PATENT REQUEST: STANDARD PATENT

We, being the person identified below as the Applicant, request the grant of a patent to the person identified below as the Nominated Person, for an invention described in the accompanying standard complete specification.

Full application details follow.

[71] **Applicant:**
KONE ELEVATOR GmbH

Applicant's Address:
A Swiss company whose registered office is situate at Rathausstrasse 1, CH-6340 Baar, Switzerland

[70] **Nominated Person:**
KONE ELEVATOR GmbH

[54] **Invention Title:**
PROCEDURE FOR MODERNIZING OF AN ELEVATOR GROUP

[72] **Name of actual inventor:**
SEPPO OVASKA

Address:
Kalervontie 2, SF-05830 Hyvinkää, Finland

[74] **Address for service in Australia**
COLLISON & CO., 117 King William Street, Adelaide, S.A. 5000

Attorney Code CO

BASIC CONVENTION APPLICATION DETAILS:

<table>
<thead>
<tr>
<th>Application Number</th>
<th>Country</th>
<th>Country Code</th>
<th>Date of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>913437</td>
<td>Finland</td>
<td>FI</td>
<td>16th July 1991</td>
</tr>
</tbody>
</table>

Dated this 15th day of July 1992

KONE ELEVATOR GmbH
By their Patent Attorneys,
COLLISON & CO.

GEOFF E HABEL
NOTICE OF ENTITLEMENT
(To be filed before acceptance)

being the Applicant(s) in respect of the Application(s) listed herewith No. 19682/92, state the following:

Part 1 - Must be completed for all applications
The person(s) nominated for the grant of the patent:

- The name of the assignee(s) of the basic application(s) listed on the patent request form

or *has entitlement from the applicant(s) of the basic application(s) listed in the patent request form

KONE Elevator GmbH is wholly owned subsidiary of KONE Corporation.

The basic application(s) listed on the request form:

- is/are the first application(s) made in a Convention country in respect of the invention

or *was/were not the first application(s) made in a Convention country in respect of the invention, and a request has been made under Section 96 of the Patents Act 1990 (or Section 142AA of the Patents Act 1952)

Part 2 - Must be completed for all convention applications
The person(s) nominated for the grant of the patent:

- is/are the applicant(s) of the basic application(s) listed on the patent request form

or *has entitlement from the applicant(s) of the basic application(s) listed in the patent request form

Part 3 - Must be completed for all applications
The person(s) nominated for the grant of the patent:

- is/are the assignee(s) of the application(s) listed in the declaration under Article 8 of the PCT

or *entitled to rely on the application(s) listed in the declaration under Article 8 of the PCT

Part 4 - Must be completed if the application relates to a microorganism and relies on Section 6 of the Act.

- The depositor(s) of the deposit(s) listed hereafter (by number, depository institution and date)

or *entitled to rely on the deposit(s) listed hereafter (by number, depository institution, date, and depositor’s name and address) for the following reasons

Part 5 - Must be completed if the application is a Convention application, or the application was made under the PCT and the applicant made a declaration under Article 8 of the PCT in respect of the basic application.

Except as stated in the next paragraph, the basic application(s) *listed on the patent request form are referred to in the declaration under Article 8 of the PCT. *is/are the application(s) first made in a Convention country in respect of the invention.

A request has been made under Section 96 of the 1990 Act (or Section 142AA of the 1952 Act) to disregard the following application:

Date

19th May 1992

Insert full name: Kostas Laukas

KONE Elevator GmbH

*Position: Managing Director of KONE Elevator GmbH

By their/his/her Patent Attorneys

COLLISON & CO.

* delete as applicable
1. Procedure for modernizing the control system of a bank of elevators, characterized in that the elevator-specific control functions of the elevator bank are caused to work under the elevator-specific elevator controllers (6) of a control system comprising group control and communicating by means of at least one serial communication bus (14), and that the elevator-specific functions of the elevators in the bank are modernized by renovating their old functions and/or by adding new functions to the control functions, one functional module (9, 10, 11, 12, 13) at a time.

2. Procedure according to claim 1, characterized in that a functional module (9, 10, 11, 12, 13) is formed from one or more elevator components connectable to a serial communication bus (17).

