Title
System and method for display device with integrated desiccant

International Patent Classification(s)

G09F 9/37 (2006.01) B81B 3/00 (2006.01)

Application No: 2005203379
Date of Filing: 2005.08.01

Priority Data

Number Date Country
60/613300 2004.09.27 US
11/107518 2005.04.15 US

Publication Date: 2006.04.13
Publication Journal Date: 2006.04.13

Applicant(s)
IDC, LLC

Inventor(s)
Palmateer, Lauren

Agent / Attorney
MADDERNS, 1st Floor Wolf Blass House 64 Hindmarsh Square, ADELAIDE, SA, 5000
Abstract

A package structure 210 and method of packaging an interferometric modulator with an integrated desiccant. An interferometric modulator 400 is formed on a transparent substrate 250. A backplane 310 is joined to the transparent substrate to form a package structure 210 and to encapsulate the interferometric modulator. A desiccant 500 integrated into the backplane or the transparent substrate is provided to absorb moisture within the package.
Name of Applicant: IDC, LLC
Actual Inventor/s: Lauren Palmateer
Address for Service: C/- MADDERNS, 1st Floor, 64 Hindmarsh Square, Adelaide, South Australia, Australia
Invention title: SYSTEM AND METHOD FOR DISPLAY DEVICE WITH INTEGRATED DESICCANT

The following statement is a full description of this invention, including the best method of performing it known to us.
SYSTEM AND METHOD FOR DISPLAY DEVICE
WITH INTEGRATED DESICCANT

Background

The field of the invention relates to microelectromechanical systems (MEMS) and the packaging of such systems. More specifically, the field of the invention relates to interferometric modulators and methods of fabricating such modulators with a desiccant material.

Description of the Related Technology

Microelectromechanical systems (MEMS) include micromechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices.

One type of of MEMS device is called an interferometric modulator. An interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. One plate may comprise a stationary layer deposited on a substrate, the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.

Summary

The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled "Detailed
Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.

According to a first aspect of the present invention, there is provided a display device, including:
- a transparent substrate;
- an interferometric modulator configured to modulate light transmitted through the transparent substrate; and
- a backplane cover disposed on the modulator and sealing the modulator within a package between said transparent substrate and the backplane cover, wherein the backplane cover has an integrated desiccant configured to absorb moisture within the package.

According to a second aspect of the present invention, there is provided a method of manufacturing a display device, including:
- providing a transparent substrate including an interferometric modulator;
- forming a backplane including an integrated desiccant; and
- joining the backplane to the transparent substrate.

According to a third aspect of the present invention, there is provided a display device, including:
- transmitting means for transmitting light therethrough;
- modulating means configured to modulate light transmitted through the transmitting means;
- encapsulating means for sealing the modulating means within a package between the transmitting means and the encapsulating means; and
- moisture absorbing means integrated into either the transmitting means or the encapsulating means.

According to a fourth aspect of the present invention, there is provided a display device, including:
- a package including a transparent substrate, a backplane, and a seal applied between the backplane and the transparent substrate;
an interferometric modulator configured to modulate light transmitted through the transparent substrate, wherein the interferometric modulator is formed on the transparent substrate and positioned between the transparent substrate and the backplane; and
a desiccant contained within a pouch adhered inside the package, wherein the desiccant is configured to absorb moisture within the package.

According to a fifth aspect of the present invention, there is provided a method of manufacturing an electronic device, including:
providing a transparent substrate comprising an interferometric modulator;
providing a backplane; and
applying a desiccant to the transparent substrate or the backplane, wherein a membrane at least partially covers the desiccant; and
sealing the transparent substrate to the backplane.

According to a sixth aspect of the present invention, there is provided an electronic device manufactured by the method of the fifth aspect of the present invention.

According to a seventh aspect of the present invention, there is provided a display device, including:
transmitting means for transmitting light therethrough;
modulating means configured to modulate light transmitted through the transmitting means;
encapsulating means for sealing the modulating means within a package between the transmitting means and the encapsulating means; and
moisture absorbing means integrated into either the transmitting means or the encapsulating means, the moisture absorbing means configured to absorb moisture through a membrane.

Brief Description of the Drawings
These and other aspects of the invention will be readily apparent from the following description and from the appended drawings (not to scale), which are meant to illustrate and not to limit the invention, and wherein:
Figure 1 is an isometric view depicting a portion of one embodiment of an interferometric modulator display in which a movable reflective layer of a first interferometric modulator is in a released position and a movable reflective layer of a second interferometric modulator is in an actuated position.

Figure 2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3x3 interferometric modulator display.

Figure 3 is a diagram of movable mirror position versus applied voltage for one exemplary embodiment of an interferometric modulator of Figure 1.

Figure 4 is an illustration of a set of row and column voltages that may be used to drive an interferometric modulator display.

Figures 5A and 5B illustrate one exemplary timing diagram for row and column signals that may be used to write a frame of display data to the 3x3 interferometric modulator display of Figure 2.

Figure 6A is a cross section of the device of Figure 1.

Figure 6B is a cross section of an alternative embodiment of an interferometric modulator.

Figure 6C is a cross section of another alternative embodiment of an interferometric modulator.

Figure 7 schematically illustrates a front view of one embodiment of a wireless telephone handset having an electronic display.

Figure 8 schematically illustrates a perspective view of one embodiment of an electronic display.

Figure 9A schematically illustrates a cross-sectional view of one embodiment of an electronic display taken across the line 10-10 from Figure 8.

