COMMONWEALTH of AUSTRALIA
PATENTS ACT 1952
APPLICATION FOR A STANDARD PATENT

We, ROHL AND HAAS COMPANY of
Independence Mall West,
Philadelphia, Pennsylvania 19105,
United States of America.

hereby apply for the grant of a Standard Patent for an invention entitled:
"PROTRACTERED RELEASE MICROBIAL-AGENTS CONTAINING MICROBIOCYTES OF RELATIVELY LOW WATER SOLUBILTY, THEIR USE IN THE CONTROL OF LIVING MICROBIONIES, IN PROTRACTERED RELEASE OF MICROBIOCYTES INTO AQUEOUS SYSTEMS AND IN STAPENDING MICROBIAL COMPOSITIONS" which is described in the accompanying provisional specification.

Details of basic application(s):--

<table>
<thead>
<tr>
<th>Number</th>
<th>Convention Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>422,055</td>
<td>United States of America</td>
<td>23 September, 1982</td>
</tr>
</tbody>
</table>

The address for service is care of DAVIES & COLLISON, Patent Attorneys, of 1 Little Collins Street, Melbourne, in the State of Victoria, Commonwealth of Australia.

Dated this 23 day of September 1983

[Signature]

The Commissioner of Patents

Davies & Collison, Melbourne and Canberra.
In support of the Application made for a patent for an invention entitled: "PROTRACTED RELEASE MICROBICIDAL ARTICLES CONTAINING MICROBIOCIDES OF RELATIVELY LOW WATER SOLUBILITY, THEIR USE IN THE CONTROL OF LIVING MICROORGANISMS, IN PROTRACTED RELEASE OF MICROBICIDIC INTO AQUEOUS SYSTEMS AND IN SAFENING MICROBIOCIDAL COMPOSITIONS"

I, KENNETH NORMAN RIMINGTON of 1 Little Collins Street, Melbourne 3000, Victoria, Australia.

do solemnly and sincerely declare as follows:-

- 1.(a) I am the applicant for the patent

or (b) I am authorized by Rohm and Haas Company the applicant for the patent to make this declaration on its behalf.

- 2.(a) I am the actual inventor of the invention

or (b) We are

David Richard AMICK of 119 Devon Road, Chalfont, Pennsylvania 18914, United States of America.

- I, the actual inventor of the invention and the facts upon which the applicant is entitled to make the application are as follows:

the applicant is the assignee of the said actual inventor

3. The basic application, as defined by Section 141 of the Act was made in the United States of America on the 23rd September, 1982 by David Richard Amick in the name of Rohm and Haas Company as the first application made in a respect of the invention the subject of the application.

4. The basic application referred to in paragraph 3 of this Declaration was the first application made in a Convention country in respect of the invention the subject of the application.

Declared at Melbourne this 23rd day of September 1983

DAVIES & COLLISON, MELBOURNE and CANBERRA.
This invention is concerned with protracted release microbiocidal articles containing microbiocides of relatively low water solubility, their use in the control of living microorganisms, in protracted release of microbiocide into aqueous systems and in safening microbiocidal compositions.

8. A method for controlling living microorganisms in an aqueous system which comprises incorporating into the aqueous system an article of any preceding claim especially claim 4 or 6 containing sufficient composition to provide in the aqueous system a microbiocidally effective amount of said microbiocidal compound.

9. A method according to claim 8 wherein said aqueous system is or is contained in a metal-working fluid, swimming pool, water tower, toilet bowl or cistern or, washing machine.

10. A method for the controlled release of microbiocidal and into an aqueous system consisting of the steps of (1) preparing an article as claimed in any of claims 1 to 7; (2) introducing said article into said aqueous system; (3) permitting said aqueous system to diffuse into said sealed membrane; and (4) permitting said microbiocidal...
isothiazolone to dissolve and to diffuse through said sealed membrane and be released into said aqueous system; the rate of release and the concentration of microbiocidal isothiazolone into the aqueous system being controlled by the selection of said isothiazolone having a lower or higher water solubility up to 1000 ppm, the amount of said isothiazolone dissolved in said aqueous system remaining at the saturation level until isothiazolone in the composition is depleted.

Claim

1. A microbiocidal article comprising

(a) flexible, water-permeable membrane having a film thickness sufficient to maintain the integrity thereof when sealed and sufficient water vapor permeability to permit diffusion of water therethrough, containing, sealed therein,

(b) particulate solid microbiocidal composition useful in aqueous systems comprising:

(i) 0.1-70 weight %, based on total weight of said composition, of water-soluble microbiocide having a room temperature water solubility of less than 1000 ppm or a combination thereof with one or more other microbiocides which may have higher solubility, but which combination has a room temperature water solubility of less than 1000 ppm; and

(ii) 99.9-30 weight %, based on total weight of said composition, of inert, finely-divided water-insoluble solid carrier material.

