Catalyst modifier and its use in the polymerization of olefin(s)

International Patent Classification(s)
C08F 010/00

Application No: 200019257
Application Date: 1999.11.29

WIPO No: WO00/35967

Priority Data

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/215432</td>
<td>1998.12.17</td>
<td>US</td>
</tr>
<tr>
<td>09/392421</td>
<td>1999.09.09</td>
<td>US</td>
</tr>
<tr>
<td>09/392417</td>
<td>1999.09.09</td>
<td>US</td>
</tr>
</tbody>
</table>

Publication Date: 2000.07.03
Publication Journal Date: 2000.08.31
Accepted Journal Date: 2003.05.15

Applicant(s)
Univation Technologies, LLC

Inventor(s)
Timothy T. Wenzel; David James Schreck; Thomas H. Peterson

Agent/Attorney
WATERMARK PATENT and TRADEMARK ATTORNEYS, Locked Bag 5, HAWTHORN VIC 3122

Related Art
EP 630910
WO 98/20045
The present invention relates to the use of at least one solid compound that when used with a polymerization catalyst in a polymerization process results in a phase change of the solid compound to a liquid that renders the polymerization catalyst substantially or completely inactive.
CATALYST MODIFIER AND ITS USE
IN THE POLYMERIZATION OF OLEFIN(S)

FIELD OF THE INVENTION
The present invention relates to a method for improving operability in a process for polymerizing olefin(s). In particular, the invention is directed to a method for controlling the kinetics of an olefin polymerization catalyst.

BACKGROUND OF THE INVENTION
Advances in polymerization and catalysis have resulted in the capability to produce many new polymers having improved physical and chemical properties useful in a wide variety of superior products and applications. With the development of new catalysts the choice of polymerization-type (solution, slurry, high pressure or gas phase) for producing a particular polymer has been greatly expanded. Also, advances in polymerization technology have provided more efficient, highly productive and economically enhanced processes.

Especially illustrative of these advances is the development of technology utilizing bulky ligand metallocene-type catalyst systems. Regardless of these technological advances in the polyolefin industry, common problems, as well as new challenges associated with process operability still exist. For instance, the tendency for a gas phase or slurry phase process to foul and/or sheet remains a challenge using any olefin polymerization catalyst.

For example, in a continuous slurry process fouling on the walls of the reactor, which act as a heat transfer surface, can result in many operability problems. Poor heat transfer during polymerization can result in polymer particles adhering to the walls of the reactor. These polymer particles can continue to polymerize on the walls and can result in a premature reactor shutdown. Also, depending on the reactor conditions, some of the polymer may dissolve in the reactor diluent and redeposit on for example the metal heat exchanger surfaces.

In a typical continuous gas phase process, a recycle system is employed for many reasons including the removal of heat generated in the process by the polymerization. Fouling, sheeting and/or static generation in a continuous gas phase process can lead to the ineffective operation of various reactor systems.

For example, the cooling mechanism of the recycle system, the temperature
Evidence of, and solutions to, various process operability problems have been addressed by many in the art. For example, U.S. Patent Nos. 4,792,592, 4,803,251, 4,855,370 and 5,391,657 all discuss techniques for reducing static generation in a polymerization process by introducing to the process for example, water, alcohols, ketones, and/or inorganic chemical additives; European Patent EP 0 634 421 B1 discusses introducing directly into the polymerization process water, alcohol and ketones to reduce fouling. A PCT publication WO 97/14721 published April 24, 1997 discusses the suppression of fines that can cause sheeting by adding an inert hydrocarbon to the reactor; U.S. Patent No. 5,627,243 discusses a new type of distributor plate for use in fluidized bed gas phase reactors; PCT publication WO 96/08520 discusses avoiding the introduction of a scavenger into the reactor; U.S. Patent No. 5,461,123 discusses using sound waves to reduce sheeting; U.S. Patent No. 5,066,736 and EP-A1 0 549 252 discuss the introduction of an activity retarder to the reactor to reduce agglomerates; U.S. Patent No. 5,610,244 relates to feeding make-up monomer directly into the reactor above the bed to avoid fouling and improve polymer quality; U.S. Patent No. 5,126,414 discusses including an oligomer removal system for reducing distributor plate fouling and providing for polymers free of gels; EP-A1 0 453 116 published October 23, 1991 discusses the introduction of antistatic agents to the reactor for reducing the amount of sheets and agglomerates; U.S. Patent No. 4,012,574 discusses adding a surface-active compound, a perfluorocarbon group, to the reactor to reduce fouling; U.S. Patent 5,026,795 discusses the addition of an antistatic agent with a liquid carrier to the polymerization zone in the reactor; U.S. Patent No. 5,410,002 discusses using a conventional Ziegler-Natta titanium/magnesium supported catalyst system where a selection of antistatic agents are added directly to the reactor to reduce fouling; U.S. Patent Nos. 5,034,480 and 5,034,481 discuss a reaction product of a conventional Ziegler-Natta titanium catalyst with an antistat to produce ultrahigh molecular weight ethylene polymers; U.S. Patent No. 3,082,198 discusses introducing an amount of a carboxylic acid dependent on the quantity of water in a process for polymerizing ethylene using a titanium/aluminum organometallic catalysts in a hydrocarbon liquid medium; and U.S. Patent No. 3,919,185 describes a slurry process using a nonpolar hydrocarbon diluent using a conventional Ziegler-
Natta-type or Phillips-type catalyst and a polyvalent metal salt of an organic acid.

There are various other known methods for improving operability including coating the polymerization equipment, for example, treating the walls of a reactor using chromium compounds as described in U.S. Patent Nos. 4,532,311 and 4,876,320; injecting various agents into the process, for example PCT Publication WO 97/46599 published December 11, 1997 discusses feeding into a lean zone in a polymerization reactor an unsupported, soluble metallocene-type catalyst system and injecting antifoulants or antistatic agents into the reactor; controlling the polymerization rate, particularly on start-up; and reconfiguring the reactor design.

Others in the art to improve process operability have discussed modifying the catalyst system by preparing the catalyst system in different ways. For example, methods in the art include combining the catalyst system components in a particular order; manipulating the ratio of the various catalyst system components; varying the contact time and/or temperature when combining the components of a catalyst system; or simply adding various compounds to the catalyst system. These techniques or combinations thereof are discussed in the literature. Especially illustrative in the art is the preparation procedures and methods for producing bulky ligand metallocene-type catalyst systems, more particularly supported bulky ligand metallocene-type catalyst systems with reduced tendencies for fouling and better operability. Examples of these include: WO 96/11961 published April 26, 1996 discusses as a component of a supported catalyst system an antistatic agent for reducing fouling and sheeting in a gas, slurry or liquid pool polymerization process; U.S. Patent No. 5,283,218 is directed towards the prepolymerization of a metallocene catalyst; U.S. Patent No. 5,332,706 and 5,473,028 have resorted to a particular technique for forming a catalyst by incipient impregnation; U.S. Patent Nos. 5,427,991 and 5,643,847 describe the chemical bonding of non-coordinating anionic activators to supports; U.S. Patent No. 5,492,975 discusses polymer bound metallocene-type catalyst systems; U.S Patent No. 5,661,095 discusses supporting a metallocene-type catalyst on a copolymer of an olefin and an unsaturated silane; PCT publication WO 97/06186 published February 20, 1997 teaches removing inorganic and organic impurities after formation of the metallocene-type catalyst itself; PCT publication WO 97/15602 published May 1, 1997...
discusses readily supportable metal complexes; PCT publication WO 97/27224 published July 31, 1997 relates to forming a supported transition metal compound in the presence of an unsaturated organic compound having at least one terminal double bond; and EP-A2-811 638 discusses using a metallocene catalyst and an activating cocatalyst in a polymerization process in the presence of a nitrogen containing antistatic agent.

U.S. Patent Nos. 4,942,147 and 5,362,823 discuss the addition of autoacceleration inhibitors to prevent sheeting.

PCT publication WO 98/20045 published May 14, 1998, discusses a method for inhibiting polymer build-up in the presence of an unsupported liquid polymerization catalyst system which includes introducing an anti-fouling agent, preferably 1,2- dimethoxybenzene or propylene glycol, into the system.

EP-A1 0 630 910 discusses the use of Lewis bases to control the activity of an olefin polymerization reaction with such activity reduction or termination being reversed upon the introduction of additional co-catalyst into the system.

While all these possible solutions might reduce the level of fouling or sheeting somewhat, some are expensive to employ and/or may not reduce fouling and sheeting to a level sufficient to successfully operate a continuous process, particularly a commercial or large-scale process.

Thus, it would be advantageous to have a polymerization process capable of operating continuously with enhanced reactor operability and at the same time produce new and improved polymers. It would also be highly beneficial to have a continuously operating polymerization process having more stable catalyst productivities, reduced fouling/sheeting tendencies and increased duration of operation.

SUMMARY OF THE INVENTION

This invention provides a method of making a new and improved catalyst composition, the catalyst composition itself and its use in a polymerizing process. Also, the invention is directed to the use of a substantially solid, preferably a solid compound, that in the presence of a polymerization catalyst at a specified temperature during a polymerization process undergoes a phase change where the solid compound becomes a liquid or gas, preferably a liquid, and the liquid or the gas renders the polymerization catalyst substantially inactive, preferably inactive, to the polymerization of
olefin(s). The preferred compound is a polar compound having a low volatility, preferably an acid compound, specifically Bronsted acids.

The method comprises the step of combining, contacting, blending and/or mixing any catalyst system, preferably a supported catalyst system, with a compound, preferably with an acid compound such that at a specified temperature the compound, preferably the acid compound, changes its physical state from a solid state to a liquid state, wherein the liquid state deactivates the catalyst system. In the most preferred embodiment, the acid compound changes to a liquid state at a temperature above the polymerization temperature.
or reactor temperature. In one embodiment, the catalyst system comprises a conventional-type transition metal catalyst compound. In the most preferred embodiment the catalyst system comprises a bulky ligand metallocene-type catalyst compound. The combination or use of an olefin polymerization catalyst and the compound, preferably the acid compound, is useful in any olefin polymerization process. The preferred polymerization processes are a gas phase or a slurry phase process, most preferably a gas phase process.

In another preferred embodiment, the invention provides for a process for polymerizing olefin(s) in the presence of a polymerization catalyst, and a compound, preferably an acid compound, in a reactor at an operating temperature, wherein the compound, preferably the acid compound, changes from a solid compound to a liquid compound at a temperature above the operating temperature reducing the effectiveness of the polymerization catalyst to polymerize olefin(s). In the most preferred embodiment, the liquid compound renders the polymerization catalyst inactive.

In yet another preferred embodiment, the invention is directed to a process for polymerizing olefin(s) in the presence of a polymerization catalyst in a reactor under polymerization conditions, the process comprising the step of introducing a solid compound, preferably a solid acid compound; wherein the solid compound, preferably the solid acid compound, becomes substantially a liquid, preferably a liquid acid compound that reduces the effectiveness of the polymerization catalyst to polymerize olefin(s).