Figure 9B schematically illustrates a cross-sectional view of a first alternate embodiment of an electronic display taken across the line 10-10 from Figure 8.

Figure 10 schematically illustrates a second alternate embodiment of an electronic display taken across the line 10-10 from Figure 8.

Figure 11 schematically illustrates a third alternate embodiment of an electronic display taken across the line 10-10 from Figure 8.

Figure 12 schematically illustrates a fourth alternate embodiment of an electronic display taken across the line 10-10 from Figure 8 showing desiccant material integrated into the display backplane.

Figures 13A and 13B are system block diagrams illustrating an embodiment of a visual display device comprising a plurality of interferometric modulators.
Detailed Description of Preferred Embodiments

The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the invention may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the invention may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.

One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in Figure 1. In these devices, the pixels are in either a bright or dark state. In the bright ("on" or "open") state, the display element reflects a large portion of incident visible light to a user. When in the dark ("off" or "closed") state, the display element reflects little incident visible light to the user. Depending on the embodiment, the light reflectance properties of the "on" and "off" states may be reversed. MEMS pixels can be configured to reflect predominantly at selected colors, allowing for a color display in addition to black and white.

Figure 1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, wherein each pixel comprises a MEMS interferometric modulator. In some embodiments, an interferometric modulator display comprises a row/column array of these interferometric modulators. Each interferometric modulator includes a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity with at least one variable dimension. In one embodiment, one of the reflective layers may be moved between two positions. In the first position, referred to herein as the released state, the movable layer is positioned at a relatively large distance from a fixed partially reflective layer. In the second position, the movable layer is positioned more closely adjacent to the partially reflective layer. Incident light that reflects from the two layers interferes constructively or
destructively depending on the position of the movable reflective layer, producing either an overall reflective or non-reflective state for each pixel.

The depicted portion of the pixel array in Figure 1 includes two adjacent interferometric modulators 12a and 12b. In the interferometric modulator 12a on the left, a movable and highly reflective layer 14a is illustrated in a released position at a predetermined distance from a fixed partially reflective layer 16a. In the interferometric modulator 12b on the right, the movable highly reflective layer 14b is illustrated in an actuated position adjacent to the fixed partially reflective layer 16b.

The fixed layers 16a, 16b are electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more layers each of chromium and indium-tin-oxide onto a transparent substrate 20. The layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers are separated from the fixed metal layers by a defined air gap 19. A highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device.

With no applied voltage, the cavity 19 remains between the layers 14a, 16a and the deformable layer is in a mechanically relaxed state as illustrated by the pixel 12a in Figure 1. However, when a potential difference is applied to a selected row and column, the capacitor formed at the intersection of the row and column electrodes at the corresponding pixel becomes charged, and electrostatic forces pull the electrodes together. If the voltage is high enough, the movable layer is deformed and is forced against the fixed layer (a dielectric material which is not illustrated in this Figure may be deposited on the fixed layer to prevent shorting and control the separation distance) as illustrated by the pixel 12b on the right in Figure 1. The behavior is the same regardless of the polarity of the applied potential difference. In this way, row/column actuation that can control the reflective vs. non-reflective pixel states is analogous in many ways to that used in conventional LCD and other display technologies.

Figures 2 through 5 illustrate one exemplary process and system for using an array of interferometric modulators in a display application. Figure 2 is a system block diagram illustrating one embodiment of an electronic device that may incorporate aspects of the invention. In the exemplary embodiment, the electronic device includes a processor 21 which may be any general purpose single- or multi-chip microprocessor such as an ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, an 8051, a MIPS®, a Power PC®, an ALPHA®, or any special purpose microprocessor such as a digital signal processor, microcontroller, or a
programmable gate array. As is conventional in the art, the processor 21 may be configured to execute one or more software modules. In addition to executing an operating system, the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.

In one embodiment, the processor 21 is also configured to communicate with an array controller 22. In one embodiment, the array controller 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a pixel array 30. The cross section of the array illustrated in Figure 1 is shown by the lines 1-1 in Figure 2. For MEMS interferometric modulators, the row/column actuation protocol may take advantage of a hysteresis property of these devices illustrated in Figure 3. It may require, for example, a 10 volt potential difference to cause a movable layer to deform from the released state to the actuated state. However, when the voltage is reduced from that value, the movable layer maintains its state as the voltage drops back below 10 volts. In the exemplary embodiment of Figure 3, the movable layer does not release completely until the voltage drops below 2 volts. There is thus a range of voltage, about 3 to 7 V in the example illustrated in Figure 3, where there exists a window of applied voltage within which the device is stable in either the released or actuated state. This is referred to herein as the "hysteresis window" or "stability window." For a display array having the hysteresis characteristics of Figure 3, the row/column actuation protocol can be designed such that during row strobing, pixels in the strobed row that are to be actuated are exposed to a voltage difference of about 10 volts, and pixels that are to be released are exposed to a voltage difference of close to zero volts. After the strobe, the pixels are exposed to a steady state voltage difference of about 5 volts such that they remain in whatever state the row strobe put them in. After being written, each pixel sees a potential difference within the "stability window" of 3-7 volts in this example. This feature makes the pixel design illustrated in Figure 1 stable under the same applied voltage conditions in either an actuated or released pre-existing state. Since each pixel of the interferometric modulator, whether in the actuated or released state, is essentially a capacitor formed by the fixed and moving reflective layers, this stable state can be held at a voltage within the hysteresis window with almost no power dissipation. Essentially no current flows into the pixel if the applied potential is fixed.

In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse.
This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.

