8.37 (s, 1H), 7.29 (s, 1H), 5.91 (s, 2H), 4.90-5.08 (m, 1H), 3.55-3.64 (m, 4H), 1.94-2.14 (m, 2H), 1.70-1.90 (m, 2H). MS: m/z 399, 401 (MH⁺).

Step 4: [3-(5-{4-{(3-Bromopyridin-4-yl)oxy}piperidin-1-yl}-1,3,4-thiadiazol-2-yl)-1,2,4-oxadiazol-5-yl]methanol

To a solution of 5-{4-{(3-bromopyridin-4-yl)oxy}piperidin-1-yl}-N'-hydroxy-1,3,4-thiadiazole-2-carboximide (0.2 g, 0.5 mmol) and ethyl glycolate (0.209 g, 2 mmol) in EtOH (5 mL) was added a NaOEt solution in EtOH (5.7 mL, 2.5 mmol, 0.44 mol /L) under N₂. After stirring for 2 h at 100 °C, the solvent was removed in vacuo. The residue was diluted with water and extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, concentrated and purified by preparative HPLC to afford the title compound.

'H NMR (300 MHz, CD₃OD): δ 8.85 (s, 1H), 8.63 (d, J=5 Hz, 1H), 7.63 (d, J=6 Hz, 1H), 5.25-5.30 (m, 1H), 4.89 (s, 2H), 3.75-3.93 (m, 4H), 2.21-2.31 (m, 2H), 2.04-2.14 (m, 2H). MS: m/z 439, 441 (MH⁺).
[3-{5-{4-[2-(Trifluoromethyl)phenoxy]piperidin-1-y]l]-1,3,4-thiadiazol-2-yl]-1,2,4-oxadiazol-5-yl]methanol

The title compound was prepared in the same manner as described in Example 57, step 4 with N'-hydroxy-5-{4-[2-(trifluoromethyl)phenoxy]piperidin-1-yl]-1,3,4-thiadiazole-2-carboximidamide and ethyl glycolate. 1H NMR (400 MHz, acetone-d_6): δ 7.72-7.58 (m, 2H), 7.48-7.38 (m, 1H), 7.20-7.10 (m, 1H), 5.22 (m, 1H), 5.08 (m, 1H), 5.00 (m, 2H), 3.95-3.80 (m, 4H), 2.30-2.20 (m, 2H), 2.15-2.00 (m, 2H). MS: m/z 428 (M^+).

EXAMPLE 59

![Structure 1](image1)

(3-{5-[4-(2-Bromophenoxy)piperidin-1-yl]-1,3,4-thiadiazol-2-yl]-1,2,4-oxadiazol-5-yl]methanol

The title compound was prepared in the same manner as described in Example 57, step 4 with 5-[4-(2-bromophenoxy)piperidin-1-yl]-N'-hydroxy-1,3,4-thiadiazole-2-carboximidamide and ethyl glycolate. 1H NMR (300 MHz, CD$_3$OD): δ 7.56 (dd, J=8Hz, 1H), 7.30 (m, J=8 Hz, 1H), 7.15 (dd, J=6 Hz, 1H), 6.90 (m, J=8 Hz, 1H), 4.89 (m, 3H), 3.84-4.01 (m, 2H), 3.72-3.80 (m, 2H), 2.14 (m, 4H). MS: m/z 438, 440 (M^+).

EXAMPLE 60

![Structure 2](image2)

(3-{5-[4-(2-Bromo-4-fluorophenoxy)piperidin-1-yl]-1,3,4-thiadiazol-2-yl]-1,2,4-oxadiazol-5-yl]methanol

The title compound was prepared in the same manner as described in Example 57, step 4 with 5-[4-(2-bromo-4-fluorophenoxy)piperidin-1-yl]-N'-hydroxy-1,3,4-thiadiazole-2-carboximidamide and ethyl glycolate. 1H NMR (300 MHz, CD$_3$OD): δ 7.04-7.41 (m, 3H), 4.80 (s, 2H), 4.59-4.63 (m, 1H), 3.88-4.03 (m, 2H), 3.60-3.75 (m, 2H), 1.95-2.15 (m, 4H). MS: m/z 456, 458 (M^+).