DETAILED DESCRIPTION OF THE INVENTION

Introduction

The invention is directed toward a method for making a catalyst composition and to the catalyst composition itself. The invention also relates to a polymerization process having improved operability using the catalyst composition. While not being bound to any particular theory, it is believed that one possible cause for reduced operability, especially sheeting and/or fouling, is the result of a catalyst's tendency to continue to polymerize well after its initial activation. It has been suprisingly discovered that using a solid compound, preferably a solid acid compound, that undergoes a phase change to a substantially a liquid state, preferably a liquid state, that in combination with a polymerization catalyst results in the ability to control the catalyst's tendency for continuing to effectively polymerize olefin(s). It has also been discovered that the phase change is controllable by the choice of the compound
used. In the most preferred embodiment, the temperature at which the phase change occurs is controlled by changing the acid compound. Thus, the present invention provides for a catalyst composition including a polymerization catalyst and a solid acid or solid polar compound, wherein the solid acid or solid polar compound undergoes a phase change, at a specified temperature above a polymerization temperature, that deactivates the polymerization catalyst. The present invention is useful in all types of polymerization processes, especially a slurry or gas phase process.

CATALYST COMPONENTS AND CATALYST SYSTEMS

All polymerization catalysts including conventional-type transition metal catalysts and bulky ligand metallocene-type catalysts are suitable for use in the polymerizing process of the invention. The following is a non-limiting discussion of the various polymerization catalysts useful in the invention.

CONVENTIONAL-TYPE TRANSITION METAL CATALYSTS

Conventional-type transition metal catalysts are those traditional Ziegler-Natta catalysts and Phillips-type catalysts well known in the art. Examples of conventional-type transition metal catalysts are discussed in U.S. Patent Nos. 4,115,639, 4,077,904, 4,482,687, 4,564,605, 4,721,763, 4,879,359 and 4,960,741 all of which are herein fully incorporated by reference. The conventional-type transition metal catalyst compounds that may be used in the present invention include transition metal compounds from Groups 3 to 17, preferably 4 to 12, more preferably 4 to 6 of the Periodic Table of Elements.

These conventional-type transition metal catalysts may be represented by the formula: MRx, where M is a metal from Groups 3 to 17, preferably Group 4 to 6, more preferably Group 4, most preferably titanium; R is a halogen or a hydrocarbyloxy group; and x is the valence of the metal M. Non-limiting examples of R include alkoxy, phenoxy, bromide, chloride and fluoride. Non-limiting examples of conventional-type transition metal catalysts where M is titanium include TiCl4, TiBr4, Ti(OC2H5)3Cl, Ti(OC2H5)Cl3, Ti(OC4H9)3Cl, Ti(OC3H7)2Cl2, Ti(OC2H5)2Br2, TiCl3·1/3AlCl3 and Ti(OC12H25)Cl3.
Conventional-type transition metal catalyst compounds based on magnesium/titanium electron-donor complexes that are useful in the invention are described in, for example, U.S. Patent Nos. 4,302,565 and 4,302,566, which are herein fully incorporate by reference. The MgTiCl₆(ethyl acetate)₄ derivative is particularly preferred.

British Patent Application 2,105,355 and U.S. Patent No. 5,317,036, herein incorporated by reference, describes various conventional-type vanadium catalyst compounds. Non-limiting examples of conventional-type vanadium catalyst compounds include vanadyl trihalide, alkoxy halides and
alkoxides such as VOCl₃, VOCl₄(OBu) where Bu = butyl and VO(OCH₃)₄;
vanadium tetra-halide and vanadium alkoxy halides such as VCl₄ and
VCl₄(OBu); vanadium and vanadyl acetyl acetones and chloroacetyl
acetones such as V(AcAc)₃ and VOCl₅(AcAc) where (AcAc) is an acetyl
acetone. The preferred conventional-type vanadium catalyst compounds are
VOCl₃, VCl₄ and VOCl₂-OR where R is a hydrocarbon radical, preferably a C₁
to C₁₀ aliphatic or aromatic hydrocarbon radical such as ethyl, phenyl,
isopropyl, butyl, propyl, n-butyl, iso-butyl, tertiary-butyl, hexyl, cyclohexyl,
naphthyl, etc., and vanadium acetyl acetones.

Conventional-type chromium catalyst compounds, often referred to as
Phillips-type catalysts, suitable for use in the present invention include CrO₃,
chromocene, silyl chromate, chromyl chloride (CrO₂Cl₂), chromium-2-ethyl-
hexanoate, chromium acetylacetone (Cr(AcAc)₃), and the like. Non-limiting
examples are disclosed in U.S. Patent Nos. 3,709,853, 3,709,954, 3,231,550,
3,242,099 and 4,077,904, which are herein fully incorporated by reference.

Still other conventional-type transition metal catalyst compounds and
catalyst systems suitable for use in the present invention are disclosed in U.S.
Patent Nos. 4,124,532, 4,302,565, 4,302,566, 4,376,062, 4,379,758, 5,066,737,
5,763,723, 5,849,655, 5,852,144, 5,854,164 and 5,869,585 and published EP-
A2 0 416 815 A2 and EP-A1 0 420 436, which are all herein incorporated by
reference.

Other catalysts may include cationic catalysts such as AlCl₃, and other
cobalt, iron, nickel and palladium catalysts well known in the art. See for
example U.S. Patent Nos. 3,487,112, 4,472,559, 4,182,814 and 4,689,437 all
of which are incorporated herein by reference.

Typically, these conventional-type transition metal catalyst compounds
excluding some conventional-type chromium catalyst compounds are activated
with one or more of the conventional-type cocatalysts described below.

Conventional-Type Cocatalysts

Conventional-type cocatalyst compounds for the above conventional-
type transition metal catalyst compounds may be represented by the formula
\[M^3 M^4 X^2 R^3 \text{ I}_{bc} \], wherein M³ is a metal from Group 1 to 3 and 12 to 13 of the
Periodic Table of Elements; M⁴ is a metal of Group 1 of the Periodic Table of
Elements; ν is a number from 0 to 1; each X² is any halogen; c is a number
from 0 to 3; each R¹ is a monovalent hydrocarbon radical or hydrogen; b is a
number from 1 to 4; and wherein b minus c is at least 1. Other conventional-
type organometallic cocatalyst compounds for the above conventional-type transition metal catalysts have the formula \(\text{M}^3\text{R}^3_k \), where \(\text{M}^3 \) is a Group I, IIA, IIB or IIIA metal, such as lithium, sodium, beryllium, barium, boron, aluminum, zinc, cadmium, and gallium; \(k \) equals 1, 2 or 3 depending upon the valency of \(\text{M}^3 \) which valency in turn normally depends upon the particular Group to which \(\text{M}^3 \) belongs; and each \(\text{R}^3 \) may be any monovalent radical that include hydrocarbon radicals and hydrocarbon radicals containing a Group 13 to 16 element like fluoride, aluminum or oxygen or a combination thereof.

Non-limiting examples of conventional-type organometallic cocatalyst compounds useful with the conventional-type catalyst compounds described above include methyllithium, butyllithium, dihexylmercury, butylmagnesium, diethylcadmium, benzylpotassium, diethylzinc, tri-n-butylaluminum, diisobutyl ethylboron, diethylcadmium, di-n-butylzinc and tri-n-amyloboron, and, in particular, the aluminum alkyls, such as tri-hexyl-aluminum, triethylaluminum, trimethylaluminum, and tri-isobutylaluminum. Other conventional-type cocatalyst compounds include mono-organo-halides and hydrides of Group 2 metals, and mono- or di-organo-halides and hydrides of Group 3 and 13 metals. Non-limiting examples of such conventional-type cocatalyst compounds include di-isobutylaluminum bromide, isobutylboron dichloride, methyl magnesium chloride, ethylberyllium chloride, ethylcalcium bromide, di-isobutylaluminum hydride, methylcadmium hydride, diethylboron hydride, hexylberyllium hydride, dipropylboron hydride, octylmagnesium hydride, butylzinc hydride, dichloroboron hydride, di-bromo-aluminum hydride and bromocadmium hydride. Conventional-type organometallic cocatalyst compounds are known to those in the art and a more complete discussion of these compounds may be found in U.S. Patent Nos. 3,221,002 and 5,093,415, which are herein fully incorporated by reference.

Bulky Ligand Metallocene-Type Catalyst Compounds

Generally, bulky ligand metallocene-type catalyst compounds include half and full sandwich compounds having one or more bulky ligands bonded to at least one metal atom. Typical bulky ligand metallocene-type compounds are generally described as containing one or more bulky ligand(s) and one or more leaving group(s) bonded to at least one metal atom. In one preferred embodiment, at least one bulky ligands is \(\eta^3 \)-bonded to the metal atom, most preferably \(\eta^3 \)-bonded to the metal atom.
The bulky ligands are generally represented by one or more open, acyclic, or fused ring(s) or ring system(s) or a combination thereof. These bulky ligands, preferably the ring(s) or ring system(s), are typically composed of atoms selected from Groups 13 to 16 atoms of the Periodic Table of Elements, preferably the atoms are selected from the group consisting of carbon, nitrogen, oxygen, silicon, sulfur, phosphorous, germanium, boron and aluminum or a combination thereof. Most preferably the ring(s) or ring system(s) are composed of carbon atoms such as but not limited to those cyclopentadienyl ligands or cyclopentadienyl-type ligand structures or other similar functioning ligand structure such as a pentadiene, a cyclooctatetraendiyl or an imide ligand. The metal atom is preferably selected from Groups 3 through 15 and the lanthanide or actinide series of the Periodic Table of Elements. Preferably the metal is a transition metal from Groups 4 through 12, more preferably Groups 4, 5 and 6, and most preferably the transition metal is from Group 4.