2. An article according to claim 1 wherein the flexible, water-permeable membrane has a film thickness of 1.27×10^{-5} m (0.5 mil) to 25.4×10^{-5} m (10 mils) and a water vapor permeability of 0.2-40 g. per 2.54×10^{-5} m (mil) in 24 hrs. for a $645.16 \, \text{cm}^2$ (100 in.2) film.

4. An article according to any preceding claim wherein said microbiocide comprises isothiazolone, which has a room
temperature water solubility less than 1000 ppm and is of the formula:

\[
\begin{array}{c}
\text{O} \\
\text{4} \\
\text{3} \\
\text{2-N-Y} \\
\text{5} \\
\text{1}
\end{array}
\]

wherein

- Y is an unsubstituted or substituted \(\text{C}_1-\text{C}_{18} \) alkyl group, an unsubstituted or substituted \(\text{C}_2-\text{C}_{18} \) alkenyl or alkynyl group, an unsubstituted or substituted \(\text{C}_3-\text{C}_{12} \) cycloalkyl group, an unsubstituted or substituted aralkyl group of 6-10 carbon atoms, or an unsubstituted or substituted aryl group of 6-10 carbon atoms;
- R is hydrogen, halogen or a \(\text{C}_1-\text{C}_4 \) alkyl group;
- \(\text{R} \) is hydrogen, halogen or a \(\text{C}_1-\text{C}_4 \) alkyl group; or
- \(\text{R} \) and \(\text{R}' \) can be taken together with the \(\text{C}=\text{C} \) bond of the isothiazolone ring to form an unsubstituted or substituted benzene ring;
- or said isothiazolone stabilized with metal salt stabilizer in an amount of 1-60 weight %, based on weight of 3-isothiazolone and metal salt, said metal salt being represented by the formula:

\[
\left(\text{MX} \right)_n
\]

wherein

- M is a cation of sodium, potassium, calcium, magnesium, copper, iron, zinc, barium, manganese, silver, cobalt and/or nickel;
- \(X \) is chloride, bromide, iodide, sulfate, nitrate, nitrite, acetate, chlorate, perchlorate, bisulfate, bicarbonate, oxalate, maleate, p-toluene-sulfonate,
carbonate, and/or phosphate. And

n is an integer for which the anion X satisfies the
valence of the cation M;
and, as said solid carrier material (ii), one or more of the
following materials in inert, finely-divided water-insoluble
solid form: siliceous diatomaceous earth, high water
absorption capacity calcium silicate granular material,
clays, charcoal, vermiculite, corn cobs, high purity silica
and wood.
Name of Applicant: ROHM AND HAAS COMPANY

Address of Applicant: INDEPENDENCE MALL WEST,
PHILADELPHIA, PENNSYLVANIA 19105,
UNITED STATES OF AMERICA.

Actual Inventor(s): DAVID RICHARD AMICK

Address for Service: DAVIES & COLLISON, Patent Attorneys,
1 Little Collins Street, Melbourne, 3000.

Complete specification for the invention entitled:
"PROTRACTED RELEASE MICROBIOCIDAL ARTICLES CONTAINING MICROBIOCIDES OF
RELATIVELY LOW WATER SOLUBILITY, THEIR USE IN THE CONTROL OF LIVING MICROORGANISMS,
IN PROTRACTED RELEASE OF MICROBIOCIDES INTO AQUEOUS SYSTEMS AND IN SAFENING
MICROBIOCIDAL COMPOSITIONS"
The following statement is a full description of this invention,
including the best method of performing it known to us.
PROTRACTED RELEASE MICROBIOCIDAL ARTICLES CONTAINING MICROBIOCIDES OF RELATIVELY LOW WATER SOLUBILITY, THEIR USE IN THE CONTROL OF LIVING MICROORGANISMS, IN PROTRACTED RELEASE OF MICROBIOCIDE INTO AQUEOUS SYSTEMS AND IN SAFENING MICROBIOCIDAL COMPOSITIONS.

This invention is concerned with protracted release microbiocidal articles containing microbiocides of relatively low water solubility, their use in the control of living microorganisms, in protracted release of microbiocide into aqueous systems and in safening microbiocidal compositions.

The isothiazolones are a class of chemical compounds known to possess excellent and useful microbiocidal properties and resistance to common additives and contaminants. Many 3-isothiazolones are disclosed in U. S. Patents 3,761,488; 3,849,430; 3,870,795; 4,067,878; 4,150,026; and 4,241,214. U. S. Patents 3,517,022; 3,065,123; and 3,761,489 disclose 2-substituted-1,2-benzisothiazolones. U. S. Patent 3,849,430 discloses a method for preparing the isothiazolones.