Figures 4 and 5 illustrate one possible actuation protocol for creating a display frame on the 3x3 array of Figure 2. Figure 4 illustrates a possible set of column and row voltage levels that may be used for pixels exhibiting the hysteresis curves of Figure 3. In the Figure 4 embodiment, actuating a pixel involves setting the appropriate column to $-V_{\text{bias}}$, and the appropriate row to $+\Delta V$, which may correspond to -5 volts and +5 volts respectively. Releasing the pixel is accomplished by setting the appropriate column to $+V_{\text{bias}}$, and the appropriate row to the same $+\Delta V$, producing a zero volt potential difference across the pixel. In those rows where the row voltage is held at zero volts, the pixels are stable in whatever state they were originally in, regardless of whether the column is at $+V_{\text{bias}}$ or $-V_{\text{bias}}$.

Figure 5B is a timing diagram showing a series of row and column signals applied to the 3x3 array of Figure 2 which will result in the display arrangement illustrated in Figure 5A, where actuated pixels are non-reflective. Prior to writing the frame illustrated in Figure 5A, the pixels can be in any state, and in this example, all the rows are at 0 volts, and all the columns are at +5 volts. With these applied voltages, all pixels are stable in their existing actuated or released states.

In the Figure 5A frame, pixels (1,1), (1,2), (2,2), (3,2) and (3,3) are actuated. To accomplish this, during a “line time” for row 1, columns 1 and 2 are set to -5 volts, and column 3 is set to +5 volts. This does not change the state of any pixels, because all the pixels remain in the 3-7 volt stability window. Row 1 is then strobed with a pulse that goes from 0, up to 5 volts, and back to zero. This actuates the (1,1) and (1,2) pixels and releases the (1,3) pixel. No other pixels in the array are affected. To set row 2 as desired, column 2 is set to -5 volts, and columns 1 and 3 are set to +5 volts. The same strobe applied to row 2 will then actuate pixel (2,2) and release pixels (2,1) and (2,3). Again, no other pixels of the array are affected. Row 3 is similarly set by setting columns 2 and 3 to -5 volts, and column 1 to +5 volts. The row 3 strobe sets the row 3 pixels as shown in Figure 5A. After writing the frame, the row potentials are zero, and the column potentials can remain at either +5 or -5 volts, and the display is then stable in the arrangement of Figure 5A. It will be appreciated that the same procedure can be employed for arrays of dozens or hundreds of rows and columns. It will also be appreciated that the timing, sequence, and levels of voltages used to perform row and column actuation can be varied widely within the general principles outlined above, and the above example is exemplary only, and any actuation voltage method can be used with the present invention.
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example, Figures 6A-6C illustrate three different embodiments of the moving mirror structure. Figure 6A is a cross section of the embodiment of Figure 1, where a strip of metal material 14 is deposited on orthogonally extending supports 18. In Figure 6B, the moveable reflective material 14 is attached to supports at the corners only, on tethers 32. In Figure 6C, the moveable reflective material 14 is suspended from a deformable layer 34. This embodiment has benefits because the structural design and materials used for the reflective material 14 can be optimized with respect to the optical properties, and the structural design and materials used for the deformable layer 34 can be optimized with respect to desired mechanical properties. The production of various types of interferometric devices is described in a variety of published documents, including, for example, U.S. Published Application 2004/0051929. A wide variety of well known techniques may be used to produce the above described structures involving a series of material deposition, patterning, and etching steps.

Figure 7 illustrates a wireless telephone handset 100 having an electronic display 200. In this illustration, the electronic display 200 displays the telephone number “555-1212”. It will be understood that the electronic display 200 may display other information, including, but not limited to, other text and images, either moving or static.

The electronic display 200 can be any type of display, including, but not limited to, light emitting diode (LED), organic light emitting diode (OLED), or an interferometric modulator (IMOD) direct view electronic display. Embodiments of the invention relate to the manufacturing and packaging of these types of electronic displays with a desiccant. The packages and packaging methods described herein may be used for packaging a variety of electronic displays, including, but not limited to, the interferometric modulators described above.

Figure 8 shows a perspective view of the display 200 from Figure 7. As shown in Figure 8, the display 200 of this embodiment has a transparent or semi-transparent front surface 250, a seal 280 and a backplane 300. As will be explained below, within the display 200, and between the transparent front surface 250 and backplane 300 are the electronics for the particular display technology. For example, within the display may be the electronics for an LED, OLED or IMOD display device. It should be realized that each of these display types has a different degree of sensitivity to moisture. Thus, it is advantageous to provide a means for reducing the amount of moisture that may come in contact with the display device.

Packaging techniques for a MEMS device will be described in more detail below. A schematic of a basic package structure for a MEMS device, such as an interferometric modulator array, is illustrated in Figure 9A. As shown in Figure 9A, a basic package structure 200 includes a substrate 250 and a backplane cover or “cap” 300, wherein an interferometric modulator array
400 is formed on the substrate 250. This backplane or cap 300 may also be referred to as a "backplate." It will be understood that the terms "display," "package structure," and "package" may be used interchangeably, as used herein.

According to the embodiment shown in Figure 9A, the substrate 250 and the backplane 300 are joined by a seal 280 to form the package structure 200, such that the interferometric modulator array 400 is encapsulated by the substrate 250, backplane 300, and the seal 280. The interferometric modulator provides a means for transmitting light therethrough. The backplane provides an encapsulating means for sealing the interferometric modulator within a package between the transparent substrate and the backplane.