In one embodiment, the bulky ligand metallocene-type catalyst compounds of the invention are represented by the formula:

\[\text{L}^\text{a}\text{L}^\text{b}\text{MQ}_n \]
(I)

where M is a metal atom from the Periodic Table of the Elements and may be a Group 3 to 12 metal or from the lanthanide or actinide series of the Periodic Table of Elements, preferably M is a Group 4, 5 or 6 transition metal, more preferably M is a Group 4 transition metal, even more preferably M is zirconium, hafnium or titanium. The bulky ligands, \(\text{L}^\text{a} \) and \(\text{L}^\text{b} \), are open, acyclic or fused ring(s) or ring system(s) such as unsubstituted or substituted, cyclopentadienyl ligands or cyclopentadienyl-type ligands, heteroatom substituted and/or heteroatom containing cyclopentadienyl-type ligands. Non-limiting examples of bulky ligands include cyclopentadienyl ligands, cyclooctatetraendiyl ligands, indenyl ligands, benzindenyl ligands, fluorenyl ligands, octahydrofluorenyl ligands, cyclooctatetraendiyl ligands, azulenyl ligands, azulene ligands, pentalene ligands, phosphanyl ligands, pyrrolyl ligands, pyrozolyl ligands, carbazolyl ligands, borabenzen ligands and the like, including hydrogenated versions thereof, for example tetrahydroindenyl ligands. In one embodiment, \(\text{L}^\text{a} \) and \(\text{L}^\text{b} \) may be any other ligand structure capable of \(\eta \)-bonding to M, preferably \(\eta^1 \)-bonding to M and most preferably \(\eta \)
In yet another embodiment, the atomic molecular weight (MW) of L^A or L^B exceeds 60 a.m.u., preferably greater than 65 a.m.u. In another embodiment, L^A and L^B may comprise one or more heteroatoms, for example, nitrogen, silicon, boron, germanium, sulfur, oxygen and phosphorous, in combination with carbon atoms to form an open, acyclic, or preferably a fused, ring or ring system, for example, a hetero-cyclopentadienyl ancillary ligand. Other L^A and L^B bulky ligands include but are not limited to bulky amides, phosphides, alkoxides, aryloxides, imides, carbolides, borollides, porphyrins, phthalocyanines, corrins and other polyazomacrocycles. Independently, each L^A and L^B may be the same or different type of bulky ligand that is bonded to M. In one embodiment of formula (I) only one of either L^A or L^B is present. Independently, each L^A and L^B may be unsubstituted or substituted with a combination of substituent groups R. Non-limiting examples of substituent groups R include one or more from the group selected from hydrogen, or linear, branched alkyl radicals, or alkenyl radicals, alkynyl radicals, cycloalkyl radicals or aryl radicals, acyl radicals, aroyl radicals, alkoxy radicals, aryloxy radicals, alkylthio radicals, dialkylamino radicals, alkoxy carbonyl radicals, aryl oxycarbonyl radicals, carbomoyl radicals, alkyl or dialkyl carbamoyl radicals, acyloxy radicals, acylamino radicals, aroylamino radicals, straight, branched or cyclic, alkylene radicals, or combination thereof. In a preferred embodiment, substituent groups R have up to 50 non-hydrogen atoms, preferably from 1 to 30 carbon, that can also be substituted with halogens or heteroatoms or the like. Non-limiting examples of alkyl substituents R include methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, benzyl or phenyl groups and the like, including all their isomers, for example tertiary butyl, isopropyl, and the like. Other hydrocarbyl radicals include fluoromethyl, fluoroethyl, difluoroethyl, iodopropyl, bromohexyl, chlorobenzyl and hydrocarbyl substituted organometalloid radicals including trimethylsilyl, trimethylgermyl, methyl diethylsilyl and the like; and halocarbyl-substituted organometalloid radicals including tris(trifluoromethyl)-silyl, methyl-bis(difluoromethyl)silyl, bromomethyl dimethylgermyl and the like; and disubstituted boron radicals including dimethyl/boron for example; and disubstituted pnictogen radicals including dimethylamine, dimethylphosphine, diphenylamine, methyl phenylphosphine, chalcogen radicals including methoxy, ethoxy, propoxy, phenoxy, methylsulfide and ethylsulfide. Non-hydrogen substituents
R include the atoms carbon, silicon, boron, aluminum, nitrogen, phosphorous, oxygen, tin, sulfur, germanium and the like, including olefins such as but not limited to olefinically unsaturated substituents including vinyl-terminated ligands, for example but-3-enyl, prop-2-enyl, hex-5-enyl and the like. Also, at least two R groups, preferably two adjacent R groups, are joined to form a ring structure having from 3 to 30 atoms selected from carbon, nitrogen, oxygen, phosphorous, silicon, germanium, aluminum, boron or a combination thereof. Also, a substituent group R group such as 1-butanyl may form a carbon sigma bond to the metal M.

Other ligands may be bonded to the metal M, such as at least one leaving group Q. For the purposes of this patent specification and appended claims the term “leaving group” is any ligand that can be abstracted from a bulky ligand metallocene-type catalyst compound to form a bulky ligand metallocene-type catalyst cation capable of polymerizing one or more olefin(s). In one embodiment, Q is a monoanionic labile ligand having a sigma-bond to M.

Non-limiting examples of Q ligands include weak bases such as amines, phosphines, ethers, carboxylates, dienes, hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides or halogens and the like or a combination thereof. In another embodiment, two or more Q’s form a part of a fused ring or ring system. Other examples of Q ligands include those substituents for R as described above and including cyclobutyl, cyclohexyl, heptyl, tolyl, trifluoromethyl, tetramethylene, pentamethylene, methylidene, methyloxy, ethyloxy, propoxy, phenoxy, bis(N-methylanilide), dimethylamide, dimethylphosphide radicals and the like. Depending on the oxidation state of the metal, the value for n is 0, 1 or 2 such that formula above represents a neutral bulky ligand metallocene-type catalyst compound.

In one embodiment, the bulky ligand metallocene-type catalyst compounds of the invention include those of formula (I) where L^A and L^B are bridged to each other by a bridging group, A, such that the formula is represented by

$$L^AAL^BMQ_n \quad (II)$$

These bridged compounds represented by formula (II) are known as bridged, bulky ligand metallocene-type catalyst compounds. L^A, L^B, M, Q and
n are as defined above. Non-limiting examples of bridging group A include bridging groups containing at least one Group 13 to 16 atom, often referred to as a divalent moiety such as but not limited to at least one of a carbon, oxygen, nitrogen, silicon, boron, germanium and tin atom or a combination thereof.

Preferably bridging group A contains a carbon, silicon or germanium atom, most preferably A contains at least one silicon atom or at least one carbon atom. The bridging group A may also contain substituent groups R as defined above including halogens. Non-limiting examples of bridging group A may be represented by \(R'_1 C, R'_2 Si, R'_3 Si R'_2 Si, R'_4 Ge, R'_5 P \), where \(R' \) is independently, a radical group which is hydride, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, hydrocarbyl-substituted organometalloid, halocarbyl-substituted organometalloid, disubstituted boron, disubstituted pnictogen, substituted chalcogen, or halogen or two or more \(R' \) may be joined to form a ring or ring system.

In one embodiment, the bulky ligand metallocene-type catalyst compounds are those where the \(R \) substituents on the bulky ligands \(L^A \) and \(L^B \) of formulas (I) and (II) are substituted with the same or different number of substituents on each of the bulky ligands. In another embodiment, the bulky ligands \(L^A \) and \(L^B \) of formulas (I) and (II) are different from each other.

In one embodiment, bulky ligand metallocene-type catalysts compounds useful in the invention include bridged heteroatom, mono-bulky ligand metallocene-type compounds. These types of catalysts and catalyst systems are described in, for example, PCT publication WO 92/00333, WO 94/07928, WO 91/ 04257, WO 94/03506, WO 96/00244 and WO 97/15602 and U.S. Patent Nos. 5,057,475, 5,096,867, 5,055,438, 5,198,401,
5,227,440 and 5,264,405 and European publication EP-A-0 420 436, all of which are herein fully incorporated by reference.

In this embodiment, the bulky ligand metallocene-type catalyst compound is represented by the formula:

\[
L^C_{\text{AJMQ}} \quad \text{(III)}
\]

where \(M \) is a Group 3 to 16 metal atom or a metal selected from the Group of actinides and lanthanides of the Periodic Table of Elements, preferably \(M \) is a Group 4 to 12 transition metal, and more preferably \(M \) is a Group 4, 5 or 6 transition metal, and most preferably \(M \) is a Group 4 transition metal in any oxidation state, especially titanium; \(L^C \) is a substituted or unsubstituted bulky ligand bonded to \(M \); \(J \) is bonded to \(M \); \(A \) is bonded to \(L^C \) and \(J \); \(I \) is a heteroatom ancillary ligand; and \(A \) is a bridging group; \(Q \) is a univalent anionic ligand; and \(n \) is the integer 0,1 or 2. In formula (III) above, \(L^C, A \) and \(J \) form a fused ring system. In an embodiment, \(L^C \) of formula (III) is as defined above for \(L^A \), \(A, M \) and \(Q \) of formula (III) are as defined above in formula (I). In formula (III) \(J \) is a heteroatom containing ligand in which \(J \) is an element with a coordination number of three from Group 15 or an element with a coordination number of two from Group 16 of the Periodic Table of Elements. Preferably \(J \) contains a nitrogen, phosphorus, oxygen or sulfur atom with nitrogen being most preferred.

In another embodiment, the bulky ligand type metallocene-type catalyst compound is a complex of a metal, preferably a transition metal, a bulky ligand, preferably a substituted or unsubstituted pi-bonded ligand, and one or more heteroallyl moieties, such as those described in U.S. Patent Nos. 5,527,752 and 5,747,406 and EP-B1-0 735 057, all of which are herein fully incorporated by reference.

In an embodiment, the bulky ligand metallocene-type catalyst compound is represented by the formula:

\[
L^D_{\text{MQ(ZY)X}} \quad \text{(IV)}
\]

where \(M \) is a Group 3 to 16 metal, preferably a Group 4 to 12 transition metal, and most preferably a Group 4, 5 or 6 transition metal; \(L^D \) is a bulky ligand that is bonded to \(M \); each \(Q \) is independently bonded to \(M \).
and Qₙ(YZ) forms a unicharged polydentate ligand; A or Q is a univalent anionic ligand also bonded to M; X is a univalent anionic group when n is 2 or X is a divalent anionic group when n is 1; n is 1 or 2.

In formula (IV), L and M are as defined above for formula (I). Q is as defined above for formula (I), preferably Q is selected from the group consisting of -O-, -NR-, -CR₂- and -S-; Y is either C or S; Z is selected from the group consisting of -OR, -NR₂, -CR₃, -SR, -SiR₃, -PR₂, -H, and substituted or unsubstituted aryl groups, with the proviso that when Q is -NR- then Z is selected from one of the group consisting of -OR, -NR₂, -SR, -SiR₃, -PR₂ and -H; R is selected from a group containing carbon, silicon, nitrogen, oxygen, and/or phosphorus, preferably where R is a hydrocarbon group containing from 1 to 20 carbon atoms, most preferably an alkyl, cycloalkyl, or an aryl group; n is an integer from 1 to 4, preferably 1 or 2; X is a univalent anionic group when n is 2 or X is a divalent anionic group when n is 1; preferably X is a carbamate, carboxylate, or other heteroallyl moiety described by the Q, Y and Z combination.

In another embodiment of the invention, the bulky ligand metallocene-type catalyst compounds are heterocyclic ligand complexes where the bulky ligands, the ring(s) or ring system(s), include one or more heteroatoms or a combination thereof. Non-limiting examples of heteroatoms include a Group 13 to 16 element, preferably nitrogen, boron, sulfur, oxygen, aluminum, silicon, phosphorous and tin. Examples of these bulky ligand metallocene-type catalyst compounds are described in WO 96/33202, WO 96/34021, WO 97/17379 and WO 98/22486 and EP-A1-0 874 005 and U.S. Patent No. 5,637,660, 5,539,124, 5,554,775, 5,756,611, 5,233,049, 5,744,417, and 5,856,258 all of which are herein incorporated by reference.

In another embodiment, the bulky ligand metallocene-type catalyst compounds are those complexes known as transition metal catalysts based on bidentate ligands containing pyridine or quinoline moieties, such as those described in U.S. Application Serial No. 09/103,620 filed June 23, 1998, which is herein incorporated by reference. In another embodiment, the bulky ligand metallocene-type catalyst compounds are those described
In PCT publications WO 99/01481 and WO 98/42664, which are fully incorporated herein by reference.