3. Procedure according to claim 1 or 2, characterized in that the modernization comprises at least the following measures:

a) an elevator control computer (6) is connected to control the functions of each elevator in the bank of elevators;
b) the control of the old control system of each elevator or at least of that part of the old system which continues to be operative is arranged to take place via an adapter unit (16) placed between the elevator computer (6) and the old control system (15).

c) each elevator control computer (6) is connected to the serial communication bus (14) over which also the computer implementing group control in the elevator bank communicates, enabling each elevator control system to operate under the group control system;

d) a monitoring unit (8) is connected to the control system;

e) the elevator-specific functions are modernized one functional module (9, 10, 11, 12, 13) at a time by connecting to the elevator control computer (6) one or more elevator components capable of serial communication, said components forming said functional module, and removing the possible corresponding function of the old control system which was controlled via the adapter unit (16).
Name of Applicant:
KONE ELEVATOR GmbH

Actual Inventor:
SEITTO OVASKA

Address for Service:
COLLISON & CO., 117 King William Street, Adelaide, S.A. 5000

Invention Title:
PROCEDURE FOR MODERNIZING OF AN ELEVATOR GROUP

The following statement is a full description of this invention, including the best method of performing it known to us:
The invention relates to a procedure for modernizing the control system of an elevator group.

Finnish patent publication no. 68797 (Ovaska et al) presents a procedure for modernizing an elevator group. In greatly simplified terms, the procedure presented in said publication can be described as follows: A new group controller is installed in the machine room to control the old elevator controllers, which are connected to it using adapting computers. Next, the control functions of the individual elevators in the bank are modernized one elevator at a time. For this purpose, the elevator is disconnected from the group controller, the old control functions of the elevator as well as the adapting computer are replaced with a new elevator-specific set of control equipment, whereupon the elevator is connected directly to serve under the new group controller. The publication also presents an extensive description of the technology known in the art, which will not be repeated here; instead, reference is made to the patent publication mentioned.

An article entitled "Overlays" by J.W. Fortune (Elevator World, September 1985) describes the overlay modernization on a general level. The article also presents a concept whereby the modernization proceeds in a stepwise manner, using a modular method. However, the concept is based on a type of overlay technology that is presented e.g. in FI 68797. Therefore, it is well suited for cases where an extensive modernization job is carried out completely at the same time, but its realistic implementation in a multi-stage modular modernization project would involve a large amount of work and expenses. This is because, using conventional parallel wiring, there would generally be a considerable amount of wiring installation work and temporary connections. The article also comprises a description of a case of
"conventional" overlay modernization along the principles of the solution presented in the above-mentioned patent publica-
tion FI 68797.

The object of the present invention is to provide a new procedure which has a great flexibility relative to the needs of the customer e.g. in respect of the composition or timetable of the modernizing project and which at the same time maintains the transport capacity of the elevator bank during the installation work performed at the site of installation or at least enables the changes in transport capacity to be so timed that the occasional periods of lower transport capacity coincide with low-traffic periods. The procedure of the invention is characterized by what is presented in claim 1. The other preferred embodiments of the invention are characterized by what is presented in the other claims.

The advantages achieved by modernizing an elevator group by the procedure of the invention include the following:

The procedure of the invention for modernizing an elevator group is very flexible and can therefore be customized with respect to requirements arising from different starting points. The elevator group structure produced through modernization and the intermodular connection techniques are such that they provide a practical possibility to carry out the modernization in small independent modules and to install the functional modules in an almost arbitrary order.

The modernization can be carried out in a flexible manner with respect to the operation of the elevator bank because the modernizing work proceeds step by step using functional modules, so that in the modernization of individual elevators the down time for each elevator can easily be reduced to very short working periods and timed to occur during times when the need for transport capacity is low. The necessary preparations can be made without causing a large loss of capacity relative to the transport needs or by making use
of work done outside the site of installation. In practice, the progress of modernization work by the procedure of the invention can very often be so planned that no substantial fall in the level of service will occur at any stage during the work.

Dividing the functions into intelligent independent functional modules also allows the modernization project to be divided into several stages with months or years between them. Therefore, the expenses incurred by the customer because of the modernization can be distributed over a longer period of time, and thus, as smaller investments are needed at a time, the economic burden resulting from the modernization investments will be lighter. Likewise, the customer can easily choose the desired degree of modernization and have e.g. only the problematic parts of the system modernized. The composition of the functional modules is described in greater detail in connection with the descriptions of the figures illustrating the invention.