As shown in Figure 9A, there is a cavity 350 between the backplane 300 and the substrate 250. The moving parts of a MEMS device, such as the movable mirrors 14a, 14b of an interferometric modulator array described above, preferably have a protected space in which to move. As illustrated in Figure 9A, the cavity 350 can be provided by the use of a backplane 300 that has a recessed cavity. Using a recessed cavity 350 allows the seal 280 to be relatively thin, and thus less subject to transmission of water vapor.

The seal 280 is provided to join the substrate 250 and the backplane 300 to form the package structure 200. The seal 280 may be a non-hermetic seal, such as a conventional epoxy-based adhesive. In other embodiments, the seal 280 may be a polyisobutylene (sometimes called butyl rubber, and other times PIB), o-rings, polyurethane, thin film metal weld, liquid spin-on glass, solder, polymers, or plastics, among other types of seals that may have a range of permeability of water vapor of about 0.2 – 4.7 g mm/m² kPa day. In still other embodiments, the seal 280 may be a hermetic seal.

The substrate 250 may be a semi-transparent or transparent substance capable of having thin film, MEMS devices built upon it. Such transparent substances include, but are not limited to, glass, plastic, and transparent polymers. Images are displayed through the substrate 250, which serves as an imaging surface. The interferometric modulator array 400 may comprise membrane modulators or modulators of the separable type. Examples of such devices are described in U.S. Patent No. 5,835,255 to Miles, which is hereby incorporated by reference in its entirety. The skilled artisan will appreciate that the backplane 300 may be formed of any suitable material, such as glass, metal, foil, polymer, plastic, ceramic, or semiconductor materials (e.g., silicon).

Generally, it is desirable to minimize the permeation of water vapor into the package structure and thus control the environment inside the package structure 200 and hermetically seal it to ensure that the environment remains constant. An example of a hermetic sealing process is disclosed in U.S. Patent No. 6,589,625. When the humidity within the package structure 200 exceeds a level beyond which surface tension from the moisture becomes higher than the
restoration force of a movable element (e.g., the movable mirrors 14a, 14b described above) in the interferometric modulator 400, the movable element may become permanently stuck to the surface.

A desiccant may be used to control moisture resident within the package structure 200. The package structure 200 preferably includes an integrated desiccant (e.g., desiccant integrated into the backplane material or transparent substrate material, desiccant contained within a pouch integrated with the backplane, or desiccant that is deposited or otherwise incorporated into the backplane during fabrication of the backplane) configured to reduce moisture within the cavity 350. In the embodiment shown in Figure 9A, a desiccant pouch 480 is positioned between the interferometric modulator array 400 and the backplane 300. The desiccant may also be applied to or otherwise integrated with the backplane in the recessed area(s) during fabrication of the backplane, as described in more detail below.

Desiccants may be used for packages that have either hermetic or non-hermetic seals. In packages having a hermetic seal, desiccants are typically used to control moisture resident within the interior of the package. In packages having a non-hermetic seal, a desiccant may be used to control moisture moving into the package from the environment. The skilled artisan will appreciate that a desiccant may not be necessary for a hermetically sealed package, but may be desirable to control moisture resident within the package or to capture outgassed or residual water from epoxy or other outgassed materials or materials from surfaces inside the package.

According to the embodiments described herein, the desiccant preferably is configured to absorb water molecules that permeate the display package structure once it has been manufactured as well as after sealing. As can be appreciated, the desiccant maintains a low humidity environment within the package structure and prevents water vapor from adversely affecting the operation of the display electronics (e.g., interferometric modulator). This maintenance of a low humidity environment will be explained more completely with reference to Figures 9-12 below.

As illustrated in Figure 9A, also sealed within the display 200 is a desiccant pouch 480. In these embodiments, the desiccant pouch 480 is formed within the cavity 350 and attached to the backplane 300. The desiccant pouch 480 includes a desiccant material 500, and a membrane cover 550. The desiccant pouch 480 may be used within displays that have either hermetic or non-hermetic sealants. In displays having a hermetic seal, the desiccant pouch 480 can be used to control moisture resident within the interior of the package. In displays having a non-hermetic seal, the desiccant pouch 480 may be used to control moisture moving into the package from the surrounding environment.

The membrane 550 of the pouch 480 preferably is made from a compound that is strong enough to contain the desiccant material 500, but also allows water vapor to pass through the
membrane 550 and contact the desiccant material 500. An example of such a material is Tyvek® (DuPont Corporation) or polyethylene, preferably with a low moisture vapor transmission rate (MVTR). The MVTR of the membrane 550 depends upon the type and thickness of the materials used and the external environmental conditions. It should be realized that, in some embodiments, the membrane 550 can adhere directly to the backplane 300, 310, or be sealed to the backplane 300, 310 with an adhesive. Suitable adhesives include, but are not limited to, adhesives in a PSA (pressure sensitive adhesive) thin-film patch and dispensed adhesives, preferably epoxies, thermal or UV, with low outgassing specifications, such as those compliant with NASA specifications.

Table 1 below provides the MVTR for a number of membrane materials suitable for the membrane 550. By knowing the MVTR (in grams of water per square foot per day), the total surface area of the membrane 550 (membrane surface area) and the rate of water permeation into the package 200, 210 through the perimeter seal, the required MVTR of the membrane 550 can be calculated to ensure that the desiccant can absorb at a sufficient rate to keep the interior of the package 200, 210 dry enough for proper operation.

