APPLICATION FOR A STANDARD PATENT
OR A STANDARD PATENT OF ADDITION

(71) I/we, TEIJIN LIMITED, NATIONAL INSTITUTE OF HEALTH and THE RESEARCH FOUNDATION
FOR MICROBIAL DISEASES OF OSAKA UNIVERSITY of 11, Minamihommachi 1-chome,
Higashi-ku, Osaka-shi, Osaka, Japan; 2-10-35, Kamiosaki, Shinagawa-ku,
Tokyo, Japan; and 3-1, Yama-cho, Surtu-ku, Osaka, Japan, respectively,

(72) hereby apply for the grant of [] standard patent for an invention entitled

BORDETELLA PERTUSSIS VARIANTS

which is described in the accompanying [] provisional [] complete specification.

(73) The actual inventor(s) of the said invention is/are YUJI SATO, HIROKO SATO, IWAO YOSHIDA

and ATSUSHI IMAIZUMI

(74) My/our address for service is SANDERCOCK, SMITH & BEADLE, 207 Riversdale Road,
P.O. Box 410, Hawthorn, Victoria, 3122, Attorney Code: SA

[ONLY TO BE USED IN THE CASE OF A CONVENTION APPLICATION]
Details of basic application(s) –

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>COUNTRY</th>
<th>DATE OF APPLICATION</th>
<th>ISO Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>62-155577</td>
<td>Japan</td>
<td>24 June 1987</td>
<td>JP</td>
</tr>
<tr>
<td>MQ00570</td>
<td>23/06/88</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dated this 23rd day of June, 1988

TEIJIN LIMITED, NATIONAL INSTITUTE OF HEALTH and THE RESEARCH
FOUNDATION FOR MICROBIAL DISEASES OF OSAKA UNIVERSITY

TO

SANDERCOCK, SMITH & BEADLE

THE COMMISSIONER OF PATENTS

This form must be accompanied by either a provisional specification (Form 9 and true copy) or by a complete
specification (Form 10 and true copy).
In support of the application made by The Research Foundation for Microbial Diseases of Osaka University for a patent for an invention entitled: BORDETELLA PERTUSSIS VARIANTS

I/n/a Konosuke Fukai, M.D., Director General of The Research Foundation for Microbial Diseases of Osaka University of 3-1, Yamadaoka, Suita-shi, Osaka, Japan

I do solemnly and sincerely declare as follows:

1. (a) X I am authorised by the above-named applicant to make this declaration on its behalf.
 OR (b) I am authorized by the abovementioned applicant to make this declaration on its behalf.

2. (a) X Yuji Sato, Hiroko Sato, Iwao Yoshida and Atsushi Muraizumi residing respectively at 1-33-4, Kamima, Setagaya-ku, Tokyo, Japan; 1-33-4, Kamima, Setagaya-ku, Tokyo, Japan; 1247-2, Nagareoka-cho, Kanonji-shi, Kagawa, Japan; and 5-10-8, Nishihirayama, Hino-shi, Tokyo, Japan
 OR (b) Yuji Sato, Hiroko Sato, Iwao Yoshida and Atsushi Muraizumi residing respectively at 1-33-4, Kamima, Setagaya-ku, Tokyo, Japan; 1-33-4, Kamima, Setagaya-ku, Tokyo, Japan; 1247-2, Nagareoka-cho, Kanonji-shi, Kagawa, Japan; and 5-10-8, Nishihirayama, Hino-shi, Tokyo, Japan

I/are the actual inventor(s) of the invention and the facts upon which the applicant(s) is/are entitled to make the application are as follows:

The applicant is the assignee of the other applicants.

TEIJIN LIMITED and National Institute of Health

3. The basic application(s) as defined by Section 141 of the Act was/were made in the following country or countries on the following date(s) by the following applicant(s)

in Japan on 24th day of June 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health
in Japan on 1987 by TEIJIN LIMITED and National Institute of Health

4. The basic application(s) referred to in paragraph 3 of this Declaration was/were the first application(s) made in a Convention country in respect of the invention the subject of the application.