The elevator-specific functions are partly controlled by a new elevator computer, and the functions according to the old system are controlled by means of a simple adapter unit used between the old system signals and the new elevator computer to convert the incoming and outgoing signals. Thus, only the passive adapter unit and the wiring required to connect it to the old system are temporary equipment in this type of modernization, but all the rest of the work and the rest of the new equipment are parts of the system obtained as a result of the final overall modernization.

As the signal transmission between the modernized parts in the system takes place in serial form and most of the temporary wiring required during installation is connected to the adapter unit, the solution of the invention allows obvious economies to be achieved in respect of wiring work. Also, since less wiring is required, the risk of connection errors is also substantially reduced. In addition to the savings in
the amount of work, further savings are achieved in the material costs. For example, in the above-mentioned case of modernizing a bank of five elevators as described in connection with the article by J.W. Fortune, it was necessary to provide the wiring for nearly sixty elevator-specific input signals and 13 elevator-specific output signals for each one of the elevators, and besides about thirty group-specific signals, which means a total of nearly 400 wired parallel signals between the old and new systems. Dividing the whole modernization project into several independent partial stages would have increased the number of temporary wires still further. By contrast, if an elevator bank like the one described in the example were to be modernized according to the invention, the functions related to the hall call and car call devices being managed from the start using elevator components designed for serial communication, the total number of parallel signals to be wired between the old and new systems would, in an advantageous case, be under 200, i.e. only about half of the number required before. Such a reduction in the amount of work means considerable economies in both time and cost, besides reducing the risk of connection errors, especially because in complete modernization, which is the ultimate aim, the wiring between the old and new systems is a temporary solution needed only during the modernizing work and will be finally discarded.

As the system employs a local network-type serial communication bus, it is technically very flexible. Adding new functions or components to an elevator system being modernized or already modernized by this procedure is very simple. For instance, to connect an advanced lobby detector to the system, the only thing needed in addition to installing the detector itself is an update of the elevator control programs that support such a device. As a procedure, connecting a new device to the "elevator network" resembles connecting a work station to the local network of an office. Therefore, the elevator components to be connected to the system may also represent different technological generations. It is
only required that they communicate according to the protocol valid in the bus.

The technology used in intelligent serial communication networks have already reached a fairly advanced stage of development. For instance, there are several network standards designed for automobiles, e.g. A-BUS, CAN, VAN. Even if the invention does not make full use of these standards, it still allows the utilization of high-volume standard components designed to work even in difficult environmental circumstances.

Since the group control functions are connected to the system through a serial communication network, a back-up system designed to take care of the group control functions can easily be linked to the system and its engagement can be automatized if necessary. A backed-up system like this is very reliable in operation.

In the following, the application of the invention is described by means of an example by referring to the appended drawings, in which

Figures 1a and 1b illustrate the progress of modernization in the case of previously known modernizing procedures,

Fig. 2 illustrates the progress of modernization in the case of the modernizing procedure of the invention,

Fig. 3 represents a partially modernized elevator group control system,

Fig. 4 represents another partially modernized elevator group control system,

Fig. 5 represents yet another partially modernized elevator group control system,
Fig. 6 represents a completely modernized elevator group control system, and

Fig. 7 represents the control panel of an elevator in a partially modernized elevator group and a corresponding completely modernized control panel, both in a simplified form.

Figures 1a, 1b and 2 illustrate the principles along which different modernizing methods proceed from an old elevator system 1a, 1b and 1c to a completely new elevator system 2a 2b and 2c. Fig. 1a shows a prior-art alternative, in which the control system of the elevator group is completely modernized by directly removing the old system 1a and building a new system 2b in its place. In this alternative, some of the elevators are able to work during the modernization, but the transport capacity of the bank is significantly reduced. Fig. 2b illustrates the progress of modernization in the case of another prior-art procedure. This is a conventional modernizing procedure based on overlay modernization of the group control system as presented e.g. in Finnish patent publication no. 68797. In this case, the group control system 3 is renovated first and the old elevator control systems are linked to the new group control system via adapting computers. At this stage the system is also provided with a monitoring unit 4. The elevator control functions #1',...,#N' are modernized separately for each elevator, one elevator at a time, by disconnecting the elevator from the group control system 3 and replacing the old control functions and the adapting computer with a new elevator-specific set of control equipment, whereupon the elevator is reconnected to serve under the new group control system 3.