EXAMPLE 61
(3-[(5-[4-(2-Bromo-5-fluorophenoxy)piperidin-1-yl]-1,3,4-thiadiazol-2-yl]-1,2,4-oxidiazol-5-yl)methanol

The title compound was prepared in the same manner as described in Example 57, step 4 with 5-[4-(2-bromo-5-fluorophenoxy)piperidin-1-yl]-N-hydroxy-1,3,4-thiadiazole-2-carboximidamide and ethyl glycolate.

1H NMR (400 MHz, CD$_3$OD): δ 7.45-7.54 (m, 1H), 7.00-7.04 (m, 1H), 6.65-6.70 (m, 1H), 5.08 (s, 2H), 4.73-4.83 (m, 1H), 3.73-3.94 (m, 4H), 2.11-2.65 (m, 4H). MS: m/z 456, 458 (MH$^+$).

EXAMPLE 62

Methyl 2-[[4-[3-(trifluoromethyl)benzyl]piperidin-1-yl]-1,3-thiazole-5-carboxylate

To a solution of methyl 2-bromo-5-carboxylate (154 mg, 0.69 mmol) and 4-[3-(trifluoromethyl)benzyl]piperidine (354 mg, 1.5 mmol) in 1,4-dioxane (2 mL) was added N,N-diisopropylethylamine (0.37 mL, 2.1 mmol). The mixture was heated in a sealed vial at 110 °C for 16 h. The reaction mixture was diluted with EtOAc and washed successively with saturated NH$_4$Cl and brine. The organic layer was dried (Na$_2$SO$_4$) and filtered. Evaporation of the solvent followed by purification by flash chromatography (SiO$_2$, gradient elution 10-35 % EtOAc/Hexanes) and trituration with 1 % EtOAc/heptane afforded the title compound as a white solid.

1H NMR (400 MHz, acetone-d$_6$): δ 7.80 (s, 1 H), 7.63-7.55 (m, 4 H), 4.14-4.06 (m, 2 H), 3.79 (s, 3 H), 3.18-3.09 (m, 2 H), 2.77 (d, 2 H), 2.05-1.94 (m, 1 H), 1.83-1.76 (m, 2 H), 1.45-1.33 (m, 2 H). MS (+ESI) m/z 385 (MH$^+$).

EXAMPLE 63
2-{4-[3-(Trifluoromethyl)benzyl]piperidin-1-yl}-1,3-thiazole-5-carboxamide

A solution of the methyl 2-{4-[3-(trifluoromethyl)benzyl]piperidin-1-yl}-1,3-thiazole-5-carboxylate (156 mg, 0.41 mmol) in MeOH (10 mL) was saturated with ammonia gas for 15 min at 0 °C. The mixture in the sealed tube was heated at 110 °C for 48 h. Then, the ammonia was partially removed by gentle heating and the mixture was cooled to -78 °C to allow precipitation of the desired material. The precipitate was collected by filtration and washed with cold MeOH to yield the title compound as a white solid.

\[\text{H NMR (400 MHz, DMSO-d$_6$): } \delta 7.77 (s, 1 H), 7.67 (br s, 1 H), 7.59-7.51 (m, 4 H), 7.13 (br s, 1 H), 3.96-3.87 (m, 2 H), 3.07-2.96 (m, 2 H), 2.67 (d, 2 H), 1.88-1.80 (m, 1 H), 1.69-1.60 (m, 2 H), 1.32-1.20 (m, 2 H). \]

\[\text{MS (+ESI) m/z 370.1 (MH$^+$).} \]

EXAMPLE OF A PHARMACEUTICAL FORMULATION

As a specific embodiment of an oral composition of a compound of the present invention, 50 mg of the compound of any of the Examples is formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size 0 hard gelatin capsule.