Declared at Osaka, Japan this 3rd day of July 1988 by The Research Foundation for Microbial Diseases of Osaka University

Konosuke Fukai, M.D., Director General

Signature(s) of declarant(s).

To: The Commissioner of Patents, Australia

Signature(s) of declarant(s).
1. A Bordetella pertussis variant which produces a pertussis toxin mutant protein partially devoid of toxic activity.

2. The Bordella pertussis variant according to claim 1, which produces a pertussis toxin mutant protein devoid of at least subunit S1.

6. A pertussis toxin mutant protein partially devoid of subunits, and produced by a Bordetella pertussis variant.
TO BE COMPLETED BY APPLICANT

Name of Applicant:
TEIJIN LIMITED
NATIONAL INSTITUTE OF HEALTH
THE RESEARCH FOUNDATION FOR MICROBIAL DISEASES OF OSAKA UNIVERSITY

Address of Applicant: 11, Minamihonmachi 1-chome, Higashi-ku, Osaka-shi, Osaka, Japan;
2-10-35, Kamiosaki, Shinagawa-ku, Tokyo, Japan; and
3-1, Yamadaoka, Suita-shi, Osaka, Japan

Actual Inventor:
YUJI SATO
HIROKO SATO
IWAO YOSHIDA
ATSUSHI IMAIZUMI

Address for Service:
SANDERCOCK, SMITH & BEADLE
207 Riversdale Road, (P.O. Box 410)
Heathorn, Victoria, 3122

Complete Specification for the invention entitled:

BORDETELLA PERTUSSIS VARIANTS

The following statement is a full description of this invention, including the best method of performing it known to me:—
The present invention relates to Bordetella pertussis variants producing a non-toxic but immunogenic pertussis toxin mutant protein, which is applied for preparing a new pertussis vaccine.

More particularly, the present invention relates to a Bordetella pertussis phase I variant not having a pertussis toxic activity, but producing a partial antigen protein which induces an antibody for neutralizing the biological activity of pertussis toxin.

2. Description of the Related Art.

The pertussis toxin has a molecular weight of about 107 KDa, and is composed of two functionally different parts (A and B) as the bacterial toxin, similar to diphtheria toxin and cholera toxin. The part A (subunit 1 S1) is thought to be involved in NAD-dependent ADP-ribosyltransferase activity, and part B (subunit 2, 3, 4(2), 5, S2, S3, S4, S5,) is involved in the binding to target cells. A variety of the following physiological activities thereof are known: Namely, leuko-cytosis-promoting activity, histamine sensitizing activity, islet-activating activity, adjuvant activity, mitogen activity, glycerol-releasing activity, vascular permeability stimulating activity, and CHO cell-clustering activity. Based on these physiological activities, pertussis toxin is considered a major pathogenic factor in the occurrence of whooping cough, an infection having a serious effect on infants. Accordingly, pertussis toxin is recognized as an important protective antigen in the preparation of a corresponding pertussis vaccine.

In general it is important that toxic activity thereof
is eliminated and the antigenicity thereof is maintained, to ensure the safety when preparing a
pertussis vaccine consisting of such a toxic protein, and accordingly, the toxin is detoxified (i.e., toxoid formation) with agents such as formalin or glutaraldehyde, which modify the lysine residue. Recent report of the gene cloning of pertussis toxin has demonstrated, however, that no lysine residue is contained in the active (i.e., NAD-dependent ADP-ribosyltransferase) site, due to the original toxic activity, and this means that the pertussis toxin is not sufficiently inactivated by the previous toxoid formation method. It is not clear whether or not the remaining toxic activity has an effect on the human body. Therefore, to avoid the above problems, the development of a pertussis toxoid having no biological activities but inducing an antibody for neutralizing the biological activities of pertussis toxin, is required.

Recently, biotechnology, particularly gene manipulation techniques, has been used as a method for an effective mass production of useful, physiologically active proteins. As previously set forth, the gene of pertussis toxin is also cloned, and some expressions are conducted using E. coli.

Nevertheless at the present time, this pertussis toxin consists of 5 subunits, and E. coli produces the recombinant pertussis toxin inside the cells. Thus many problems in industrial production remain.