In one embodiment, the bulky ligand metallocene-type catalyst compound is represented by the formula:

\[((Z)X_{A}(YJ))_{Q}MQ_{n} \]

where \(M \) is a metal selected from Group 3 to 13 or lanthanide and actinide series of the Periodic Table of Elements; \(Q \) is bonded to \(M \) and each \(Q \) is a monovalent, bivalent, or trivalent anion; \(X \) and \(Y \) are bonded to \(M \); one or more of \(X \) and \(Y \) are heteroatoms, preferably both \(X \) and \(Y \) are heteroatoms; \(Y \) is contained in a heterocyclic ring \(J \), where \(J \) comprises from 2 to 50 non-hydrogen atoms, preferably 2 to 30 carbon atoms; \(Z \) is bonded to \(X \), where \(Z \) comprises 1 to 50 non-hydrogen atoms, preferably 1 to 50 carbon atoms, preferably \(Z \) is a cyclic group containing 3 to 50 atoms, preferably 3 to 30 carbon atoms; \(t \) is 0 or 1; when \(t \) is 1, \(A \) is a bridging group joined to at least one of \(X, Y \) or \(J \), preferably \(X \) and \(J \); \(q \) is 1 or 2; \(n \) is an integer from 1 to 4 depending on the oxidation state of \(M \). In one embodiment, where \(X \) is oxygen or sulfur then \(Z \) is optional. In another embodiment, where \(X \) is nitrogen or phosphorous then \(Z \) is present. In an embodiment, \(Z \) is preferably an aryl group, more preferably a substituted aryl group.

Other Bulky Ligand Metallocene-Type Catalyst Compounds

It is within the scope of this invention, in one embodiment, that the bulky ligand metallocene-type catalyst compounds include complexes of \(\text{Ni}^{2+} \) and \(\text{Pd}^{2+} \) described in the articles Johnson, et al., "New Pd(II)- and Ni(II)- Based Catalysts for Polymerization of Ethylene and \(\alpha \)-Olefins", J. Am. Chem. Soc. 1995, 117, 6414-6415 and Johnson, et al., "Copolymerization of Ethylene and Propylene with Functionalized Vinyl Monomers by Palladium(II) Catalysts", J. Am. Chem. Soc., 1996, 118, 267-268, and WO 96/23010 published August 1, 1996, WO 99/02472, U.S. Patent Nos. 5,852,145, 5,866,663 and 5,880,241, which are all herein fully incorporated by reference. These complexes can be either dialkyl ether adducts, or alkylated reaction products of the described dihalide complexes that can be activated to a cationic state by the activators of this invention described below.
Also included as bulky ligand metallocene-type catalyst are those diimine based ligands of Group 8 to 10 metal compounds disclosed in PCT publications WO 96/23010 and WO 97/48735 and Gibson, et. al., Chem. Comm., pp. 849-850 (1998), all of which are herein incorporated by reference.

Other bulky ligand metallocene-type catalysts are those Group 5 and 6 metal imido complexes described in EP-A2-0 816 384 and U.S. Patent No. 5,851,945, which is incorporated herein by reference. In addition, bulky ligand metallocene-type catalysts include bridged bis(arylamido) Group 4 compounds described by D.H. McConville, et al., in Organometallics 1195, 14, 5478-5480, which is herein incorporated by reference. Other bulky ligand metallocene-type catalysts are described as bis(hydroxy aromatic nitrogen ligands) in U.S. Patent No. 5,852,146, which is incorporated herein by reference. Other metallocene-type catalysts containing one or more Group 15 atoms include those described in WO 98/46651, which is incorporated herein by reference.

It is also contemplated that in one embodiment, the bulky ligand metallocene-type catalysts of the invention described above include their structural or optical or enantiomeric isomers (meso and racemic isomers, for example see U.S. Patent No. 5,852,143, incorporated herein by reference) and mixtures thereof.

Activator and Activation Methods for the Bulky Ligand Metallocene-Type Catalyst Compounds

The above described bulky ligand metallocene-type catalyst compounds are typically activated in various ways to yield catalyst compounds having a vacant coordination site that will coordinate, insert, and polymerize olefin(s), an activated polymerization catalyst.

For the purposes of this patent specification and appended claims, the term "activator" is defined to be any compound or component or method which can activate any of the bulky ligand metallocene-type catalyst compounds of the invention as described above. Non-limiting activators, for example may include a Bronsted acid or a non-coordinating ionic activator or ionizing activator or any other compound including Bronsted bases, aluminum alkyls, conventional-type cocatalysts and combinations thereof that can convert a neutral bulky ligand metallocene-type catalyst compound to a catalytically active bulky ligand metallocene cation. It is within the scope of
this invention to use alumoxane or modified alumoxane as an activator, and/or to also use ionizing activators, neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron, a trisperfluorophenyl boron metalloid precursor or a trisperfluoronaphtyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983) or combination thereof, that would ionize the neutral bulky ligand metallocene-type catalyst compound.

In one embodiment, an activation method using ionizing ionic compounds not containing an active proton but capable of producing both a bulky ligand metallocene-type catalyst cation and a non-coordinating anion are also contemplated, and are described in EP-A- 0 426 637, EP-A- 0 573 403 and U.S. Patent No. 5,387,568, which are all herein incorporated by reference.

Organooaluminum compounds useful as activators include triethylaluminum, triisobutylaluminum, trimethylaluminum, tri-n-hexyl aluminum and the like.

Other activators include those described in PCT publication WO 98/07515 such as tris (2, 2', 2"-nonafluorobiphenyl) fluoroaluminate, which publication is fully incorporated herein by reference. Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, EP-B1 0 573 120,
PCT publications WO 94/07928 and WO 95/14044 and U.S. Patent Nos. 5,153,157 and 5,453,410 all of which are herein fully incorporated by reference. Other activators include aluminum/boron complexes as described in EP 608 830 B1, which is herein incorporated by reference. WO 98/09996 incorporated herein by reference describes activating bulky ligand metallocene-type catalyst compounds with perchlorates, periodates and iodates including their hydrates. WO 98/30602 and WO 98/30603 incorporated by reference describe the use of lithium (2,2'-bisphenyl-dtrimethylsilicate)*4THF as an activator for a bulky ligand metallocene-type catalyst compound. EP-B1-0 781 299 describes using a silylium salt in combination with a non-coordinating compatible anion. Also, methods of activation such as using radiation (see EP-B1-0 615 981 herein incorporated by reference), electrochemical oxidation, and the like are also contemplated as activating methods for the purposes of rendering the neutral bulky ligand metallocene-type catalyst compound or precursor to a bulky ligand metallocene-type cation capable of polymerizing olefins. Other activators or methods for activating a bulky ligand metallocene-type catalyst compound are described in for example, U.S. Patent Nos. 5,849,852, 5,859,653 and 5,869,723 and PCT WO 98/32775, which are herein incorporated by reference.

It is also within the scope of this invention that the above described bulky ligand metallocene-type catalyst compounds can be combined with one or more of the catalyst compounds represented by formulas (I) through (V) with one or more activators or activation methods described above.

It is further contemplated by the invention that other catalysts can be combined with the bulky ligand metallocene-type catalyst compounds of the invention. For example, see U.S. Patent Nos. 4,937,299, 4,935,474, 5,281,679, 5,359,015, 5,470,811, and 5,719,241 all of which are herein fully incorporated herein reference. It is also contemplated that any one of the bulky ligand metallocene-type catalyst compounds of the invention have at least one fluoride or fluorine containing leaving group as described in U.S. Application Serial No. 09/191,916 filed November 13, 1998.

In another embodiment of the invention one or more bulky ligand metallocene-type catalyst compounds or catalyst systems may be used in combination with one or more conventional-type catalyst compounds or catalyst systems. Non-limiting examples of mixed catalysts and catalyst systems are described in U.S. Patent Nos. 4,159,965, 4,325,837, 4,701,432,
The above described conventional-type transition metal catalyst compounds and catalyst systems and bulky ligand metallocene-type catalyst compounds and catalyst systems may be combined with one or more support materials or carriers using one of the support methods well known in the art or as described below. For example, in a most preferred embodiment, a bulky ligand metallocene-type catalyst compound or catalyst system is in a supported form, for example deposited on, contacted with, vapourized with, bonded to, or incorporated within, adsorbed or absorbed in, or on, a support or carrier.

The terms "support" or "carrier" are used interchangeably and are any support material, preferably a porous support material, more preferably an inorganic support or an organic support. Inorganic supports are preferred for example inorganic oxides and inorganic chlorides. Other carriers include resinous support materials such as polystyrene, functionalized or crosslinked organic supports, such as polystyrene divinyl benzene polyolefins or polymeric compounds, zeolites, clays, talc, or any other organic or inorganic support material and the like, or mixtures thereof. The most preferred carriers are inorganic oxides that include those Group 2, 3, 4, 5, 13 or 14 metal oxides. The preferred supports include silica, alumina, silica-alumina, magnesium chloride, and mixtures thereof.

Other useful supports include magnesia, titania, zirconia, montmorillonite (EP-B1 0 511 665) and the like. Also, combinations of these support materials may be used, for example, silica-chromium, silica-alumina, silica-titania and the like.

It is preferred that the carrier, most preferably an inorganic oxide, has a surface area in the range of from about 10 to about 700 m²/g, pore volume in the range of from about 0.1 to about 4.0 cc/g and average particle size in the range of from about 5 to about 500 µm. More preferably, the surface area of the carrier is in the range of from about 50 to about 500 m²/g, pore volume of from about 0.5 to about 3.5 cc/g and average particle size of from about 10 to about 200 µm. Most preferably the surface area of the carrier is in the range is from about 100 to about 400 m²/g, pore volume from about 0.8 to about 3.0 cc/g and average particle size is from about 5 to about 100 µm. The average
The pore size of the carrier of the invention typically has pore size in the range of from 10 to 1000Å, preferably 50 to about 500Å, and most preferably 75 to about 350Å.

There are various other methods in the art for supporting a polymerization catalyst compound or catalyst system of the invention. For example, the bulky ligand metallocene-type catalyst compound of the invention may contain a polymer bound ligand as described in U.S. Patent Nos. 5,473,202 and 5,770,755, which is herein fully incorporated by reference; the bulky ligand metallocene-type catalyst system of the invention may be spray dried as described in U.S. Patent No. 5,648,310, which is herein fully incorporated by reference; the support used with the bulky ligand metallocene-type catalyst system of the invention is functionalized as described in European publication EP-A-0 802 203, which is herein fully incorporated by reference, or at least one substituent or leaving group is selected as described in U.S. Patent No. 5,688,880, which is herein fully incorporated by reference.

In a preferred embodiment, the invention provides for a supported bulky ligand metallocene-type catalyst system that includes an antistatic agent or surface modifier that is used in the preparation of the supported catalyst system as described in PCT publication WO 96/11960, which is herein fully incorporated by reference. The catalyst systems of the invention can be prepared in the presence of an olefin, for example hexene-1.