While the invention has been described and illustrated in reference to specific embodiments thereof, those skilled in the art will appreciate that various changes, modifications, and substitutions can be made therein without departing from the spirit and scope of the invention. For example, effective dosages other than the preferred doses as set forth hereinabove may be applicable as a consequence of variations in the responsiveness of the human being treated for a particular condition. Likewise, the pharmacologic response observed may vary according to and depending upon the particular active compound selected or whether there are present pharmaceutical carriers, as well as the type of formulation and mode of administration employed, and such expected variations or differences in the results are contemplated in accordance with the objects and practices of the present invention. It is intended therefore that the invention be limited only by the scope of the claims which follow and that such claims be interpreted as broadly as is reasonable.
WHAT IS CLAIMED IS:

1. A compound of structural formula I:

 \[
 \text{HetAr} - N - X - Y - Ar
 \]

 (I)

 or a pharmaceutically acceptable salt thereof; wherein
 each n is independently 0, 1, or 2;
 each m is independently 0, 1, or 2;
 each p is independently 0, 1, or 2;
 X-Y is N-C(O), N-S(O)₂, N-CR₁R₂, CH-O, CH-S(O)ₚ, CH-NR₃, CH-CR₁R₂, or CH-C(O);

 Ar is phenyl, naphthyl, or heteroaryl each of which is optionally substituted with one to five R³a substituents;
 HetAr is an optionally fused five-membered heteroaromatic ring selected from the group consisting of:
 oxazolyl,
 thiazolyl,
 imidazolyl,
 pyrazolyl,
 isoxazolyl,
 isothiazolyl,
 1,2,4-oxadiazolyl,
 1,3,4-oxadiazolyl,
 1,2,5-oxadiazolyl,
 1,2,3-oxadiazolyl,
 1,2,4-thiadiazolyl,
 1,2,5-thiadiazolyl,
 1,2,4-triazolyl,
 1,2,3-thiadiazolyl,
 benzthiazolyl,
 benzooxazolyl,
benzimidazolyl,
benzisoxazolyl, and
benzisothiazolyl;

in which the heteroaromatic ring is optionally substituted with one to two substituents independently selected from \(R^{3b} \);

\(R^1 \) and \(R^2 \) are each independently hydrogen or \(C_1-3 \) alkyl, wherein alkyl is optionally substituted with one to three substituents independently selected from fluorine and hydroxy;

each \(R^{3a} \) and each \(R^{3b} \) is independently selected from the group consisting of:

- \(C_1-6 \) alkyl,
- \((\text{CH}_2)_n \text{OR}^4 \),
- \((\text{CH}_2)_n \text{-phenyl} \),
- \((\text{CH}_2)_n \text{-naphthyl} \),
- \((\text{CH}_2)_n \text{-heteroaryl} \),
- \((\text{CH}_2)_n \text{-heterocyclyl} \),
- \(\text{(CH}_2)_n \text{C}_3-7 \text{ cycloalkyl} \),
- halogen,
- \((\text{CH}_2)_n \text{N}^{(R^4)}_2 \),
- \((\text{CH}_2)_n \text{C}^=\text{N} \),
- \((\text{CH}_2)_n \text{CO}_2\text{R}^4 \),
- \((\text{CH}_2)_n \text{COR}^4 \),
- \(\text{NO}_2 \),
- \((\text{CH}_2)_n \text{NR}^{4}\text{SO}_2\text{R}^4 \),
- \((\text{CH}_2)_n \text{SO}_2\text{N}^{(R^4)}_2 \),
- \((\text{CH}_2)_n \text{S}(\text{O})_p\text{R}^4 \),
- \((\text{CH}_2)_n \text{NR}^{4}\text{C}(\text{O})\text{N}^{(R^4)}_2 \),
- \((\text{CH}_2)_n \text{C}(\text{O})\text{N}^{(R^4)}_2 \),
- \((\text{CH}_2)_n \text{C}(\text{O})\text{N}(\text{OR}^4)\text{R}^4 \),
- \((\text{CH}_2)_n \text{C}(\text{O})\text{N}(\text{NH}_2)\text{R}^4 \),
- \((\text{CH}_2)_n \text{NR}^{4}\text{C}(\text{O})\text{R}^4 \),
- \(\text{O}(\text{CH}_2)_n \text{C}(\text{O})\text{N}^{(R^4)}_2 \),
- \(\text{CF}_3 \),
- \(\text{CH}_2\text{CF}_3 \),
- \(\text{OCF}_3 \), and
- \(\text{OCH}_2\text{CF}_3 \);