While the above patents disclose the use of isothiazolones in a variety of microbiocidal end uses, such as, for example, those uses and formulations and compositions disclosed in U. S. Patent 3,761,488 at columns 15-19 and in the actual examples thereafter, isothiazolones are generally made available in combination with a liquid carrier such as water or in aqueous compositions. Column 19, line 66 et seq. discloses that isothiazolones can be taken up or mixed with a finely-divided particled solid carrier, as for example, clays, inorganic silicates, carbonates, silicas and organic carriers. Column 20, line 25 et seq. discloses that a convenient method for preparing a solid formulation is to impregnate the isothiazolone toxicant onto the solid carrier by means of a volatile solvent, such as acetone. However, these earlier attempts
to produce solid formulations have resulted in formulations which tended to coalesce (or "cake") or to give extremely lightweight particles (or "dusts").

U. S. Patent 4,011,172 discloses chlorine bleaching compounds dissolved in water or other suitable solvent thickened by the addition of particulate thickening agent, for example, silicate materials, water-swellable and water-soluble polyacrylamides and cellulose derivatives, and synthetic clays, the thickened bleaching compounds being contained in a perforated pouch made of plastic material.

U.S. Patent 4,170,565 discloses a substrate article for cleaning fabrics, particularly in an automatic washer, consisting essentially of an effective amount of a surface-active composition of about 5-95% by weight of a water-soluble surface-active agent contained between two layers of a water-insoluble, wet-strength substrate, at least one of said layers having an air permeability of at least about 0.283 m³ (10 ft.³) of air per minute per 0.093 m² (ft.²) of substrate. Preferred substrates include flexible water-insoluble, wet-strength paper, woven cloth, and non-woven cloth substrates, cellulose ester being mentioned among a list of synthetic fibers, suitable for making non-woven cloths. All of the components mentioned for the surface-active composition, including the surface-active agent, are disclosed to be water-soluble.

U.S. Patent 4,289,815 discloses a pouch for the controlled release of active ingredients into an aqueous medium comprising liquid or solid active ingredients enclosed in a sealed envelope of cold-water insoluble polyvinyl alcohol. The object of the invention described in the patent is to provide pouches for delivery of active ingredients which provide a substantially uniform, controlled "zero-order" release of the active ingredients. This objective is achieved by utilizing cold-water insoluble, gas-impermeable polyvinyl alcohol as the
polymeric film for preparing the pouches. The patent further discloses that a wide variety of liquid and solid active ingredients are applicable for use in the pouches, examples of which active ingredients include detergents, bleaches, chlorinating agents, pesticides, bactericides, dyes, drugs, and other chemicals. At column 3, lines 53 et seq., the patent teaches that "in order to establish practical release rates, it is required that the active ingredient exhibit a minimum water solubility" and that the water solubility can range from small water solubility to total water solubility. The patent also teaches that the applicable areas of use include introduction of active ingredients into toilet tanks, urinals, swimming pools, and water towers. Isothiazolones are commonly provided in commerce in aqueous solution, usually with inorganic, alkaline earth metal salts as stabilizers to prevent reactions which render them inactive against microorganisms. Although solid alkaline earth metal salt complexes are known (U. S. Patents 4,150,026 and 4,241,214 mentioned above), these salt complexes suffer the disadvantage that they badly corrode processing equipment used to remove water in the course of producing the solid dry salt complex product, and the final solid salt complex product tends to be extremely dusty and thereby toxic to one during handling the product.

A typical, useful commercially available 3-isothiazolone product is Kathon 886 (Rohm and Haas Company), a metal salt-stabilized aqueous solution of 5-chloro-2-methyl-3-isothiazolone and 2-methyl-3-isothiazolone (3:1) containing 14% active ingredient and Mg(NO$_3$)$_2$ plus MgCl$_2$ as stabilizers. Such commercial products suffer the disadvantages of being irritating to the skin when spilled during handling and evolving nontoxic gases which build up pressure in a sealed containers such as are generally used in shipping and.
transportation.

Our European Patent Application filed on the same day as this Application, entitled solid microbiocidal compositions and methods for safening isothiazolone microbiocides and controlling living microorganisms and claiming priority from US Application 422498 discloses that these disadvantages can be overcome by providing water-soluble microbiocidal compounds, especially 3-isothiazolones, in the form of dry solid compositions. The present invention is a further improvement to overcome these disadvantages.

This invention provides an article useful for storing, handling, transporting, and providing microbiocidal compound at a controlled rate in a method for controlling living microorganisms in an aqueous system comprising:

(a) a flexible, water-permeable membrane having a film thickness sufficient to maintain the integrity thereof when sealed and sufficient water vapor permeability to permit diffusion of water therethrough and containing, sealed therein,

(b) particulate solid microbiocidal composition useful in aqueous systems comprising:

(i) 0.1-70 weight %, based on total weight of said composition, of microbiocidal compound having water solubility of less than 1000 ppm at room temperature (25°C) or a mixture thereof with other microbiocidal compound(s) to give a combination of water solubility less than 1000 ppm at room temperature (25°C); and

(ii) 99.9-30 weight %, based on total weight of said composition, of inert, finely-divided water-insoluble solid carrier material.