<table>
<thead>
<tr>
<th>Material</th>
<th>Material</th>
<th>Material</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Foil Wrapping 0.025 mm</td>
<td>0.5</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Aluminum Foil Wrapping 0.009mm</td>
<td>1.0</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Cellulose Films ('Cellophane') 400's MXXT Grade</td>
<td>1.5</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>(Polyvinylidene Chloride Coated)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyvinylidene/Polyvinyl Chloride Films ('Saran') 0.005 cm (0.002 in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyvinylidene/Polyvinyl Chloride Films ('Saran') 0.0013 cm (0.0005 in)</td>
<td>3.0</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Polyethylene Films ('Polythene') 0.0125cm (0.005in)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waxed Paper (45.5 kg (100 lb) per DC Ream)</td>
<td>4.0</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>MVTR*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gm/m²·day</td>
<td>gm/ft²·day</td>
<td></td>
</tr>
<tr>
<td>Cellulose Films ('Cellophane') 300's MSAT Grade (Cellulose Nitrate Coated)</td>
<td>7.5</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Glassine Lacquered (16 kg (35 lb) per DC Ream)</td>
<td>9.0</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Polyethylene Film ('Polythene') 0.005 cm (0.002 in)</td>
<td>10.0</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>Polyethylene Film ('Polythene') 0.0025 cm (0.001 in)</td>
<td>20.0</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>Polyethylene Coated Kraft (9kg (20 lb) per DC Ream)</td>
<td>30.0</td>
<td>2.79</td>
<td></td>
</tr>
</tbody>
</table>

*Determined at 100°F and 90% relative humidity

Generally, any substance that can trap moisture while not interfering with the optical properties of the interferometric modulator array may be used as the desiccant material 500. Preferably, the desiccant does not interfere with the optical properties of the interferometric modulators 400. Suitable desiccant materials 500 include, but are not limited to, zeolites, calcium sulfate, calcium oxide, silica gel, molecular sieves, surface adsorbents, bulk adsorbents, and chemical reactants. Other desiccant materials include indicating silica gel, which is silica gel with some of its granules coated with cobalt chloride. The silica changes color as it becomes saturated with water. Calcium oxide is a material that relatively slowly absorbs water.

It will be understood that, in certain embodiments, the desiccant material 500 may be inserted into the cavity 350 of a package structure 210 without a pouch 480 or membrane cover 550, as shown in Figure 9B. The backplane 310 in the embodiment shown in Figure 9B does not have as deep a recessed cavity as the backplane 300 of the embodiment shown in Figure 9A. The skilled artisan will appreciate that the desiccant material 500 may be inserted into the cavity 350, without a pouch 480 or membrane cover 550, in a package having a backplane with a recessed cavity, such as the one shown in Figure 9A.

The desiccant may be in different forms, shapes, and sizes. In addition to being in solid or gel form, the desiccant material 500 may alternatively be in powder form. These powders may be inserted directly into the pouch 480 or directly into the package without a pouch 480, or they may be mixed with an adhesive for application. In an alternative embodiment, the desiccant may be inserted into the cavity 350, without a pouch 480 or membrane cover 550, in a package having a backplane with a recessed cavity, such as the one shown in Figure 9A.

The desiccant may be in different forms, shapes, and sizes. In addition to being in solid or gel form, the desiccant material 500 may alternatively be in powder form. These powders may be inserted directly into the pouch 480 or directly into the package without a pouch 480, or they may be mixed with an adhesive for application. In an alternative embodiment, the desiccant may be inserted into the cavity 350, without a pouch 480 or membrane cover 550, in a package having a backplane with a recessed cavity, such as the one shown in Figure 9A.
be formed into different shapes, such as cylinders or sheets, before being applied inside the package. It should be realized that the desiccant pouch 480 may take any form, and can be of any thickness that provides the proper desiccating function for the display 200, 210.

The skilled artisan will understand that the desiccant material 500 can be applied and integrated with the package in different ways. In one embodiment, the desiccant material 500 is deposited as part of the interferometric modulator array 400. In another embodiment, the desiccant material 500 is applied inside the package as a spray or a dip coat.

In another embodiment, the desiccant material 500 may be printed or sprayed onto a surface of the interior of the package, such as the backplane after it has been sandblasted or etched using standard photolithographic techniques. A mask is preferably first applied to the backplane prior to etching, preferably using standard photolithographic techniques, in order to form recessed pockets or windows in the backplane, allowing the package to be thinner with a thinner perimeter seal, preferably having a thickness of about 15 microns. The skilled artisan will also appreciate that a thinned perimeter seal allows lower water vapor flux into the package and the package/device would therefore have a longer lifetime. It will be understood that etching techniques, such as sandblasting and wet etching, are preferred. The skilled artisan will understand that, alternatively, a stencil may be used instead of a photolithographic mask. After the pockets or windows have been created, the desiccant material 500 is applied (e.g., sprayed or brushed on) in the recessed pockets or windows. It will be understood that the mask is preferably not removed until the desiccant material 500 has been applied to the recessed pockets or windows so that there is little danger of applying the desiccant material 500 to the non-recessed areas of the backplane. A thin foil may be applied over the desiccant material to protect the desiccant material 500 if the backplane is manufactured and transported prior to assembly with other parts of the package. The desiccant material 500 may be activated after the package is completed.

Typically, in packages containing desiccants, the lifetime expectation of the device may depend on the lifetime of the desiccant. When the desiccant is fully consumed, the interferometric modulator 400 may fail to operate as sufficient moisture enters the cavity 350 and causes damage to the interferometric modulator 400. The theoretical maximum lifetime of the display device is determined by the water vapor flux into the cavity 350 as well as the amount and type of desiccant material.