in which phenyl, naphthyl, heteroaryl, cycloalkyl, and heterocyclyl are optionally substituted with one to three substituents independently selected from halogen, hydroxy, \(C_1-4 \) alkoxy, \(C_3-6 \) cycloalkyl, and \(C_1-4 \)
alkyl wherein alkyl is optionally substituted with hydroxy or one to three fluorines; and wherein any methylene (CH2) carbon atom in R3a or R3b is optionally substituted with one to two groups independently selected from fluorine, hydroxy, and C1-4 alkyl optionally substituted with one to five fluorines; or two substituents when on the same methylene (CH2) group are taken together with the carbon atom to which they are attached to form a cyclopropyl group;

each R4 is independently selected from the group consisting of

hydrogen,

C1-6 alkyl,

(CH2)m-phenyl,

(CH2)m-heteroaryl,

(CH2)m-naphthyl, and

(CH2)mC3-7 cycloalkyl;

wherein alkyl, phenyl, heteroaryl, and cycloalkyl are optionally substituted with one to three groups independently selected from halogen, C1-4 alkyl, and C1-4 alkoxy, wherein alkyl and alkoxy are optionally substituted with one to five fluorines; or two R4 groups together with the atom to which they are attached form a 4- to 8-membered mono- or bicyclic ring system optionally containing an additional heteroatom selected from O, S, and NC1-4 alkyl;

R5, R6, R7, R8, R9, R10, R11, and R12 are each independently hydrogen, fluorine, or C1-3 alkyl,

wherein alkyl is optionally substituted with one to three substituents independently selected from fluorine and hydroxy; and

R13 is hydrogen or C1-6 alkyl.

2. The compound of Claim 1 wherein X-Y is N-C(O).

3. The compound of Claim 2 wherein HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazol-2-yl each of which is optionally substituted with one to two substituents independently selected from R3b.

4. The compound of Claim 3 wherein HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl each of which is monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b.

5. The compound of Claim 2 wherein Ar is phenyl or pyridyl optionally substituted with one to three substituents independently selected from R3a.

6. The compound of Claim 2 wherein Ar is phenyl or pyridyl optionally substituted with one to three R3a substituents, and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R3b.
7. The compound of Claim 1 wherein X-Y is N-CR\textsubscript{1}R\textsubscript{2}.

8. The compound of Claim 7 wherein HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoxazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazol-2-yl each of which is optionally substituted with one to two groups independently selected from R\textsubscript{3b}.

9. The compound of Claim 7 wherein R\textsubscript{1} and R\textsubscript{2} are hydrogen, Ar is phenyl or pyridyl optionally substituted with one to three R\textsubscript{3a} substituents, and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R\textsubscript{3b}.

10. The compound of Claim 1 wherein X-Y is CH-O.

11. The compound of Claim 10 wherein HetAr is 2-thiazolyl, benzthiazol-2-yl, benzoxazol-2-yl, 1,3,4-thiadiazol-2-yl, or 1,3,4-oxadiazol-2-yl each of which is optionally substituted with one to two groups independently selected from R\textsubscript{3b}.