It is to be understood that the total amount of microbiocidal compound in the composition can exceed the amount of compound which is soluble in the aqueous system. As the compound becomes inactive in solution, the residual
undissolved compound then dissolves to maintain the concentration of microbiocidal compound up to the saturation point in the aqueous system until all of the compound is depleted.

Preferably, the flexible, water-permeable membrane used in this invention should have a film thickness of 1.27×10^{-5} m (0.5 mil) to 25.4×10^{-5} m (10 mils) and a water vapor permeability of 0.2-40 g per 2.54×10^{-5} m (mil) in 24 hrs. for a 645.16 cm^2 (100 in.2) film.

Examples of suitable film-forming materials useful in producing the flexible, water-permeable membrane include polyvinyl acetate, cellulose, cellulose acetate, polysulfone, polyester, polyamide, polyvinyl chloride, spunbonded polyethylene or low density polyethylene, polyurethane, or hot water soluble polyvinyl alcohol (PVA).

Preferably, in the particulate, solid microbiocidal composition used in the article of the invention, microbiocidal compound (i) comprises at least one water-soluble microbiocidally-effective isothiazolone, having a water solubility of less than 1000 ppm at room temperature of the formula:

![Chemical Structure](image)

wherein

Y is an unsubstituted or substituted C_1-C_{18} alkyl group, an unsubstituted or substituted C_2-C_{18} alkenyl or alkynyl group, an unsubstituted or substituted C_3-C_{12} cycloalkyl group, an unsubstituted or substituted aralkyl group of 6-10 carbon atoms, or an unsubstituted or substituted aryl group of 6-10 carbon atoms;
R is hydrogen, halogen or a \(C_1-C_4 \) alkyl group;

R' is hydrogen, halogen or a \(C_1-C_4 \) alkyl group; or

R and R' can be taken together with the C=C bond of

the isothiazolone ring to form an unsubstituted or

substituted benzene ring;

or said isothiazolone(s) stabilized with at least one

metal salt in an amount of 1-60 weight %, based on weight of

isothiazolone and metal salt, said metal salt(s) being

represented by the formula:

\[
(MX_n) \]

wherein

M is a cation of sodium, potassium, calcium, magnesium,
copper, iron, zinc, barium, manganese, silver, cobalt and/or
nickel;

X is chloride, bromide, iodide, sulfate, nitrate,
nitrite, acetate, chlorate, perchlorate, bisulfate,
bicarbonate, oxalate, maleate, p-toluene-sulfonate,
carbonate, and/or phosphate; and

n is an integer for which the anion X satisfies the

valence of the cation M;

and, said solid carrier material (ii) comprises inert,
finely-divided water-insoluble solid material selected from
siliceous diatomaceous earth, high water absorption
capacity calcium silicate granular material, charcoal,
clays, vermiculite, corn cob, high purity silica (e.g.
Aerosil and Sipernet) and wood.

It is to be understood that, as the number of carbon
atoms in the substituent group "Y" increases, and as
halogens are substituted on the isothiazolone ring, water
solubility decreases.

By a "substituted alkyl group" is meant an alkyl group
having one or more of its hydrogens replaced by another
substituent group. Examples of the substituted alkyl groups
which characterize the isothiazolones preferably used in
this invention include hydroxyalkyl, haloalkyl, cyanoalkyl, alkylamino, dialkylamino, arylaminoalkyl, carboxyalkyl, carbalkoxyalkyl, alkoxyalkyl, arylxyalkyl, alkylthioalkyl, arylthioalkyl, haloalkoxyalkyl, cycloaminoalkyl such as morpholinoalkyl and piperidinyllalkyl and pyrrolodinylalkyl, carbamoylalkyl, alkenyl, haloalkenyl, alkynyl, haloalkynyl and isothiazolonyllalkyl.

By a "substituted aralkyl group" is meant an aralkyl group having one or more of the hydrogens on either the aryl ring or the alkyl chain replaced by another substituent group. Examples of the substituted aralkyl group which characterize the isothiazolones used in this invention include halo, lower (i.e. C_1 to C_8 preferably C_1 to C_4) alkyl and lower alkoxy.

By a "substituted aryl group" and "substituted benzene ring" is meant an aryl group and benzene ring, respectively, such as phenyl, naphthyl, or pyridyl groups, having one or more of the hydrogens on the aryl ring replaced by another substituent group. Examples of such substituent groups include halo, nitro, lower alkyl, lower alkoxy, lower alkyl- and arylamino, lower carbalkoxy and sulfonyl.