The theoretical lifetime of the device may be calculated with the following equations:

\[
\text{lifetime} = \frac{\text{desiccant capacity (g)}}{\text{water vapor flux (g/area/day) \times perimeter seal area}}
\]
water vapor flux = $-P \frac{dp}{dt}$

where P is the water vapor permeation coefficient for the perimeter seal 280 and $\frac{dp}{dt}$ is the water vapor pressure gradient across the width of the seal 280.

In the embodiment of a display having a hermetic seal, the lifetime of the device is not as dependent on the desiccant capacity, or the geometry of the seal. In display devices wherein the seal 280 is not hermetic, the lifetime of the device is more dependent on the capacity of the desiccant to absorb and retain moisture.

Another embodiment of a display 580 is illustrated in Figure 10. As shown, two desiccant pouches 650, 700 are formed within the interior cavity 350. The two desiccant pouches 650, 700 function to remove moisture from within the cavity 350. It should be realized that, in this embodiment, the desiccant material 500 used to fill the pouches 650, 700 can be the same or different in the two pouches 650, 700. For example, one pouch may be filled with a desiccant that binds water molecules very quickly, but wears out in a relatively short period of time. An example of such a desiccant is zeolite. The other pouch may be filled with a desiccant that absorbs water molecules more slowly, but lasts longer. One example of such a compound is calcium oxide. Of course, embodiments of the invention are not limited to a particular number of integrated desiccant pouches, or a particular desiccant used within each pouch. The display device may have 1, 2, 3, 4, 5, 6 or more desiccant pouches inside without departing from the spirit of the invention.

Yet another embodiment of a display 780 is illustrated in Figure 11. In this embodiment, the desiccant pouches 850, 950 are integrated with and adhered to the transparent or semi-transparent substrate 250 instead of to the backplane 300. Preferably, the pouches 850, 950 do not contact or interfere with the display electronics. It should be realized that this embodiment is not limited to having desiccant pouches adhered only to the substrate 250. In other embodiments, both the substrate 250 and the backplane 300 have integrated desiccant pouches.

Figure 12 shows yet another embodiment of a display 1000 wherein the desiccant material 500 is integrated into the material that forms the backplane 1050. Such material can be made by incorporating the desiccant 500 into the plastic that forms the backplane 1050. Preferably, the desiccant is incorporated into the backplane 1050 on the internal side of the backplane 1050, as shown in Figure 12. Examples of such material include 2AP (Sud-Chemie), which combines precise amounts of a desiccant, such as molecular sieve or silica gel, with a polymer. Because the desiccant material 500 is incorporated into the backplane 1050 itself, there is no need to add desiccant material 500 in a separate step during the packaging process. In addition, 2AP can be customized to control the moisture adsorption rate.
Another material suitable for a backplane 1050 is made by Capitol Specialty Plastics Inc. (Auburn, AL). This material combines a desiccant 500 with a channeling agent into a polymer that can be molded or extruded into many shapes. Almost any type of polymer can be used with the desiccant 500. This type of desiccant plastic allows the entire backplane 1050 to act as a moisture absorber. Other materials suitable for such a backplane 1050 include, but are not limited to, material delivered with foil protection, which can be chemically or plasma etched off, such as amorphous silicon, chrome, and similar materials.

Generally, the packaging process to produce the display may be accomplished in a vacuum, pressure between a vacuum up to and including ambient pressure, or pressure higher than ambient pressure. The packaging process may also be accomplished in an environment of varied and controlled high or low pressure during the sealing process. There may be advantages to packaging the display in a completely dry environment, but it is not necessary. Similarly, the packaging environment may be of an inert gas at ambient conditions, or the cavity 350 may be created to contain an inert gas, such as nitrogen, at ambient conditions. Packaging at ambient conditions allows for a lower cost process and more potential for versatility in equipment choice because the device may be transported through ambient conditions without affecting the operation of the device.

Figures 13A and 13B are system block diagrams illustrating an embodiment of a display device 2040. The display device 2040 can be, for example, a cellular or mobile telephone. However, the same components of display device 2040 or slight variations thereof are also illustrative of various types of display devices such as televisions and portable media players.

The display device 2040 includes a housing 2041, a display 2030, an antenna 2043, a speaker 2045, an input device 2048, and a microphone 2046. The housing 2041 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming. In addition, the housing 2041 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 2041 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.

The display 2030 of exemplary display device 2040 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 2030 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 2030 includes an interferometric modulator display, as described herein.
The components of one embodiment of exemplary display device 2040 are schematically illustrated in Figure 13B. The illustrated exemplary display device 2040 includes a housing 2041 and can include additional components at least partially enclosed therein. For example, in one embodiment, the exemplary display device 2040 includes a network interface 2027 that includes an antenna 2043 which is coupled to a transceiver 2047. The transceiver 2047 is connected to the processor 2021, which is connected to conditioning hardware 2052. The conditioning hardware 2052 may be configured to condition a signal (e.g., filter a signal). The conditioning hardware 2052 is connected to a speaker 2045 and a microphone 2046. The processor 2021 is also connected to an input device 2048 and a driver controller 2029. The driver controller 2029 is coupled to a frame buffer 2028 and to the array driver 2022, which in turn is coupled to a display array 2030. A power supply 2050 provides power to all components as required by the particular exemplary display device 2040 design.