12. The compound of Claim 11 wherein HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R\textsubscript{3b}.

13. The compound of Claim 10 wherein Ar is phenyl or pyridyl optionally substituted with one to three R\textsubscript{3a} substituents.

14. The compound of Claim 10 wherein Ar is phenyl or pyridyl optionally substituted with one to three R\textsubscript{3a} substituents, and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R\textsubscript{3b}.

15. The compound of Claim 14 wherein R\textsubscript{3b} is heteroaryl or heterocyclyl in which heteroaryl or heterocyclyl is optionally substituted with one to three substituents independently selected from halogen, hydroxy, hydroxymethyl, C\textsubscript{1-3} alkyl, trifluoromethyl, and C\textsubscript{1-3} alkoxy.

16. The compound of Claim 15 wherein heteroaryl is 2H-tetrazol-5-yl, 1,3,4-oxadiazol-2-yl, or 1,2,4-oxadiazol-3-yl.

17. The compound of Claim 1 wherein X-Y is CH-CR\textsubscript{1}R\textsubscript{2}.
18. The compound of Claim 17 wherein R₁ and R² are hydrogen, Ar is phenyl or pyridyl optionally substituted with one to three R₃a substituents, and HetAr is 2-thiazolyl or 1,3,4-thiadiazol-2-yl monosubstituted at the C-5 position of the thiazole or 1,3,4-thiadiazole ring with R₃b.

19. The compound of Claim 1 wherein R⁵-R¹² are hydrogen.

20. The compound of Claim 1 wherein each R₃a is independently selected from the group consisting of halogen, C₁-₄ alkyl, trifluoromethyl, C₁-₄ alkylsulfonyl, cyano, and C₁-₄ alkoxy.

21. The compound of Claim 1 wherein each R₃b is independently selected from the group consisting of:
 halogen,
 cyano,
 C(O)N(R⁴)₂,
 C(O)R⁴,
 CO₂R⁴,
 CH₂OR⁴, wherein CH₂ is optionally substituted with one to substituents independently from hydroxy, fluorine, and methyl;
 NR⁴C(O)R⁴,
 SO₂N(R⁴)₂, and
 heteroaryl selected from the group consisting of 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,3,4-oxadiazol-2-yl, 2-thiazolyl, and 2H-tetrazol-5-yl, wherein heteroaryl is optionally substituted with one to two substituents independently selected from halogen, hydroxy, C₁-₄ alkoxy, C₃-₆ cycloalkyl, and C₁-₄ alkyl wherein alkyl is optionally substituted with hydroxy or one to three fluorines.

22. The compound of Claim 19 which is selected from the group consisting of:

![Chemical Structure](image-url)
or a pharmaceutically acceptable salt thereof.

23. A pharmaceutical composition comprising a compound in accordance with Claim 1 in combination with a pharmaceutically acceptable carrier.
24. Use of a compound in accordance with Claim 1 for the treatment in a mammal of a disorder, condition, or disease responsive to inhibition of stearoyl-coenzyme A delta-9 desaturase.

25. The use of Claim 24 wherein said disorder, condition, or disease is selected from the group consisting of Type 2 diabetes, insulin resistance, a lipid disorder, obesity, metabolic syndrome, and fatty liver disease.

26. The use of Claim 25 wherein said lipid disorder is selected from the group consisting of dyslipidemia, hyperlipidemia, hypertriglyceridemia, atherosclerosis, hypercholesterolemia, low HDL, and high LDL.

27. Use of a compound in accordance with Claim 1 in the manufacture of a medicament for use in treating Type 2 diabetes, insulin resistance, a lipid disorder, obesity, metabolic syndrome, and fatty liver disease in a mammal.

28. The use of Claim 27 wherein said lipid disorder is selected from the group consisting of dyslipidemia, hyperlipidemia, hypertriglyceridemia, atherosclerosis, hypercholesterolemia, low HDL, and high LDL.