The progress of modernization in the case of the modular modernizing procedure of the invention is illustrated by Fig. 2. In this procedure, the first step is overlay modernization of the group control system, whereby the new group control system 5 and the elevator computers operating under
its control are connected to control the elevators working in accordance with the old system. The connection is performed by coupling the functions of the old system to the elevator computers 6 via simple passive I/O adapting units. At the same time, the hall call devices 7 are generally renovated to render them capable of serial communication, and a monitoring unit 8 is connected to the system. After the renovation of the parts essential to the group control functions, elevator-specific control functions #1, ... are renovated/formed one functional module 9, 10, 11, 12, 13 at a time. In principle, the procedure does not place any restrictions on the order in which the functional modules are renovated/formed. Instead, they can be renovated/formed in an order that is appropriate with respect to the progress of the work, allowing a renovated system 2c to be achieved by proceeding along various routes as desired. The elevator-specific functional modules are not limited to those mentioned; a possible additional module could be e.g. a screen placed in the elevator car for the display of information, together with the associated functions. In addition to the essential functions related to group control, the system may also comprise other group-specific functions. An example of such functions is the monitoring of the elevator lobby by means of a lobby detector, this function constituting a group-specific functional module. For example, in full modernization by the procedure of the invention, the door control function 9 and the car panel 10, which are functions associated with the elevator car, may be renovated first. The hoisting motor drives 11 are renovated next, and finally the hall signalling 13 and elevator control logic 12 systems. In principle, the procedure allows free choice of the order in which the various elevator-specific functions are renovated, but in practical work it is advisable to divide the project into distinct wholes, e.g. in the manner described above.

Fig. 3 presents a system consisting of a group controller 5 and elevator computers 6 connected to it. The figure shows
two of the elevator-specific system parts. Typically, the number of system parts is equal to the number of elevators in the bank. The system also comprises a monitoring unit 8 which is used to monitor the state of the elevator bank and by means of which its functions can be controlled. The system further comprises renovated hall call devices 7 connected via a serial communication bus 14 to the group control 5. This system assembly, comprising the elevator computers 6 and the group control function 5 and preferably also the hall call devices 7 and a monitoring unit 8, constitutes the central part of the new control system to be installed in the elevator group at the overlay stage of the modernization. If the modernization is intended to be limited to the renovation of these central functions only, then the elevator-specific control functions 15 existing in the old system are directly linked to the elevator computers 6 of the new system by means of adapter units 16.

Figures 4 and 5 illustrate certain alternatives of partial modernization. The renovated parts operate under control of the elevator computers 6, communicating with it via an elevator-specific data transfer bus 17. The rest 15 of the old-system functions are controlled by the new elevator computer 6 via an adapter unit 16. This remaining part of the functions 15 together with the renovated parts constitute a partially modernized functional module. In the case of Fig. 4, some of the functions associated with the elevator car have been modernized by forming functional modules 9 (door control) and 10 (car call devices) and renovating related functions. In the case of Fig. 5, a functional module 11 has been formed by renovating the hoisting motor control functions.

Fig. 6 presents a fully modernized system. The functions of the control system of the elevator group are handled by means of elevator-specific intelligent functional modules 9, 10, 11, 12 and 13. The functional modules are formed from elevator components capable of serial communication. The
elevator-specific functional modules communicate in a local network-type serial communication network 17, receiving the instructions for action from the elevator computer 6 coordinating their operation. A unit 18 containing the elevator's safety circuit interface and other electrification functions communicates with the elevator computer via a parallel interface, which during the partial modernization stages was used by the adapter unit 16 serving as a link through which the new elevator computer controlled the old elevator control system.

The upper portion of Fig. 7 represents a simplified elevator control panel 19a comprising an elevator computer 6 and a passive I/O adapter unit 16. All the signals between the old control system and the new elevator computer are connected to the I/O adapter unit 16, which acts as a converter of the old-system incoming and outgoing signals. The adapter unit is connected with a flat cable 20 to a parallel I/O port of the elevator computer. As for the incoming signals, the adapter unit accomplishes galvanic decoupling, filters the signal voltages and adapts them to a level suited for the inputs of the elevator computer 6. As for the outgoing signals, the adapter unit takes care of transmitting the old-system signals further as instructed by the elevator computer. Generally it also performs galvanic decoupling and voltage matching.