In another embodiment, the bulky ligand metallocene-type catalyst system can be combined with a carboxylic acid salt of a metal ester, for example aluminum carboxylates such as aluminum mono, di- and tri-stearates,
aluminum octoates, oleates and cyclohexylbutyrates, as described in U.S. Application Serial No. 09/113,216, filed July 10, 1998.

A preferred method for producing the supported bulky ligand metallocene-type catalyst system of the invention is described below and is described in U.S. Application Serial Nos. 265,533, filed June 24, 1994 and 265,532, filed June 24, 1994 and PCT publications WO 96/00245 and WO 96/00243 both published January 4, 1996, all of which are herein fully incorporated by reference. In this preferred method, the bulky ligand metallocene-type catalyst compound is slurried in a liquid to form a metallocene solution and a separate solution is formed containing an activator and a liquid. The liquid may be any compatible solvent or other liquid capable of forming a solution or the like with the bulky ligand metallocene-type catalyst compounds and/or activator of the invention. In the most preferred embodiment the liquid is a cyclic aliphatic or aromatic hydrocarbon, most preferably toluene. The bulky ligand metallocene-type catalyst compound and activator solutions are mixed together and added to a porous support or the porous support is added to the solutions such that the total volume of the bulky ligand metallocene-type catalyst compound solution and the activator solution or the bulky ligand metallocene-type catalyst compound and activator solution is less than four times the pore volume of the porous support, more preferably less than three times, even more preferably less than two times; preferred ranges being from 1.1 times to 3.5 times range and most preferably in the 1.2 to 3 times range.

Procedures for measuring the total pore volume of a porous support are well known in the art. Details of one of these procedures is discussed in Volume 1, Experimental Methods in Catalytic Research (Academic Press, 1968) (specifically see pages 67-96). This preferred procedure involves the use of a classical BET apparatus for nitrogen absorption. Another method well known in the art is described in Innes, Total Porosity and Particle Density of Fluid Catalysts By Liquid Titration, Vol. 28, No. 3, Analytical Chemistry 332-334 (March, 1956).

The mole ratio of the metal of the activator component to the metal of the supported bulky ligand metallocene-type catalyst compounds are in the range of between 0.3:1 to 1000:1, preferably 20:1 to 800:1, and most preferably 50:1 to 500:1. Where the activator is an ionizing activator such as those based on the anion tetrakis(pentafluorophenyl)boron, the mole ratio of
the metal of the activator component to the metal component of the bulky ligand metallocene-type catalyst is preferably in the range of between 0.3:1 to 3:1.

In one embodiment of the invention, olefin(s), preferably C₂ to C₃₀ olefin(s) or alpha-olefin(s), preferably ethylene or propylene or combinations thereof are prepolymerized in the presence of the conventional-type transition metal catalyst system and/or a bulky ligand metallocene-type catalyst system of the invention prior to the main polymerization. The prepolymerization can be carried out batchwise or continuously in gas, solution or slurry phase including at elevated pressures. The prepolymerization can take place with any olefin monomer or combination and/or in the presence of any molecular weight controlling agent such as hydrogen. For examples of prepolymerization procedures, see U.S. Patent Nos. 4,748,221, 4,789,359, 4,923,833, 4,921,825, 5,283,278 and 5,705,578 and European publication EP-B-0279 863 and PCT Publication WO 97/44371 all of which are herein fully incorporated by reference. In this embodiment, the prepolymerization of olefin(s) takes place either in the presence of the solid compound, preferably a solid acid compound, or the solid compound is added after the prepolymerization, but prior to the main polymerization, or simply added to the reactor with an already formed prepolymerized catalyst or a combination thereof. For the purposes of this patent specification and appended claims only, prepolymerization is considered a method for immobilizing a catalyst system and therefore considered to form a supported catalyst system.

In the most preferred embodiment, the solid compound, preferably the solid acid compound is contacted with a preformed supported polymerization catalyst.

Compounds

There are various compounds that can be used to control the kinetics of an olefin polymerization catalyst. In the preferred embodiment, the invention relates to the use of a substantially solid compound, preferably a solid compound that in the presence of a polymerization catalyst undergoes a phase change at a specified temperature during a polymerization process to produce a substantially liquid compound, preferably a liquid compound. In one embodiment, the solid compound has a weight loss of no greater than 20 weight percent, preferably less than 10 weight percent, more preferably less than 5 weight percent, even more preferably less than 2 weight percent and
most preferably less than 1 weight percent measured using a standard thermogravimetric analysis (TGA) at 80°C for 20 minutes. In another embodiment of the invention the solid compound has a dielectric constant greater than 2, preferably greater than 5, more preferably greater than 10 and/or a melting temperature in the range of from 0°C to 200°C, preferably from 10°C to 180°C, more preferably from 40°C to 150°C, and most preferably from 80°C to 130°C. The most preferred compound is an acid, specifically a solid Bronsted acid.

Acid Compounds

It is preferred that the solid compound is an acid compound, preferably Bronsted acid, that when combined or contacted with the polymerization catalyst prior to its introduction to a polymerization process is essentially or completely unreactive with the polymerization catalyst. However, when the polymerization catalyst and solid compound enter a polymerization environment, the solid component becomes a liquid at a temperature above the polymerization temperature that inactivates the polymerization catalyst. For purposes of this patent specification and appended claims the terms “polymerization temperature” and “reactor temperature” are interchangeable. The conditions for the solid/liquid phase change depend on for example, the particular polymerization process and/or the delivery mechanism for their introduction to a polymerization reactor.

The acid compounds may be represented by the following general formula:

\[
X-H,
\]

where X-H is an acid, preferably a Bronsted acid (Bronsted, J. N. Rec. Trav. Chim. 1923, 42, 718), with a pKa of less than 20, preferably less than 15, more preferably less than 10, most preferred less than 5. Some classes of Bronsted acids include ketones, alcohols, ammonium salts, nitriles, nitro compounds, acetylenes, phenols, carboxylic acids and mineral acids. Examples of these classes include acetophenone, adamantanol, amilinium chloride, diphenylacetonitrile, picrolonic acid, phenylacetylene, phenol, benzoic acid and tungstic acid. Most preferred are carboxylic acids, including o-toluic acid, tropic acid, 4-octyloxybenzoic acid, 4-bromophenylacetic acid, 2-phenoxybenzoic acid, 3,4,5-triethoxybenzoic acid and 2,4-dimethoxybenzoic acid.
Especially preferred are acids having a high density of functional groups, such as malic acid and glutaric acid.

Non-limiting examples of acid compounds include 3-methyladipic acid, DL-malic acid, trocic acid, glutaric acid, ketoglutaric acid, pimelic acid, mandelic acid, 3-t-butyladipic acid and L-malic acid. It is most preferred that the acids of the invention are in a solid form having little to no vapour pressure.

The conditions at which the solid acid compound for example is produced may be controlled by varying the acid compound used. This may be done by choosing the melting temperature of the acid compound. In one embodiment, the acid compound has a melting point in the range of from 50 °C to about 130 °C, preferably in the range of from about 60 °C to about 120 °C, more preferably in the range of from 70 °C to about 110 °C, and most preferably in the range of from 80 °C to about 105 °C.

In another embodiment, the acid compound has a melting point greater than 60 °C, preferably greater than 70 °C, more preferably greater than 75 °C, and most preferably greater than 80 °C.

In one embodiment, the acid compound melts at a temperature greater than 5 °C above the polymerization temperature.

In one preferred embodiment, the acid is selected from one or more of the group consisting of tropic acid, glutaric acid, methyl adipic acid, L-malic acid, 4-octyloxybenzoic acid, 3-t-butyladipic acid, ketoglutaric acid, trocic acid and DL-malic acid.

In an embodiment, more than one solid compound, preferably more than one acid compound is used. In this way the kinetics of the polymerization catalyst can be controlled at two different temperature conditions for example.

Insolubility in hydrocarbons is indispensable for slurry and solution phase reactions. If desired, a second component (adjuvant) can be added that facilitates the phase change of the solid acid to its liquid or substantially liquid form.

In an embodiment, the acid has a melting point such that the acid is solid in the temperature range of from 25°C to normal reaction conditions of temperature in the reactor during polymerization. Normal polymerization temperatures vary depending on the process used and/or the polymer produced.
Typically polymerization temperatures in a gas phase process are in the range of 50°C to about 120°C, more preferably from about 60°C to about 110°C, most preferably from about 65°C to about 100°C. Other polymerization temperatures are discussed later in this patent specification.

The most preferred acid compounds are polar acid compounds, generally include di- and tri-acids having a very low vapour pressure, a low hydrocarbon solubility, preferably no vapor pressure. Also preferred are acid compounds that have a low toxicity.

Other preferred properties for the acid compounds include the following considerations: 1) tunable so that its phase change temperature can be customized for a given process; 2) low toxicity; 3) not volatile as a solid; 4) responds quickly over a narrow temperature range; 5) quickly undergoes a phase change from solid to liquid; 6) unaffected by the type of catalyst; 7) operates under various reactor conditions; 8) evenly distributed throughout the reactor, and preferably does not enter the recycle line; 9) not significantly affect the pelletizing process; 10) not adversely affect downstream polymer properties; and 11) easily handled.

In a preferred embodiment, the acid is a polar compound where the acid compound has at least one -OH functionality. Most preferably these polar compounds are insoluble in aliphatic hydrocarbons. The most preferred acid is L-malic acid.

Methods for Using the Combination of Compounds

The use of the solid compound, preferably the solid acid compounds of the invention can vary. For example, the acid compound can be added or introduced with or without a polymerization catalyst directly to a polymerization process. The acid compound may be added separately and/or simultaneously to the reactor with a polymerization catalyst, preferably a supported polymerization catalyst. In an embodiment, the acid compound is contacted with a catalyst compound prior to being introduced to the reactor. Other embodiments may include placing the acid compound on a support material and then introducing the support material to the polymerization reactor.

The solid acid compound may be introduced in one embodiment in the recycle stream of a gas phase polymerization process or below the distributor plate or in a region within the reactor where the tendency for sheeting to occur
is high. The details of a gas phase polymerization process is discussed later in this patent specification.

In yet another embodiment, the solid compound, preferably the solid acid compound, is used in combination with an unsupported catalyst system or even as a supported for a catalyst system.

In the most preferred embodiment, the acid compound is used with a supported catalyst system. A most preferred method for making a supported catalyst system of the invention generally involves the combining, contacting, blending, bonding and/or mixing any of the above described catalyst compounds, preferably a bulky ligand metallocene-type catalyst compound using any of the techniques previously described.

In one embodiment of the method of the invention, a catalyst compound is combined, contacted, bonded, blended, and/or mixed with an acid compound. In a most preferred embodiment, the catalyst compound is a conventional-type transition metal catalyst and/or a bulky ligand metallocene-type catalyst supported on a carrier. In one embodiment, the acid compound is in a mineral oil slurry with or without a catalyst system, preferably with a supported catalyst system that is introduced to a polymerization process.

In another embodiment, the steps of the method of the invention include forming a polymerization catalyst, preferably forming a supported polymerization catalyst, and contacting the polymerization catalyst, preferably the supported polymerization catalyst, with a polar, solid compound, preferably an acid. In a preferred method, the polymerization catalyst comprises a catalyst compound, an activator and a carrier, preferably the polymerization catalyst is a supported bulky ligand metallocene-type catalyst.