SUMMARY OF THE INVENTION

The present inventors used mutagens to obtain variants producing a toxic pertussis toxin as a means of resolving the above mentioned problems, and screened Bordetella pertussis variants producing pertussis toxin mutant protein partially devoid of subunits from among many variants, and their findings as follows, led to the present invention: the pertussis toxin mutant protein produced by the variant had a capacity of inducing an antibody which neutralizes the biological activity of pertussis toxin, and the antibody showed the same
protective activity in experimental infectious model using mice in vivo as the antibody induced with pertussis toxoid.

The present invention provides a Bordetella pertussis variant which produces a pertussis toxin mutant protein partially devoid of toxicity by deletion of subunits particularly at least subunit S1. The 79G variants according to the present invention is deposited in the Fermentation Research Institute, Agency of Industrial Science and Technology (1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) with Bikoken Kinki No. 9428 (FERM P-9428 on June 23, 1987, and transferred to the international deposition on June 2, 1988, with FERM BP-1902.

When the variants of the present invention are cultured, a pertussis toxin mutant protein partially devoid of subunits, particularly at least subunit S1, can be harvested from the culture. Preferably, cyclo-dextrin or a derivative thereof is added to the medium at the time of culturing the variant. The thus obtained pertussis toxin mutant protein partially devoid of subunits is applied to the preparation of pertussis vaccine using the conventional method.

BRIEF EXPLANATION OF THE DRAWINGS

Figure 1 shows changes of (a) the growth of each variant according to the present invention in the liquid medium (b) CHO cell-clustering activities observed in supernatants of the cultures, and (c) the amount of immunoreactive substances in supernatants of the cultures reacting with anti-PT antibody, with an elapse of time, respectively;

Fig. 2 is SDS-PAGE of proteins produced by the variant according to the present invention; and,
Fig. 3 shows the results of an analysis by immunoblot of proteins according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The methods of selecting the variants, the characters of the variants and the properties of the proteins produced according to the present invention are des-
cribed below in detail with reference to examples.

Prior to the description of the examples, a description of the materials and methods used is given.

(1) Culture methods for *Bordetella pertussis*

(i) Liquid culture

Bordetella pertussis Tohama phase I strain was shake-cultured in Stainer-Schalte liquid medium to which dimethyl-β-cyclodextrin (CLM) was added, at 35°C for 36 hours.

(ii) Solid culture

A medium having a 1.5% agar solution added to the above mentioned CLM was used as the solid medium, and the Tohama strain was cultured at 35°C for 5 to 7 days. Upon screening the above mentioned, liquid medium was shared equally among each well of a 96 wells-microplate, which was shake-cultured at 35°C for 36 hours.

(2) Assay of CHO cell clustering activity

Since an extremely small amount of pertussis toxin (30 pg/ml) causes clustering of the CHO cells, the presence of toxic activity was screened by this method. 5 x 10^3/200 μl/well of CHO-K1 cells shared among each well of the 96 well-microplate, in which 10 μl of the supernatant of the culture medium of variant (or the standard pertussis toxin) was added, was cultured in 5% CO₂ at 37°C overnight. Then, the degree of clustering, scored (3, 2, 1, 0), was observed and the activities determined in comparison with the test toxin.

(3) Assay of leukocytosis-promoting activity, islet-activating activity, and histamine sensitizing activity:

0.2 ml of the sample was intravenously injected to a ddY-mouse (SPF) aged 4 weeks, and for the assay of leukocytosis-promoting activity, the peripheral leukocytes were collected and counted from the mouse after 3 days. With regard to islet-activating activity, insulin in blood collected from a mouse starved over-
night and to which 0.5 ml of 30% glucose solution was intraperitoneally administered following the measurement of leukocytosis-promoting activity, were measured by RI or ELISA. The measurement of the histamine-sensitizing activity was performed by measuring the rectum temperature at 30 minutes, or determining whether the mouse intraperitoneally injected with 0.5 ml of histamine (4 mg/ml) was alive or dead after 2 hours, following the measurement of leukocytosis-promoting activity. When measuring the neutralizing activities of the antibody for these 3 activities, equal volumes of 1 µg/ml pertussis toxin and the antibodies were mixed to react at room temperature for 30 minutes or more, 0.2 ml of each mixture was intravenously injected to mice (4 weeks of age), and the neutralizing activities were calculated from the activity which was obtained by measuring the affects on each mouse.