By the expression "relatively low water solubility" as applied to the isothiazolones used in this invention is meant an isothiazolone or combination of isothiazolones characterized by having a water solubility of less than 1000 ppm (0.1%) at room temperature (25°C). More preferably, the isothiazolone or combination thereof with other microbiocidal compounds used in this invention has a room temperature water solubility of 500 ppm or less, most preferably 100 ppm or less.

By the expression "microbiocidal compound" is meant those compounds effective to control those microorganisms especially of the group of bacteria, fungi (including molds and yeasts), and algae. In the method of the invention for
controlling living microorganisms, by the expression "microorganisms" is meant bacteria, fungi (including molds and yeasts), and algae.

When used alone, the expression "isothiazolone(s)" is meant to include the "free" isothiazolone(s) and the metal salt complexes of the free isothiazolone(s).

More preferably, the composition used in the article of this invention comprises (i) 1-35 weight %, based on total weight of said composition, of at least one of said isothiazolones having a water solubility of about 500 ppm or less wherein

- Y is an unsubstituted or substituted C$_1$-C$_{18}$ alkyl group or C$_3$-C$_{12}$ cycloalkyl group;
- R is hydrogen or halogen;
- R' is hydrogen or halogen; or
- R and R' are taken together with the C=C bond of the isothiazolone ring to form an unsubstituted or substituted benzene ring;

or said isothiazolone stabilized with said metal salt; and (ii) 99-65 weight %, based on total weight of said composition, of solid carrier material selected from siliceous diatomaceous earth, high water absorption capacity calcium silicate granular material and/or clays.

Most preferably, the composition used in the article of this invention comprises (i) 2-25 weight %, based on total weight of said composition, of at least one of said isothiazolones wherein Y is n-octyl or t-octyl, R is hydrogen and R' is hydrogen; or Y is cyclohexyl, R is chlorine and R' is chlorine; or Y is n-octyl or t-octyl, R is chlorine and R' is chlorine; or of a mixture of said isothiazolones; or said isothiazolone(s) stabilized with said metal salt wherein said metal salt is Mg(NO$_3$)$_2$ or a mixture of Mg(NO$_3$)$_2$ and MgCl$_2$; and (ii) about 98-75 weight %, based on total weight of said composition, of siliceous diatomaceous earth.
molds

"is
metal
icle of
otal
ppm or
al group

the
ated
salt;
ys.
icle of
otal

, R
d
ch

There may be used in combination with the above-defined most preferred, or more preferred, isothiazolones, isothiazolone(s) having a room temperature water solubility of greater than 1,000 ppm, especially wherein Y is methyl, R is hydrogen and R' is hydrogen or chlorine, providing, of course, that the room temperature water solubility of the total isothiazolone combination is less than 1,000 ppm.

One aspect of the invention is a method for controlling living microorganisms in an aqueous system which comprises incorporating into the aqueous system the article of this invention containing an amount of the microbiocidal composition used in this invention sufficient to provide in the aqueous system a microbiocidally effective amount of microbiocidal compound.

In another aspect, the invention comprises a method for safening microbiocidal isothiazolone compounds which comprises preparing a sealed, flexible, water-permeable membrane having a film thickness of from 1.27 x 10^-5 m (0.5 mil) to 25.4 x 10^-5 m (10 mils) and having a water vapor permeability of 0.2-40 g. per 2.54 x 10^-5 m (mil) in 24 hr. for a 645.16 cm^2 (100 in.^2) film containing sealed therein particulate solid microbiocidal composition comprising microbiocidally effective isothiazolone (free isothiazolone or metal salt complex thereof) having a relatively low water solubility of less than 1,000 ppm at room temperature or a combination thereof with other microbiocidal compound(s) to give a combination of relatively low water solubility of less than 1,000 ppm at room temperature, and inert, finely-divided water-insoluble solid carrier material.

In still another aspect, the invention is a method for the controlled, protracted release of microbiocidal compounds, for example, microbiocidal isothiazolones, into an aqueous system by the steps of (1) preparing the article of this invention defined above; (2) introducing the article
into the aqueous system; (3) permitting the aqueous system to diffuse into the article; and (4) permitting the microbiocidal compound to dissolve and to diffuse through the aqueous system; the rate of release and the concentration of microbiocidal compound in the aqueous system being controlled by the selection of the microbiocidal compound, especially the isothiazolone, to have a lower or higher water solubility within the permitted range of less than about 1000 ppm. Of course, the rate of release can also be varied by choosing a membrane of appropriate water vapor permeability. The concentration of the microbiocidal compound will remain at the saturation level until reserves of the compound present in the composition become depleted.

The preparation and properties of representative isothiazolones are described in U. S. Patents 3,517,022; 3,761,488; and 3,065,123. U. S. Patent 3,849,430 further discloses a process for the preparation of representative isothiazolones. U.S. Patents 3,870,795 and 4,067,878 describe metal salt stabilized solutions of 3-isothiazolones which are useful in this invention. Additional isothiazolones which are useful in the invention are those disclosed in U. S. Patent 4,310,590.