In one embodiment of the method of the invention the acid compound is contacted with the catalyst system, preferably a supported catalyst system, most preferably a supported bulky ligand metallocene-type catalyst system under ambient temperatures and pressures. Preferably the contact temperature for combining the polymerization catalyst and the acid compound is in the range of from 0°C to about 100 °C, more preferably from 15 °C to about 75 °C, most preferably at about ambient temperature and pressure.

In a preferred embodiment, the contacting of the polymerization catalyst and the solid, polar compound, preferably the acid compound is performed under an inert gaseous atmosphere, such as nitrogen. However, it is contemplated that the combination of the polymerization catalyst and the acid
compound may be performed in the presence of olefin(s), solvents, hydrogen and the like.

In one embodiment, the acid may be added at any stage during the preparation of a catalyst composition so long as the solid acid does not react with the composition during its preparation.

In one embodiment of the method of the invention, the polymerization catalyst and the acid compound is combined in the presence of a liquid, for example the liquid may be a mineral oil, toluene, hexane, isobutane or a mixture thereof. In a more preferred method the acid compound is combined with a polymerization catalyst that has been formed in a liquid, preferably in a slurry, or combined with a substantially dry or dried, polymerization catalyst that has been placed in a liquid and reslurried.

Preferably, prior to use, the polymerization catalyst is contacted with the acid compound for a period of time greater than a second, preferably from about 1 minute to about 48 hours, more preferably from about 10 minutes to about 10 hours, and most preferably from about 30 minutes to about 6 hours. The period of contacting refers to the mixing time only.

In an embodiment, the mole ratio of the solid polar compound, preferably the solid acid compound, to the metal of the polymerization catalyst is the range from 5000 to about 0.2, preferably from about 1000 to about 0.5, more preferably from about 500 to about 1, and most preferably from about 250 to about 10.

In another embodiment, the weight ratio of the solid polar compound, preferably the solid acid compound, to the weight of the polymerization catalyst (including support if a supported polymerization catalyst) is the range from 100 to 0.001, preferably from about 10 to about 0.01, more preferably from 5 to 0.1, and most preferably from 2 to about 0.2.

Mixing techniques and equipment contemplated for use in the method of the invention are well known. Mixing techniques may involve any mechanical mixing means, for example shaking, stirring, tumbling, and rolling. Another technique contemplated involves the use of fluidization, for example in a fluid bed reactor vessel where circulated gases provide the mixing. Non-limiting examples of mixing equipment for combining, a solid polymerization catalyst and the acid compounds include a ribbon blender, a static mixer, a double cone blender, a drum tumbler, a drum roller, a dehydrator, a fluidized bed, a helical mixer and a conical screw mixer.
In a preferred embodiment of the invention the catalyst system of the invention is supported on a carrier, preferably the supported catalyst system is substantially dried, preformed, substantially dry and/or free flowing. In an especially preferred method of the invention, the preformed supported catalyst system is contacted with a solid polar compound, preferably a solid acid compound. The acid compound may be in solution or slurry or in a dry state, preferably the acid compound is in a substantially dry or dried state. If the acid is in solution, the acid remains substantially in a solid state.

In an embodiment, the method of the invention provides for co-injecting an unsupported polymerization catalyst and a solid polar compound, preferably a solid acid compound into the reactor. In one embodiment the polymerization catalyst is used in the unsupported form, preferably in a liquid form such as described in U.S. Patent Nos. 5,317,036 and 5,693,727 and European publication EP-A-0 593 083, all of which are herein incorporated by reference. The polymerization catalyst in liquid form can be fed with a solid polar compound, preferably a solid acid compound together or separately to a reactor using the injection methods described in PCT publication WO 97/46599, which is fully incorporated herein by reference. Where an unsupported bulky ligand metallocene-type catalyst system is used the mole ratio of the metal of the activator component to the metal of the bulky ligand metallocene-type catalyst compound is in the range of between 0.3:1 to 10,000:1, preferably 100:1 to 5000:1, and most preferably 500:1 to 2000:1.

In one embodiment, the polymerization catalyst has a productivity greater than 1500 grams of polymer per gram of catalyst, preferably greater than 2000 grams of polymer per gram of catalyst, more preferably greater than 2500 grams of polymer per gram of catalyst and most preferably greater than 3000 grams of polymer per gram of catalyst. In one embodiment, when the solid polar compound, preferably the solid acid compound of the invention undergoes a phase change, the polymerization catalyst productivity is reduced to less than 1500 grams of polymer per gram of catalyst, preferably less than 1000 grams of polymer per gram of catalyst, more preferably less than 500 grams of polymer per gram of catalyst, even more preferably less than 100 grams of polymer per gram of catalyst, and still even more preferably less than 25 grams of polymer per gram of catalyst and most preferably to less than is measurably possible or 0 grams of polymer per gram of catalyst.
In one embodiment, a binder is used to hold the solid polar compound, preferably the solid acid compound to the catalyst, or simply to facilitate the phase change from a solid to a liquid or gas, preferably a liquid. The binder may be added to the catalyst in any number of ways, for instance the binder can be added just after the catalyst is made and is still in a slurry state or prior to evaporation of any liquid in which the catalyst was prepared. If a binder is utilized it is preferable to add it to the dried preformed supported polymerization catalyst. Non-limiting examples of binders include polyethylene oxide, polyethylene/propylene oxide, mineral oil, silica, alumina, silicone oil, various waxes such as carnauba wax, surfactants such as sodium dodecylbenzene sulfonate and chelating agents such as EDTA.

The solid polar compound, preferably the solid acid compound, in conjunction with a supported polymerization catalyst may be combined with agents that would help dissipate static charge build up and/or modify the flow properties of the material and/or improve free flow of powders by reducing powder bed packing, decreasing particle coherence, and reducing interparticle friction. Non-limiting examples of these agents include silica such as cabosil, clays, surfactants such as esters of fatty acids, metal salts of fatty acids, silica, metal halides, solvated metal halides, amines, polyoxyethylene and polyoxypropylene and their derivatives, and sulfonates.

Polymerization Process

The catalyst compositions including the solid compound, preferably the solid acid compound of the invention described above are suitable for use in any prepolymerization and/or polymerization process over a wide range of temperatures and pressures. The temperatures may be in the range of from −60 °C to about 280°C, preferably from 50°C to about 200°C, and the pressures employed may be in the range from 1 atmosphere to about 500 atmospheres or higher.

Polymerization processes include solution, gas phase, slurry phase and a high pressure process or a combination thereof. Particularly preferred is a gas phase or slurry phase polymerization of one or more olefins at least one of which is ethylene or propylene.

In one embodiment, the process of this invention is directed toward a solution, high pressure, slurry or gas phase polymerization process of one or more olefin monomers having from 2 to 30 carbon atoms, preferably 2 to 12 carbon atoms, and more preferably 2 to 8 carbon atoms. The invention is
particularly well suited to the polymerization of two or more olefin monomers of ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-1, hexene-1, octene-1 and decene-1.

Other monomers useful in the process of the invention include ethylenically unsaturated monomers, diolefins having 4 to 18 carbon atoms, conjugated or nonconjugated dienes, polyenes, vinyl monomers and cyclic olefins. Non-limiting monomers useful in the invention may include norbornene, norbornadiene, isobutylene, isoprene, vinylbenzocyclobutane, styrenes, alkyl substituted styrene, ethylidene norbornene, dicyclopentadiene and cyclopentene.

In the most preferred embodiment of the process of the invention, a copolymer of ethylene is produced, where with ethylene, a comonomer having at least one alpha-olefin having from 4 to 15 carbon atoms, preferably from 4 to 12 carbon atoms, and most preferably from 4 to 8 carbon atoms, is polymerized in a gas phase process.

In another embodiment of the process of the invention, ethylene or propylene is polymerized with at least two different comonomers, optionally one of which may be a diene, to form a terpolymer.

In one embodiment, the invention is directed to a polymerization process, particularly a gas phase or slurry phase process, for polymerizing propylene alone or with one or more other monomers including ethylene, and/or other olefins having from 4 to 12 carbon atoms. Polypropylene polymers may be produced using the particularly bridged bulky ligand metallocene-type catalysts as described in U.S. Patent Nos. 5,296,434 and 5,278,264, both of which are herein incorporated by reference.

Typically in a gas phase polymerization process a continuous cycle is employed where in one part of the cycle of a reactor system, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization. This heat is removed from the recycle composition in another part of the cycle by a cooling system external to the reactor. Generally, in a gas fluidized bed process for producing polymers, a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. The gaseous stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized

The reactor pressure in a gas phase process may vary from about 100 psig (690 kPa) to about 500 psig (3448 kPa), preferably in the range of from about 200 psig (1379 kPa) to about 400 psig (2759 kPa), more preferably in the range of from about 250 psig (1724 kPa) to about 350 psig (2414 kPa).

The reactor temperature in a gas phase process may vary from about 30 °C to about 120°C, preferably from about 60°C to about 115°C, more preferably in the range of from about 70°C to 110°C, and most preferably in the range of from about 70°C to about 95°C.

In a preferred embodiment, the reactor utilized in the present invention is capable and the process of the invention is producing greater than 500 lbs of polymer per hour (227 Kg/hr) to about 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than 10,000 lbs/hr (4540 Kg/hr), even more preferably greater than 25,000 lbs/hr (11,300 Kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 Kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 Kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 Kg/hr) to greater than 100,000 lbs/hr (45,500 Kg/hr).

A slurry polymerization process generally uses pressures in the range of from about 1 to about 50 atmospheres and even greater and temperatures in the range of 0°C to about 120°C. In a slurry polymerization, a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers and often hydrogen along with catalyst are added. The suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor. The liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane. The medium
employed should be liquid under the conditions of polymerization and relatively inert. When a propane medium is used the process must be operated above the reaction diluent critical temperature and pressure. Preferably, a hexane or an isobutane medium is employed.

A preferred polymerization technique of the invention is referred to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution. Such technique is well known in the art, and described in for instance U.S. Patent No. 3,248,179 which is fully incorporated herein by reference. Other slurry processes include those employing a loop reactor and those utilizing a plurality of stirred reactors in series, parallel, or combinations thereof. Non-limiting examples of slurry processes include continuous loop or stirred tank processes. Also, other examples of slurry processes are described in U.S. Patent No. 4,613,484, which is herein fully incorporated by reference.

In an embodiment the reactor used in the slurry process of the invention is capable of and the process of the invention is producing greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr). In another embodiment the slurry reactor used in the process of the invention is producing greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11,340 Kg/hr) to about 100,000 lbs/hr (45,500 Kg/hr).

Examples of solution processes are described in U.S. Patent Nos. 4,271,060, 5,001,205, 5,236,998 and 5,589,555, which are fully incorporated herein by reference.

A preferred process of the invention is where the process, preferably a slurry or gas phase process is operated in the presence of a bulky ligand metallocene-type catalyst system of the invention and in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like. This preferred process is described in PCT publication WO 96/08520 and U.S. Patent No. 5,712,352 and 5,763,543, which are herein fully incorporated by reference.
Polymer Product of the Invention

The polymers produced by the process of the invention can be used in a wide variety of products and end-use applications. The polymers produced by the process of the invention include linear low density polyethylene, elastomers, plastomers, high density polyethylenes, low density polyethylenes, polypropylene and polypropylene copolymers.