The lower portion of Fig. 7 represents the control panel 19b of an elevator that has reached the stage of complete modernization. In a completely modernized control system, no I/O adapter is needed between the old and new control systems. Therefore, the adapter unit has been removed from the control panel and replaced by an electromechanical connection base 21 used for the electrification of the elevator and containing a safety circuit interface. The connection base 21 accommodates the central electromechanical components (relays, contactors, transformers, connection blocks, switches, fuses, etc.) required by the safety circuit and
electrification of the elevator.

When the modernizing procedure of the invention is applied, the modernization of the control system of an elevator bank progresses e.g. in the manner described below.

The new control system, comprising the elevator control systems for each elevator, the group control system for the elevator bank and a system monitoring unit, is installed in the machine room.

For each elevator, the elevator-specific control signals produced/required by the old control system are connected to an I/O adapter unit, which transmits and, if necessary, converts the signals between the old and new elevator systems. At this stage, also the floor signalling and hall call functions are changed to fit the new system.

The overlay stage described above, during which the central new elevator and group control functions are created and introduced, also comprises creation of the necessary conditions to allow the remaining functions associated with elevator control to be modernized a functional module at a time.

At the next stage of the modernizing process, independent functional modules operating under control of the new control system are formed. These modules may be elevator-specific, e.g. door control systems, motor drive of the elevator, car panel, or they may be group-specific, e.g. lobby detectors and certain signal devices. The old functions corresponding to the activated new functions are made inoperative.

In full modernization, all the elevator functions are ultimately under control of the new control system, so the I/O adapter unit is no longer needed. An electromechanical functional unit containing a new safety circuit interface and
some other functions relating to electrification is connected in place of the adapter unit.

It is obvious to a person skilled in the art that different embodiments of the invention are not restricted to the examples described above, but that they may instead be varied within the scope of the following claims.

For instance, the group control system may be incorporated in one of the elevator control computers. The elevator control computers are connected to a serial bus and a backup group control function can easily be incorporated in any one of the other elevator control computers, or even in all of them if desired.

In the examples presented above, the system has separate serial communication networks for group control and for each elevator, but especially in small elevator banks and in low buildings where the number of devices to be connected is small, the group control signals and the elevator-specific control signals can be transmitted over a common serial communication network.

In principle, the modernization of different functions of individual elevators can be performed by modernizing the functional modules separately in an arbitrary order, but in practice it is often advisable to modernize one elevator or a given subsystem, such as the functions associated with the elevator car, at a time to the planned degree of modernization.

Naturally, the subassemblies to be modernized may contain mechanical or electromechanical elevator components that are not capable of serial communication and are therefore outside the sphere of the present invention, but it is preferable to renovate such components as well in connection with modernization by the procedure of the invention.
It is also obvious to a person skilled in the art that, although the adapter unit only acts as a decoupling or voltage matching device in the case of many of the signals, it can in some cases also act as a detector of the incoming signal, or it can produce an outgoing signal in a predefined manner upon command from the elevator computer. Further, it is obvious that certain details, such as the flat cable connection between the elevator computer and the adapter unit, are not essential to the invention but can be implemented in other ways as well.

Although the procedure of the invention proposes a course of action leading to a completely modernized elevator system, the procedure is also extremely flexible in the implementation of various partial modernizations. These include e.g.

- modernization of group control, whereby the performance and reliability of the group control system are enhanced and which comprises renovation of the call distribution algorithm and hall call devices and possibly the addition of passenger detectors to the system,

- modernization of elevator cars, comprising renovation of the door controller and car call panel and possibly installation of an information screen in the car,

- modernization of performance, which, in addition to group control modernization, comprises modernization of the hoisting 'motor drive and the door control system, whereby the travelling times and the standing times at the landings can be shortened, thus increasing the transport capacity,

- modernization of hall equipment, comprising renovation of the hall call devices and the signalling system and possibly installation of information screens, whereby the functional quality of the lobby is improved and a positive influence is exerted on the impression created by it.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. Procedure for modernizing the control system of a bank of elevators, characterized in that the elevator-specific control functions of the elevator bank are caused to work under the elevator-specific elevator controllers (6) of a control system comprising group control and communicating by means of at least one serial communication bus (14), and that the elevator-specific functions of the elevators in the bank are modernized by renovating their old functions and/or by adding new functions to the control functions, one functional module (9, 10, 11, 12, 13) at a time.