The finely-divided, water-insoluble solid material can for example be siliceous diatomaceous earth, high water absorption capacity calcium silicate material, and clays. Suitable siliceous diatomaceous earth material is described in the Johns-Manville Corporation Technical Bulletin FF-160A, 10-80 concerning Celite Diatomite Filter Aids and Natural, Calcined, and Flux-Calcined Grades thereof. Suitable high water absorption capacity calcium silicate material is commercially available under the trademark "Micro-Cel" from the Johns-Manville Corporation. Especially preferred is a diatomaceous earth material
commercially available as Celite 545 (Johns-Manville Corporation).

Of course, conventional adjuvants and additives used in microbiocidal compositions and formulations may be incorporated into the solid microbiocidal composition by first dissolving them in the aqueous or inert organic solvent solution of the isothiazolone(s) and then blending the solution with the solid carrier material. One useful additive for use in the solid microbiocidal composition of the invention is a dye which would impart a readily visible color to the solid composition. Thus, whenever any solid microbiocidal composition would accidently be spilled onto the skin during handling, the spilled composition could readily be observed and removed before the toxicant could leach out of the solid and cause skin burns. This is in contrast to the case involving accidental spillage of the aqueous microbiocidal solution of the isothiazolone when handling in association with an aqueous system, in which case it would be difficult to distinguish between harmless aqueous system and toxic isothiazolone concentrate. Other useful adjuvants and additives include chelating agents, surfactants, dispersants, buffers, and the like.

Alternatively, other conventional adjuvants and additives used with microbiocidal compounds, such as the isothiazolones used in this invention, may be combined with the microbiocidal composition in the sealed water-permeable membrane independent of incorporation into the microbiocidal composition.

The article of the invention may be used advantageously in metal-working fluids, swimming pools, water towers such as water cooling towers, toilet bowls and cisterns and washing machines. It is to be understood that, when used in washing machines, the level of isothiazolone in the article is kept at a safe, non-irritating, but microbiocidal, level.

The article according to the invention can afford many
advantages. One particular advantage is that the article is a form of the microbiocidal composition, especially isothiazolone compositions of isothiazolones known to be skin irritants, which is more convenient for handling, transporting, and shipping and is safer than the usual form of the microbiocidal composition, especially the isothiazolone composition, in that it obviates contact of the isothiazolone composition with the skin and the leaching-out from the composition of the isothiazolone.

Another particular advantage is that the article permits the use of the solid microbiocidal composition, especially the solid isothiazolone composition, in applications in which freely-dispersed, finely-divided solid matter could not be tolerated, for example, in water cooling towers and swimming pools.

For use in metal-working fluids, swimming pools, water towers, such as water cooling towers, toilet bowls and cisterns and washing machines an article of the invention can conveniently be removed from its shipping container, placed into the aqueous system to be treated, and, when the microbiocidal compound has completely leached-out of the article, the sealed membrane containing the solid carrier material can be removed by conventional techniques, for example, by hand, using tongs to dip the sealed membrane from the aqueous system.

The following Examples illustrate some embodiments of the invention. All parts and percentages are by weight unless otherwise indicated and all temperatures are in degrees Centigrade unless otherwise indicated. Percentages of the metal salts (magnesium nitrate and magnesium chloride) are based on the molecular weight of the usual commercial form.

Example 1

To 13.28 g. of Celite 545 in each of three glass
bottles was added 1 g. of the following isothiazolones in 20 ml. of methanol:
(a) 2-octyl-3-isothiazolone;
(b) 4,5-dichloro-2-cyclohexyl-3-isothiazolone; and
(c) 4,5-dichloro-2-octyl-3-isothiazolone.
Each mixture was then stirred by hand with a spatula until it appeared to be uniformly mixed and free-flowing. Air drying, to remove methanol, affords solid product, 14.28 g., containing 7 weight % of active ingredient.

1.28 g. of each of the resulting solid microbiocidal compositions was stirred in 800 ml. of deionized water. The release of active ingredient was followed by analysis of the supernatant water by ultraviolet spectroscopy. Total release of active ingredient would give 112 ppm. The results are set forth in the following table.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Solubility</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.75 hr.</td>
</tr>
<tr>
<td>A</td>
<td>500 ppm</td>
<td>106 ppm</td>
</tr>
<tr>
<td>B</td>
<td>40 ppm</td>
<td>27 ppm</td>
</tr>
<tr>
<td>C</td>
<td>14 ppm</td>
<td>7 ppm</td>
</tr>
</tbody>
</table>

The data above show that the time required to reach a saturated solution of compound A is less than 1 hour, of compound B is between 1-3 hours, and of compound C is between 6 and 24 hours.
Example 2

A solid microbiocidal composition containing 20 weight % of active ingredient was prepared by dissolving 2.66 g. of crystalline 2-octyl-3-isothiazolone in 15 ml. of methanol. To this solution there was added 0.6 g. of Mg(NO₃)₂ · 6 H₂O. The resulting solution was added to 10 g. of Celite 545 in a 4 fl. oz. bottle and the mixture was stirred by hand using a spatula until it appeared to be uniformly mixed and free-flowing. Methanol was removed by air-drying (or by heating the mixture under reduced pressure), and a uniform, free-flowing particulate solid was obtained.