The polymers, typically ethylene based polymers, have a density in the range of from 0.86 g/cc to 0.97 g/cc, preferably in the range of from 0.88 g/cc to 0.965 g/cc, more preferably in the range of from 0.900 g/cc to 0.96 g/cc, even more preferably in the range of from 0.905 g/cc to 0.95 g/cc, yet even more preferably in the range from 0.910 g/cc to 0.940 g/cc, and most preferably greater than 0.915 g/cc, preferably greater than 0.920 g/cc, and most preferably greater than 0.925 g/cc. Density is measured in accordance with ASTM-D-1238.

The polymers produced by the process of the invention typically have a molecular weight distribution, a weight average molecular weight to number average molecular weight (Mw/Mn) of greater than 1.5 to about 30, particularly greater than 2 to about 10, more preferably greater than about 2.2 to less than about 8, and most preferably from 2.5 to 8.

Also, the polymers of the invention typically have a narrow composition distribution as measured by Composition Distribution Breadth Index (CDBI). Further details of determining the CDBI of a copolymer are known to those skilled in the art. See, for example, PCT Patent Application WO 93/03093, published February 18, 1993, which is fully incorporated herein by reference.

The bulky ligand metallocene-type catalyzed polymers of the invention in one embodiment have CDBI's generally in the range of greater than 50% to 100%, preferably 99%, preferably in the range of 55% to 85%, and more preferably 60% to 80%, even more preferably greater than 60%, still even more preferably greater than 65%.

In another embodiment, polymers produced using a bulky ligand metallocene-type catalyst system of the invention have a CDBI less than 50%, more preferably less than 40%, and most preferably less than 30%.

The polymers of the present invention in one embodiment have a melt index (MI) or (I1) as measured by ASTM-D-1238-E in the range from 0.01 dg/min to 1000 dg/min, more preferably from about 0.01 dg/min to about 100
dg/min, even more preferably from about 0.1 dg/min to about 50 dg/min, and most preferably from about 0.1 dg/min to about 10 dg/min.

The polymers of the invention in an embodiment have a melt index ratio (I_{21}/I_2) (I_{21} is measured by ASTM-D-1238-F) of from 10 to less than 25, more preferably from about 15 to less than 25.

The polymers of the invention in a preferred embodiment have a melt index ratio (I_{21}/I_2) (I_{21} is measured by ASTM-D-1238-F) of from preferably greater than 25, more preferably greater than 30, even more preferably greater than 40, still even more preferably greater than 50 and most preferably greater than 65. In an embodiment, the polymer of the invention may have a narrow molecular weight distribution and a broad composition distribution or vice-versa, and may be those polymers described in U.S. Patent No. 5,798,427 incorporated herein by reference.

In yet another embodiment, propylene based polymers are produced in the process of the invention. These polymers include atactic polypropylene, isotactic polypropylene, hemi-isotactic and syndiotactic polypropylene. Other propylene polymers include propylene block or impact copolymers. Propylene polymers of these types are well known in the art see for example U.S. Patent Nos. 4,794,096, 3,248,455, 4,376,851, 5,036,034 and 5,459,117, all of which are herein incorporated by reference.

The polymers of the invention may be blended and/or coextruded with any other polymer. Non-limiting examples of other polymers include linear low density polyethylene produced via conventional Ziegler-Natta and/or bulky ligand metallocene-type catalysis, elastomers, plastomers, high pressure low density polyethylene, high density polyethylenes, polypropylenes and the like.

Polymers produced by the process of the invention and blends thereof are useful in such forming operations as film, sheet, and fiber extrusion and co-extrusion as well as blow molding, injection molding and rotary molding. Films include blown or cast films formed by coextrusion or by lamination useful as shrink film, cling film, stretch film, sealing films, oriented films, snack packaging, heavy duty bags, grocery sacks, baked and frozen food packaging, medical packaging, industrial liners, membranes, etc. in food-contact and non-food contact applications. Fibers include melt spinning, solution spinning and melt blown fiber operations for use in woven or non-woven form to make filters, diaper fabrics, medical garments, geotextiles, etc.
Extruded articles include medical tubing, wire and cable coatings, geomembranes, and pond liners. Molded articles include single and multilayered constructions in the form of bottles, tanks, large hollow articles, rigid food containers and toys, etc.

EXAMPLES

In order to provide a better understanding of the present invention including representative advantages thereof, the following examples are offered.

Catalyst

The polymerization catalyst used in the examples below was prepared similarly to the following preparation. The bridged, bulky ligand metallocene-type catalyst compound was dimethylsilyl-bis(tetrahydroindenyl)zirconium dichloride (Me₂Si(H₄Ind)₂ZrCl₂) available from Albemarle Corporation, Baton Rouge, Louisiana. The (Me₂Si(H₄Ind)₂ZrCl₂) catalyst compound was supported on Crosfield ES-70 grade silica dehydrated at 600°C having approximately 1.0 weight percent water Loss on Ignition (LOI). LOI is measured by determining the weight loss of the support material which has been heated and held at a temperature of about 1000°C for about 22 hours. The Crosfield ES-70 grade silica has an average particle size of 40 microns and is available from Crosfield Limited, Warrington, England.

The first step in the manufacture of the supported bulky ligand metallocene-type catalyst above involves forming a precursor solution. 460 lbs (209 kg) of sparged and dried toluene is added to an agitated reactor after which 1060 lbs (482 kg) of a 30 weight percent methylaluminoxane (MAO) in toluene (available from Albemarle, Baton Rouge, Louisiana) is added. 947 lbs (430 kg) of a 2 weight percent toluene solution of a dimethylsilyl-bis(tetrahydroindenyl) zirconium dichloride catalyst compound and 600 lbs (272 kg) of additional toluene are introduced into the reactor. The precursor solution is then stirred at 80°F to 100°F (26.7°C to 37.8°C) for one hour.

While stirring the above precursor solution, 850 lbs (386 kg) of 600 °C Crosfield dehydrated silica carrier is added slowly to the precursor solution and the mixture agitated for 30 min. at 80°F to 100 °F (26.7 to 37.8 °C). At the end of the 30 min. agitation of the mixture, 240 lbs (109kg) of a 10 weight percent toluene solution of AS-990 (N,N-bis(2-hydroxyethyl) octadecylamine ([C₁₈H₃₇N(CH₂CH₂OH)₂]) available as Kemamine AS-990 from Witco Corporation, Memphis, Tennessee, is added together with an additional 110
lbs (50 kg) of a toluene rinse and the reactor contents then is mixed for 30 min. while heating to 175°F (79°C). After 30 min. vacuum is applied and the polymerization catalyst mixture dried at 175°F (79°C) for about 15 hours to a free flowing powder. The final polymerization catalyst weight was 1200 lbs (544 kg) and had a Zr wt% of 0.35 and an Al wt% of 12.0.

Process

A one liter 316 SS reactor with air-operated helical stirrer and an outer steam-heated shell and a inner acetone heat-transfer shell was dried by heating to 115 °C while purging with 500 sccm of nitrogen for 30 minutes. After cooling to 90 °C, it was charged with 100g of polyethylene (granular Union Carbide grade DSX4810 (available from Union Carbide Corporation, Danbury, Connecticut), Cr-based, 0.948 density, Iₜₐ = 10, unstabilized) under inert conditions and pressure/vented four times with 100 psi (690 kPa) nitrogen. A solution of 100 micromoles of tri-isobutylaluminum (TIBA) was then added and the reactor sealed and pressure/vented three times with 100 psi (690 kPa) ethylene before bringing the reactor to reactor conditions, 80 °C and 107 psi (738 kPa).

A catalyst charging vessel comprising a 1/4 inch (2 cm) SS tube isolated between two valves and attached to a reservoir of nitrogen was charged with 60.7 mg supported polymerization catalyst as described above in a nitrogen-filled glove box and attached to the reactor against a nitrogen purge. The reactor was then pressurized and vented three times with ethylene. The reactor was then brought to 80 °C, 107 psi (738 kPa) and the catalyst injected. After 38 minutes the temperature was ramped to 100 °C during 5 minutes and held for 40 minutes. The ideal acid compound for purposes of these experiments below will have no effect on the catalyst activity at 80 °C but will substantially reduce catalyst activity at 100 °C.
Table 1 represents the control experiments, where no acid compound was used with the polymerization catalyst. Controls: These illustrate that without the acid, catalyst activity is substantial at the higher temperature range, 100 °C in these examples.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Acid</th>
<th>Activity</th>
<th>Rubble (%)</th>
<th>Uptake 80°C</th>
<th>Uptake 100°C</th>
<th>Uptake 100°C/80°C</th>
<th>% rate redn @ 20 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>11847</td>
<td>8%</td>
<td>14.9</td>
<td>31.3</td>
<td>2.1</td>
<td>-11%</td>
</tr>
<tr>
<td>2</td>
<td>none</td>
<td>10595</td>
<td>6%</td>
<td>15.1</td>
<td>26.4</td>
<td>1.8</td>
<td>1%</td>
</tr>
<tr>
<td>3</td>
<td>none</td>
<td>13120</td>
<td>9%</td>
<td>17.9</td>
<td>30.3</td>
<td>1.7</td>
<td>-6%</td>
</tr>
<tr>
<td>4</td>
<td>none</td>
<td>12401</td>
<td>28%</td>
<td>17.9</td>
<td>32.3</td>
<td>1.8</td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>none</td>
<td>12461</td>
<td>26%</td>
<td>16.2</td>
<td>31.5</td>
<td>1.9</td>
<td>-18%</td>
</tr>
<tr>
<td>6</td>
<td>none</td>
<td>12461</td>
<td>18%</td>
<td>18.7</td>
<td>30.9</td>
<td>1.7</td>
<td>-6%</td>
</tr>
<tr>
<td>7</td>
<td>none</td>
<td>14219</td>
<td>15%</td>
<td>16.5</td>
<td>36.4</td>
<td>2.2</td>
<td>4%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>12443</td>
<td>16%</td>
<td>16.7</td>
<td>31.3</td>
<td>1.9</td>
<td>-5%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td></td>
<td>1110</td>
<td>9%</td>
<td>1.5</td>
<td>3.0</td>
<td>0.2</td>
<td>8%</td>
</tr>
</tbody>
</table>

Activity is measured as grams of polyethylene/mmol Zr/hour/100 psi (690 kPa) ethylene

Examples 8, 9, and 10

45 mg of L-malic acid was charged to the catalyst charging vessel and injected with nitrogen pressure at 20 minutes during the 80 °C segment of the run.

Table 2 illustrates the acid effect at the higher temperatures. Rubble is also reduced, indicating improved continuity.