The network interface 2027 includes the antenna 2043 and the transceiver 2047 so that the exemplary display device 2040 can communicate with one or more devices over a network. In one embodiment the network interface 2027 may also have some processing capabilities to relieve requirements of the processor 2021. The antenna 2043 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. The transceiver 2047 pre-processes the signals received from the antenna 2043 so that they may be received by and further manipulated by the processor 2021. The transceiver 2047 also processes signals received from the processor 2021 so that they may be transmitted from the exemplary display device 2040 via the antenna 2043.

In an alternative embodiment, the transceiver 2047 can be replaced by a receiver. In yet another alternative embodiment, network interface 2027 can be replaced by an image source, which can store or generate image data to be sent to the processor 2021. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.

Processor 2021 generally controls the overall operation of the exemplary display device 2040. The processor 2021 receives data, such as compressed image data from the network interface 2027 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 2021 then sends the processed data to the driver controller 2029 or to frame buffer 2028 for storage. Raw data typically refers to the
information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.

In one embodiment, the processor 2021 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 2040. Conditioning hardware 2052 generally includes amplifiers and filters for transmitting signals to the speaker 2045, and for receiving signals from the microphone 2046. Conditioning hardware 2052 may be discrete components within the exemplary display device 2040, or may be incorporated within the processor 2021 or other components.

The driver controller 2029 takes the raw image data generated by the processor 2021 either directly from the processor 2021 or from the frame buffer 2028 and reformats the raw image data appropriately for high speed transmission to the array driver 2022. Specifically, the driver controller 2029 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 2030. Then the driver controller 2029 sends the formatted information to the array driver 2022. Although a driver controller 2029, such as a LCD controller, is often associated with the system processor 2021 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 2021 as hardware, embedded in the processor 2021 as software, or fully integrated in hardware with the array driver 2022.

Typically, the array driver 2022 receives the formatted information from the driver controller 2029 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display’s x-y matrix of pixels.

In one embodiment, the driver controller 2029, array driver 2022, and display array 2030 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 2029 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 2022 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 2029 is integrated with the array driver 2022. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 2030 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).

The input device 2048 allows a user to control the operation of the exemplary display device 2040. In one embodiment, input device 2048 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure-or heat-sensitive membrane. In one embodiment, the microphone 2046 is an input device for the
exemplary display device 2040. When the microphone 2046 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 2040.

Power supply 2050 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 2050 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 2050 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 2050 is configured to receive power from a wall outlet.

In some implementations control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 2022. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.

While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that such prior art forms part of the common general knowledge.

It will be understood that the term “comprise” and any of its derivatives (eg. comprises, comprising) as used in this specification is to be taken to be inclusive of features to which it refers, and is not meant to exclude the presence of any additional features unless otherwise stated or implied.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A display device, including:
 a transparent substrate;
 an interferometric modulator configured to modulate light transmitted through the transparent substrate; and
 a backplane cover disposed on the modulator and sealing the modulator within a package between said transparent substrate and the backplane cover, wherein the backplane cover has an integrated desiccant configured to absorb moisture within the package.

2. The display device of Claim 1, wherein the backplane cover is formed of a material comprising a desiccant.

3. The display device of Claim 2, wherein the material includes a polymer and one of a molecular sieve or silica gel.

4. The display device of Claim 2, wherein the material includes a desiccant, a channeling agent, and a polymer.

5. The display device of Claim 2, wherein the material can be molded or extruded.

6. The display device of Claim 2, wherein the desiccant is applied to a surface of the backplane cover as a spray coat.

7. The display device of Claim 2, wherein the desiccant is applied to recessed areas formed in a surface of the backplane.

8. The display device of Claim 1, wherein the at least one desiccant is a zeolite or calcium oxide.

9. The display device of Claim 1, wherein the transparent substrate is glass.

10. The display device of Claim 1, wherein the transparent substrate has an
integrated desiccant configured to absorb moisture within the package.

11. A method of manufacturing a display device, including:
 providing a transparent substrate including an interferometric modulator;
 forming a backplane including an integrated desiccant; and
 joining the backplane to the transparent substrate.

12. The method of Claim 11, wherein the backplane includes a polymer and one
 of a molecular sieve or silica gel.

13. The method of Claim 11, wherein the backplane includes a desiccant, a
 channeling agent, and a polymer.

14. The method of Claim 11, wherein forming the backplane includes molding
 or extruding the backplane.

15. The method of Claim 11, wherein the at least one integrated desiccant includes
 at least one of zeolites, calcium sulfate, calcium oxide, silica gel, molecular sieves,
 surface adsorbents, bulk adsorbents, chemical reactants, and indicating silica gel.

16. The method of Claim 11, wherein forming a backplane includes creating a
 recessed area in said backplane and applying a desiccant to said recessed area.

17. A display device made by the method of Claim 11.

18. A display device, including:
 transmitting means for transmitting light therethrough;
 modulating means configured to modulate light transmitted through the
 transmitting means;
 encapsulating means for sealing the modulating means within a package
 between the transmitting means and the encapsulating means; and
 moisture absorbing means integrated into either the transmitting means or the
 encapsulating means.

19. The display device of Claim 18, wherein the moisture absorbing means is a
dessicant.

20. The display device of Claim 19, wherein the at least one dessicant includes at least one of zeolites, calcium sulfate, calcium oxide, silica gel, molecular sieves, surface adsorbents, bulk adsorbents, chemical reactants, and indicating silica gel.

21. The display device of Claim 18 or 19 wherein the encapsulating means includes a backplane.

22. The display device of Claim 18, 19 or 21 wherein the modulating means includes an interferometric modulator.

23. The display device of Claim 18, 19, 21 or 22, wherein the transmitting means includes a transparent substrate.

24. The display device of Claim 18, wherein the encapsulating means is formed of a material including the moisture absorbing means.