Compositions containing 20 weight % of 4,5-dichloro-2-cyclohexyl-3-isothiazolone and 4,5-dichloro-2-octyl-3-isothiazolone were prepared as described above.

Example 3

There was sealed in bags of 7.62 x 10⁻⁵m (3-mil) cellulose film of surface area 22.6 cm² (3.5 in.²) 1.28 g. of each of the three compositions prepared in Example 1 containing compounds A, B, and C, respectively. For comparison, 1.28 g. of a 7% active ingredient solid composition of Kathon 886 (a 3:1 weight ratio blend of 5-chloro-2-methyl-3-isothiazolone and 2-methyl-3-isothiazolone with 15 weight % of Mg(NO₃)₂ and 9 weight % of MgCl₂ in aqueous solution containing 14% active ingredient available from the Rohm and Haas Company) absorbed on Celite 545 was sealed in a bag of 7.62 x 10⁻⁵m (3-mil) cellulose film of surface area 22.6 cm² (3.5 in.²). The rate of release and concentration of active ingredient from the sealed bags into 800 ml. of deionized water was followed by ultraviolet spectroscopy. The results
are set forth in the following table. Complete release of active ingredient from each sample would give 112 ppm.

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Concentration/Rate of Release (Water Solubility, ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kathon 886</td>
</tr>
<tr>
<td>1 day</td>
<td>140,000 ppm</td>
</tr>
<tr>
<td>2 days</td>
<td>(500 ppm)</td>
</tr>
<tr>
<td>5 days</td>
<td>(42 ppm)</td>
</tr>
</tbody>
</table>

These data illustrate that the article according to this invention provides a protracted release of a microbiocidally-effective amount of isothiazolone over a period of 1-5 days and longer.

The following words are trademarks which may or may not be registered in some or all of the designated states: Celite, Micro-Cel, Kathon, Aerosil, Sipernet.

Water vapour permeabilities are measured by the method of ASTM E-96-80.
This objective is achieved by utilizing cold-water insoluble, gas-impermeable polyvinyl alcohol as the...
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A microbiocidal article comprising
 (a) flexible, water-permeable membrane having a film
 thickness sufficient to maintain the integrity thereof when
 sealed and sufficient water vapor permeability to permit
 diffusion of water therethrough, containing, sealed therein,
 (b) particulate solid microbiocidal composition useful in
 aqueous systems comprising:
 (i) 0.1-70 weight %, based on total weight of said
 composition, of water-soluble microbiocide having a room
 temperature water solubility of less than 1000 ppm or a
 combination thereof with one or more other microbiocides
 which may have higher solubility, but which combination has
 a room temperature water solubility of less than 1000 ppm;
 and
 (ii) 99.9-30 weight %, based on total weight of said
 composition, of inert, finely-divided water-insoluble solid
 carrier material.

2. An article according to claim 1 wherein the flexible,
 water-permeable membrane has a film thickness of 1.27 x
 10^{-5} m (0.5 mil) to 25.4 x 10^{-5} m (10 mils) and a water
 vapor permeability of 0.2-40 g. per 2.54 x 10^{-5} m (mil) in
 24 hrs. for a 645.16 cm^2 (100 in.^2) film.

3. An article according to claim 1 or 2 wherein said
 flexible, water-permeable membrane is produced from a
 film-forming material comprising one or more of the
 following: hot-water-soluble vinyl alcohol polymers (PVA),
 vinyl acetate polymers, cellulose, cellulose acetate,
 polysulfone, polyesters, polyamides, vinyl chloride
 polymers, spunbonded polyethylene, low-density polyethylene
 or polyurethane.