2. Procedure according to claim 1, characterized in that a functional module (9, 10, 11, 12, 13) is formed from one or more elevator components connectable to a serial communication bus (17).

3. Procedure according to claim 1 or 2, characterized in that the modernization comprises at least the following measures:

a) an elevator control computer (6) is connected to control the functions of each elevator in the bank of elevators;

b) the control of the old control system of each elevator or at least of that part of the old system which continues to be operative is arranged to take place via an adapter unit (16) placed between the elevator computer (6) and the old control system (15).

c) each elevator control computer (6) is connected to the serial communication bus (14) over which also the computer implementing group control in the elevator bank communicates, enabling each elevator control system to operate under the group control system;
d) a monitoring unit (8) is connected to the control system;

e) the elevator-specific functions are modernized one functional module (9, 10, 11, 12, 13) at a time by connecting to the elevator control computer (6) one or more elevator components capable of serial communication, said components forming said functional module, and removing the possible corresponding function of the old control system which was controlled via the adapter unit (16).

4. Procedure according to any one of the preceding claims, characterized in that

a) a new control system is installed in the bank of elevators, said system comprising a group controller (5) for the elevator bank, an elevator computer (6) containing the elevator control for each one of the elevators in the bank, and adapter units (16) providing a linkage allowing said elevator computer (6) to control the old-system control functions (15) of each elevator;

b) the elevator-specific control functions (15) of the old system are connected to an adapter unit (16) which transmits and, if necessary, converts the signals between the old and new elevator systems;

c) the control of the elevators is subordinated to the new group control (5) system;

d) an elevator-specific functional module (9, 10, 11, 12, 13) of the new control system is selected for installation;

e) the control of the old functions corresponding to the selected module via the adapter unit (16) is discon-
tinued and/or the old functions or the equipment performing them are disconnected;

f) an elevator component / elevator components capable of communication via a serial communication bus (17) and forming the selected functional module (9, 10, 11, 12, 13) is/are connected to serve under the new control system, said component/components being arranged to be controlled by the elevator computer (6) in question.

g) steps d), e) and f) are repeated until all elevators in the elevator bank have been modernized to the desired degree.

5. Procedure according to claim 3 or 4, characterized in that the adapter unit (16) is connected to the elevator computer via a parallel interface (20) and that the adapter unit (16) is used to convert the parallel I/O signals between the elevator computer (6) and the old elevator system (15) into a form adapted to the receiving system.

6. Procedure according to any one of the preceding claims, characterized in that at least one group-specific functional module is connected to the new control system.

7. Procedure for the modernizing of an elevator group substantially as hereinbefore described with reference to the accompanying drawings.

Dated this 15th day of July 1992.

KONE ELEVATOR GmbH
By their Patent Attorneys,
COLLISON & CO.
ABSTRACT OF DISCLOSURE

A procedure for modernizing the control system of a bank of elevators, whereby the elevator-specific control functions of the elevator bank are caused to work under elevator-specific elevator controllers (6) in a control system comprising group control and communicating by means of at least one serial communication bus, and in which the elevator-specific functions of the elevators in the bank are modernized by renovating their old functions and/or by adding new functions to the control functions, one functional module (9, 10, 11, 12, 13) at a time, using elevator components connectable to a serial communication bus.
Old elevator system

Group control

Hall call units

Elevator computers

System monitoring

Door control

Car panel

Motor drive

Elevator logic

Car modernization

Signalization

Modules of other elevators to be modernized as #1

Modernized elevator system

Fig. 2
Fig. 3

Elevator monitoring and commanding system

Group controller

Hall call units

Elevator computer

I/O adapters

Old individual elevator controller

14

6

16

15

16

15
Elevator monitoring and commanding system

Group controller

Hall call units

Elevator computer

I/O adapters

Old individual elevator controller

Door controller

Car panel

Fig. 4
Fig. 5

- Elevator monitoring and commanding system
- Group controller
- Hall call units
- Old individual elevator controller
- I/O adapters
- Hoisting motor drive
Fig. 6

- Elevator monitoring and commanding system
- Group controller
- Hall call units
- Elevator computer
- Safety circuit interface and other electrification
- Floor signalization
- Hoisting motor drive
- Door controller
- Car panel
Fig. 7