25. The display device of Claim 18, wherein the encapsulating means includes a backplane including a recessed portion, and the recessed portion includes the moisture absorbing means.

26. A display device, including:
 a package including a transparent substrate, a backplane, and a seal applied between the backplane and the transparent substrate;
 an interferometric modulator configured to modulate light transmitted through the transparent substrate, wherein the interferometric modulator is formed on the transparent substrate and positioned between the transparent substrate and the backplane; and
 a desiccant contained within a pouch adhered inside the package, wherein the desiccant is configured to absorb moisture within the package.

27. The display device of Claim 26, wherein the desiccant is adhered to an interior surface of the backplane.
28. The display device of Claim 26, wherein the desiccant is adhered to the transparent substrate.

29. The display device of Claim 26, wherein the pouch is formed of polyethylene.

30. The display device of Claim 26, wherein at least one desiccant includes at least one of zeolites, calcium sulfate, calcium oxide, silica gel, molecular sieves, surface adsorbents, bulk adsorbents, chemical reactants, and indicating silica gel.

31. A method of manufacturing an electronic device, including:
 providing a transparent substrate comprising an interferometric modulator;
 providing a backplane; and
 applying a desiccant to the transparent substrate or the backplane, wherein a membrane at least partially covers the desiccant; and
 sealing the transparent substrate to the backplane.

32. The method of Claim 31, wherein the membrane is adhered to the backplane.

33. The method of Claim 31, wherein the membrane is adhered to the transparent substrate.

34. The method of Claim 31, wherein the membrane is formed of polyethylene.

35. The method of Claim 31, wherein the at least one desiccant includes at least one of zeolites, calcium sulfate, calcium oxide, silica gel, molecular sieves, surface adsorbents, bulk adsorbents, chemical reactants, and indicating silica gel.

36. The method of Claim 31, wherein the transparent substrate is glass.

38. The electronic device of Claim 37, wherein said device is an interferometric modulator.

39. A display device, including:
transmitting means for transmitting light therethrough;
modulating means configured to modulate light transmitted through the
transmitting means;
encapsulating means for sealing the modulating means within a package
between the transmitting means and the encapsulating means; and
moisture absorbing means integrated into either the transmitting means or the
encapsulating means, the moisture absorbing means configured to absorb moisture
through a membrane.

40. The display device of Claim 39, wherein the at least one moisture absorbing
means includes at least one of zeolites, calcium sulfate, calcium oxide, silica gel,
molecular sieves, surface adsorbents, bulk adsorbents, chemical reactants, and
indicating silica gel.

41. The display device of Claim 39 or 40 wherein the encapsulating means
includes a backplane.

42. The display device of Claim 39, 40 or 41, wherein the modulating means
includes an interferometric modulator.

43. The display device of Claim 39, 41, 42, or 42, wherein the transmitting means
includes a transparent substrate.

44. The display device of Claim 39, wherein the moisture absorbing means
includes a pouch of desiccant adhered to the encapsulating means.

45. The display device of Claim 39, wherein the moisture absorbing means
includes a pouch of desiccant adhered to the transmitting means.

46. The display device of Claims 1, 22, 26, or 42 further including:
a processor that is in electrical communication with said interferometric
modulator, said processor being configured to process image data; and
a memory device in electrical communication with said processor.
47. The display device of Claim 46, further including a driver circuit configured to send at least one signal to said interferometric modulator.

48. The display device of Claim 47, further including a controller configured to send at least a portion of said image data to said driver circuit.

49. The display device of Claim 46, further including an image source module configured to send said image data to said processor.

50. The display device of Claim 49, wherein said image source module includes at least one of a receiver, transceiver, and transmitter.

51. The display device of Claim 46, further including an input device configured to receive input data and to communicate said input data to said processor.

52. A display device according to Claim 1 substantially as herein described with reference to the accompanying drawings.

53. A method of manufacturing a display device, according to Claim 11, substantially as herein described with reference to the accompanying drawings.

54. A display device according to Claim 18 substantially as herein described with reference to the accompanying drawings.

55. A display device according to Claim 26 substantially as herein described with reference to the accompanying drawings.

56. A method of manufacturing an electronic device, as claimed in Claim 31, substantially as herein described with reference to the accompanying drawings.

57. An electronic device as claimed in Claim 37, substantially as herein described with reference to the accompanying drawings.
58. A display device as claimed in Claim 39, substantially as herein described with reference to the accompanying drawings.

59. A display device substantially as herein described with reference to the accompanying drawings.

60. A method of manufacturing a display device substantially as herein described with reference to the accompanying drawings.

61. A method of manufacturing an electronic device substantially as herein described with reference to the accompanying drawings.

62. An electronic device substantially as herein described with reference to the accompanying drawings.

DATED this 26th day of August, 2005.

IDC, LLC
By its Patent Attorneys
MADDERNS
FIG. 1
FIG. 2
FIG. 3

![Diagram](image)

FIG. 4

<table>
<thead>
<tr>
<th>Row Output Signals</th>
<th>+V(_{bias})</th>
<th>-V(_{bias})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stable</td>
<td>Stable</td>
</tr>
<tr>
<td>+ΔV</td>
<td>Release</td>
<td>Actuate</td>
</tr>
</tbody>
</table>
FIG. 5A

FIG. 5B
FIG. 9B
FIG. 13A

FIG. 13B