4. An article according to any preceding claim wherein said
 microbiocide comprises isothiazolone, which has a room
temperature water solubility less than 1000 ppm and is of the formula:

\[
\begin{align*}
R & \quad 4 \\
R^1 & \quad 3 \\
S & \quad 2 \\
N-Y & \quad 1 \\
\end{align*}
\]

wherein

- \(Y \) is an unsubstituted or substituted \(\text{C}_{1}-\text{C}_{18} \) alkyl group, an unsubstituted or substituted \(\text{C}_{2}-\text{C}_{18} \) alkenyl or alkynyl group, an unsubstituted or substituted \(\text{C}_{3}-\text{C}_{12} \) cycloalkyl group, an unsubstituted or substituted aralkyl group of 6-10 carbon atoms, or an unsubstituted or substituted aryl group of 6-10 carbon atoms;
- \(R \) is hydrogen, halogen or a \(\text{C}_{1}-\text{C}_{4} \) alkyl group;
- \(R^1 \) is hydrogen, halogen or a \(\text{C}_{1}-\text{C}_{4} \) alkyl group; or
- \(R \) and \(R^1 \) can be taken together with the \(\text{C} = \text{C} \) bond of the isothiazolone ring to form an unsubstituted or substituted benzene ring;
- or said isothiazolone stabilized with metal salt stabilizer in an amount of 1-60 weight %, based on weight of 3-isothiazolone and metal salt, said metal salt being represented by the formula:

\[
(\text{MX}_n)\
\]

wherein

- \(M \) is a cation of sodium, potassium, calcium, magnesium, copper, iron, zinc, barium, manganese, silver, cobalt and/or nickel;
- \(X \) is chloride, bromide, iodide, sulfate, nitrate, nitrite, acetate, chlorate, perchlorate; bisulfate, bicarbonate, oxalate, maleate, p-toluene-sulfonate,
carbonate; and/or phosphate; and

"n" is an integer for which the anion X satisfies the
valence of the cation M;

and, as said solid carrier material (ii), one or more of the
following materials in inert, finely-divided water-insoluble solid form: silicaceous diatomaceous earth, high water absorption capacity calcium silicate granular material, clays, charcoal, vermiculite, corn cobs, high purity silica and wood.

5. An article according to claim 4 wherein said composition (b) comprises (i) 1-35 weight %, based on total weight of said composition, of said isothiazolone having a room temperature water solubility of 500 ppm or less wherein
Y is an unsubstituted or substituted C1-C18 alkyl group

or C3-C12 cycloalkyl group;
R is hydrogen or halogen;
R' is hydrogen or halogen; or
R and R' are taken together with the C=C bond of the 3-isothiazolone ring to form an unsubstituted or substituted benzene ring;

or said isothiazolone stabilized with said metal salt;

and (ii) 99-65 weight %, based on total weight of said composition, of silicaceous diatomaceous earth, high water absorption capacity calcium silicate granular material, and/or clay(s) as the solid carrier material.

6. An article according to claim 5 wherein said composition (b) comprises (i) about 2-25 weight %, based on total weight of said composition, of isothiazolone or said isothiazolone stabilized with Mg(NO3)2 or a mixture of Mg(NO3)2 and MgCl2; and (ii) 98-75 weight %, based on total weight of said composition, of silicaceous diatomaceous earth wherein either (i) Y is n-octyl or t-octyl, R is hydrogen, R' is hydrogen or (ii) Y is cyclohexyl, R is chlorine and R' is chlorine; or (iii) Y is n-octyl or t-octyl, R is chlorine and R' is chlorine.
7. An article according to any preceding claim wherein said composition also comprises isothiazolone having a room temperature water solubility of greater than 1000 ppm especially, one or both of those wherein Y is methyl, and R is hydrogen and R' is hydrogen or chlorine, with the proviso that the combination of isothiazolones has a room temperature water solubility less than 1000 ppm and the total isothiazolone comprises 2-25% by weight of the composition.

8. A method for controlling living microorganisms in an aqueous system which comprises incorporating into the aqueous system an article of any preceding claim especially claim 4 or 6 containing sufficient composition to provide in the aqueous system a microbiocidally effective amount of said microbiocidal compound.

9. A method according to claim 8 wherein said aqueous system is or is contained in a metal-working fluid, swimming pool, water tower, toilet bowl or cistern or, washing machine.

10. A method for the controlled release of microbiocidal compound into an aqueous system consisting of the steps of (1) preparing an article as claimed in any of claims 1 to 7; (2) introducing said article into said aqueous system; (3) permitting said aqueous system to diffuse into said sealed membrane; and (4) permitting said microbiocidal isothiazolone to dissolve and to diffuse through said sealed membrane and be released into said aqueous system; the rate of release and the concentration of microbiocidal isothiazolone into the aqueous system being controlled by the selection of said isothiazolone having a lower or higher water solubility up to 1000 ppm, the amount of said isothiazolone dissolved in said aqueous system remaining at the saturation level until isothiazolone in the composition is depleted.
11. A microbiocidal article substantially as hereinbefore described with reference to the Examples.

12. The steps, features, compositions and compounds referred to or indicated in the specification and/or claims of this application, individually or collectively, and any and all combinations of any two or more of said steps or features.

Dated this 23 day of September 1983.

DAVIES & COLLISON
PATENT ATTORNEYS FOR
ROHM AND HAAS COMPANY.
mixture of Mg(NO₃)₂ and MgCl₂; and (ii) about 98-75 weight %, based on total weight of said composition, of siliceous diatomaceous earth.