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Acid</th>
<th>Activity</th>
<th>Rubble (%)</th>
<th>Uptake 80°C</th>
<th>Uptake 100°C</th>
<th>Uptake 100°C/80°C</th>
<th>% rate redn @ 20 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>L-malic</td>
<td>7213</td>
<td>5%</td>
<td>13.40</td>
<td>15.52</td>
<td>1.16</td>
<td>-5 %</td>
</tr>
<tr>
<td>9</td>
<td>L-malic</td>
<td>8287</td>
<td>1%</td>
<td>12.96</td>
<td>22.25</td>
<td>1.72</td>
<td>0 %</td>
</tr>
<tr>
<td>10</td>
<td>L-malic</td>
<td>13629</td>
<td>1%</td>
<td>13.88</td>
<td>30.82</td>
<td>2.22</td>
<td>-8 %</td>
</tr>
</tbody>
</table>

Activity is measured as grams of polyethylene/mmol Zr/hour/100 psi (690 kPa) ethylene

For the following examples 11 to 20 also refer to Table 3.

Examples 11 to 12

As in Example 8 except that the L-malic acid is mixed with the polymerization catalyst. This illustrates a different mode of adding the acid is also effective.
Examples 13 to 15

As in Example 8 except that glutaric acid was used in place of L-malic acid. This illustrates that a different acid is effective in reducing the polymerization rate at 100°C.

Example 16

As in Example 13 except only 23 mg of acid is used. This illustrates that the extent of inactivation is controlled by the amount of acid used.

Example 17

As in Example 13 except that the glutaric acid is mixed with the polymerization catalyst. This illustrates another way of adding the acid.

Example 18

As in Example 16 except that the glutaric acid is mixed with the polymerization catalyst. Again, this shows a different way to add the acid.

Example 19

As in Example 8 except that 3-methyladipic acid was used in place of L-malic acid. This example illustrates the use of a different acid that effectively reduces the polymerization rate at 100°C.

Example 20

As in Example 8 except that 4-octyloxybenzoic acid was used in place of L-malic acid, which illustrates using a different acid to effectively reduce the polymerization rate at 100°C.

Table 3

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Acid</th>
<th>Activity</th>
<th>Rubble (%)</th>
<th>Uptake 80°C</th>
<th>Uptake 100°C</th>
<th>Uptake 10°C</th>
<th>% rate redn @ 20 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>L-malic</td>
<td>5542</td>
<td>2%</td>
<td>11.27</td>
<td>12.27</td>
<td>1.09</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>L-malic</td>
<td>9300</td>
<td>2%</td>
<td>14.01</td>
<td>19.77</td>
<td>1.41</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>glutaric</td>
<td>6026</td>
<td>5%</td>
<td>13.52</td>
<td>10.17</td>
<td>0.75</td>
<td>5%</td>
</tr>
<tr>
<td>14</td>
<td>glutaric</td>
<td>6781</td>
<td>5%</td>
<td>14.26</td>
<td>11.83</td>
<td>0.83</td>
<td>12%</td>
</tr>
<tr>
<td>15</td>
<td>glutaric</td>
<td>8650</td>
<td>3%</td>
<td>13.65</td>
<td>18.44</td>
<td>1.35</td>
<td>10%</td>
</tr>
<tr>
<td>16</td>
<td>glutaric</td>
<td>10053</td>
<td>2%</td>
<td>15.84</td>
<td>20.92</td>
<td>1.32</td>
<td>8%</td>
</tr>
<tr>
<td>17</td>
<td>glutaric</td>
<td>7827</td>
<td>2%</td>
<td>12.82</td>
<td>13.62</td>
<td>1.06</td>
<td>--</td>
</tr>
<tr>
<td>18</td>
<td>glutaric</td>
<td>8979</td>
<td>2%</td>
<td>15.12</td>
<td>16.90</td>
<td>1.12</td>
<td>-6%</td>
</tr>
<tr>
<td>19</td>
<td>3-methyl adipic</td>
<td>6555</td>
<td>9%</td>
<td>14.62</td>
<td>9.88</td>
<td>0.68</td>
<td>2%</td>
</tr>
<tr>
<td>20</td>
<td>4-octyloxybenzoic</td>
<td>8445</td>
<td>5%</td>
<td>15.68</td>
<td>19.94</td>
<td>1.27</td>
<td>-10%</td>
</tr>
</tbody>
</table>

1 Activity is measured as grams of polyethylene/mmol Zr/hour/100 psi (690 kPa) ethylene.
Example 21

As in Example 8 except that Irganox 565 (Ciba Specialty Chemicals, Tarrytown, New York) was used in place of L-malic acid. This illustrates that a different chemical can be effective in reducing the polymerization rate at 100 °C.

Example 22

As in Example 8 except that xylitol was used in place of L-malic acid. This illustrates that a different chemical can be effective in reducing the polymerization rate at 100 °C.

Example 23

As in Example 8 except that pentaerythritol tetrabenoate was used in place of L-malic acid. This illustrates that a different chemical can be effective in reducing the polymerization rate at 100 °C.

Example 24

As in Example 8 except that hydroquinone bis(2-hydroxyethyl) ether was used in place of L-malic acid. This illustrates that a different chemical can be effective in reducing the polymerization rate at 100 °C.

Table 4

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Acid</th>
<th>Activity</th>
<th>Rubble (%)</th>
<th>Uptake 80°C</th>
<th>Uptake 100°C</th>
<th>Uptake 100°C/80°C</th>
<th>% rate redn @ 20 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Irganox 565</td>
<td>11096</td>
<td>5%</td>
<td>17.64</td>
<td>22.38</td>
<td>1.27</td>
<td>9%</td>
</tr>
<tr>
<td>22</td>
<td>xylitol</td>
<td>5586</td>
<td>5%</td>
<td>11.10</td>
<td>9.90</td>
<td>0.89</td>
<td>16%</td>
</tr>
<tr>
<td>23</td>
<td>Pentaerythritol-tetrabenzoate</td>
<td>11295</td>
<td>4%</td>
<td>15.94</td>
<td>24.93</td>
<td>1.56</td>
<td>-7%</td>
</tr>
<tr>
<td>24</td>
<td>Hydroquinone bis(2-hydroxyethyl) ether</td>
<td>14610</td>
<td>14%</td>
<td>20.20</td>
<td>31.55</td>
<td>1.56</td>
<td>-4%</td>
</tr>
</tbody>
</table>

1 Activity is measured as grams of polyethylene/mmol Zr/hour/100 psi (690 kPa) ethylene

While the present invention has been described and illustrated by reference to particular embodiments, those of ordinary skill in the art will appreciate that the invention lends itself to variations not necessarily illustrated herein. For example, it is contemplated that a different combination of acids may be used during the polymerization process depending on the product being produced. Also, two or more polymerization reactors, in series or parallel, slurry and/or gas phase may be used in which different combinations of acid compounds may be used. Furthermore, the solid acid may be utilized.
downstream of the reactor to deactivate polymer withdrawn from a polymerization reactor. Also, two or more polymerization catalysts may be used with the acid compound of the invention. For this reason, then, reference should be made solely to the appended claims for purposes of determining the true scope of the present invention.
CLAIMS:

1. A catalyst composition including a polymerization catalyst and a solid acid or solid polar compound, wherein the solid acid or solid polar compound undergoes a phase change, at a specified temperature above a polymerization temperature, that deactivates the polymerization catalyst.

2. The catalyst composition of claim 1 wherein the phase change is from a solid to a liquid.

3. The catalyst composition of claim 1 wherein the polymerization catalyst is supported.

4. The catalyst composition of claim 1 wherein the solid compound has a weight loss of less than 20 weight percent measured using thermogravimetric analysis at 80°C for 20 minutes.

5. The catalyst composition of claim 1 wherein the solid compound has a dielectric constant greater than 2.

6. The catalyst composition of claim 1 wherein the solid compound is an acid compound.

7. The catalyst composition of claim 6 wherein the acid compound has at least one -OH functionality.

8. The catalyst composition of claim 6 wherein the acid compound is L-malic acid.

9. The catalyst composition of claim 6 wherein the acid compound is a Bronsted acid.
10. A process for polymerizing olefin(s) in the presence of a polymerization catalyst and a solid acid or solid polar compound in a reactor at a polymerization temperature, wherein the solid acid or solid polar compound changes phase at a temperature greater than the polymerization temperature and the effectiveness of the polymerization catalyst to polymerize olefin(s) is reduced.

11. The process of claim 10 wherein the solid compound is an acid compound having at least one -OH functionality.

12. The process of claim 11 wherein the acid compound is L-malic acid.

13. The process of claim 10 wherein the polymerization catalyst is supported.

14. The process of claim 10 wherein the polymerization catalyst comprises a bulky ligand metallocene-type catalyst compound.

15. A continuous process for polymerizing one or more olefins in the presence of a polymerization catalyst in a reactor at a polymerization temperature, the process including the steps (a) introducing the polymerization catalyst to the reactor; and (b) introducing a solid acid or solid polar compound; wherein the solid acid or solid polar compound undergoes a phase change to a liquid compound at a temperature above the polymerization temperature.

16. The process of claim 15 wherein step (a) and (b) are performed simultaneously.

17. The process of claim 16 wherein the solid acid or solid polar compound and the polymerization catalyst are combined prior to being introduced into the reactor.

18. The process of claim 17 wherein the solid compound is an acid compound.
19. The process of claim 18 wherein the acid compound has at least one -OH functionality.

20. The process of claim 15 wherein the polymerization catalyst comprises a bulky ligand metallocene-type catalyst compound and an activator.

21. A catalyst composition including a bulky ligand metallocene-type catalyst compound, an activator, a support, and a solid acid compound.

22. The catalyst composition of claim 21 wherein the acid compound is a Bronsted acid.

23. The catalyst composition of claim 21 wherein the catalyst composition is heated to greater than 65 °C, the solid acid compound forms a liquid.

24. The catalyst composition of claim 21 wherein the catalyst composition is heated by the heat of a polymerization process in excess of the polymerization temperature of the process.

25. A method for preparing a catalyst composition including the steps of:
 a) mixing a polymerization catalyst with an activator;
 b) adding a solid polar compound; wherein during the preparation the solid polar compound is unreactive.

26. The method of claim 25 wherein the solid polar compound is an acid compound.

27. The method of claim 25 wherein the method comprises the additional step of adding a support.

28. The method of claim 25 wherein after step (a), the mixture is combined with a support.
29. The method of claim 25 wherein the solid polar compound is unreactive above a polymerization temperature.

30. The method of claim 25 wherein the polymerization catalyst is a bulky ligand metallocene-type catalyst compound.

31. In a process for polymerizing one or more olefins in the presence of a catalyst composition in a reactor operating at a polymerization temperature and a polymerization pressure to produce a polymer product, the process including at least one phase change of a solid polar compound to substantially a liquid state at a temperature above the polymerization temperature.

32. The process of claim 31 wherein the solid polar compound is an acid compound having at least one -OH functionality.

33. The process of claim 32 wherein the polymerization temperature is in the range of from 65°C to 120°C.

DATED this 20th day of January 2003

UNIVATION TECHNOLOGIES LLC

WATERMARK PATENT AND TRADEMARK ATTORNEYS
LEVEL 21, "ALLENDALE SQUARE TOWER
77 ST GEORGE'S TERRACE
PERTH WA 6000

P18726AU00