(4) Determination of pertussis toxin and pertussis toxin mutant protein:

ELISA was used for the determination, and the measurement of pertussis toxin and pertussis toxin mutant protein was performed by the conventional method using a microplate coated with poly- or monoclonal antibodies against pertussis toxin.

(5) SDS-PAGE and immunoblot:

Pertussis toxin or samples treated with 0.1% SDS without reducing agents were separated on 5% stacking gel and 15% separation gel, were blotted on a nitrocellulose membrane to react with polyclonal antibodies, and were then reacted with HRPO-anti-mouse IgG and the substrates were colored.

Example 1

The Bordetella pertussis Tohama phase I was cultured by the conventional method and collected by centrifugation. The bacteria was then suspended in a Tris-malate buffer to reach a cell concentration of 10^{10} cells/ml, to the suspension of which was added
nitrosoguanidine as mutagen at a total concentration of 25 - 50 μg/ml, and the whole was shaken for 60 min. This treatment decreased the number of live bacteria to about 1/10,000. After collecting in the liquid medium by centrifugation, and an appropriate dilution with the medium in accordance with the number of the live bacteria, the bacteria was plate-cultured on the solid medium for 5 to 7 days. The colonies on the plate were picked up and seeded in the liquid medium, which was shake-cultured for 48 hours. Using the supernatant of the culture, the productivity was estimated by the CHO cell-clustering activity, and the production of the protein reacting with the antibody was detected by ELISA using an anti-pertussis toxin antibody (αPT).

About 12,000 variants of the colonies were screened and divided into the following three groups: 1) negative CHO cell-clustering activity and negative αPT ELISA activity; 2) negative CHO cell-clustering activity and positive αPT ELISA activity; 3) positive CHO cell-clustering activity and positive αPT ELISA activity.

Figure 1 shows changed growth of each representative variant in the liquid medium, CHO cell-clustering activities observed in the supernatants of the cultures, and PT antibody reacting substances, respectively, with an elapse of time. It was found that the variant 79G did not have CHO cell-clustering activity, which is one of the pertussis toxic activities, but reacted with the polyclonal antibody against pertussis toxin, as shown in Fig. 1.

Example 2

Bordetella pertussis is characterized by the phenomenon of phase variation, wherein the wild type (i.e., the pathogenic bacteria) is called phase I bacteria, and the atoxic type is known as phase III of phase IV bacteria; this classification being based on the serotype. Then, the toxicities in mouse by intrace-
rebral inoculation of these variants (ic toxicity), productivity of thermolabile (dermonecrotic) toxin (DNT) and serotypes of agglutinin were studied to elucidate the bacteriological characters of each variant. The results are shown in Table 1. This data demonstrates that the desired variant 79G varies to phase I bacteria, and the variant 19C and the variant 102B varied to phase III bacteria. In addition, the variant 79G is remarkably attenuated in mouse ic toxicity of 2.5×10^7 or more.

Table 1: ic toxicity, DNT productivity, and serotype of variants (living)

<table>
<thead>
<tr>
<th>Strain</th>
<th>Virulence (ic) (\text{LD}_{50})/mouse</th>
<th>DNT (\text{mm}/10^6)</th>
<th>Serotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>19C</td>
<td>$> 2.5 \times 10^7$</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>102B</td>
<td>$> 2.5 \times 10^7$</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>35C</td>
<td>$> 2.5 \times 10^7$</td>
<td>9</td>
<td>1, 2, 4, 7</td>
</tr>
<tr>
<td>79G</td>
<td>$> 2.5 \times 10^7$</td>
<td>11</td>
<td>1, 2, 4, 7</td>
</tr>
<tr>
<td>74E</td>
<td>3.5×10^6</td>
<td>9</td>
<td>1, 2, 4, 7</td>
</tr>
<tr>
<td>19H</td>
<td>1.0×10^4</td>
<td>10</td>
<td>1, 2, 4, 7</td>
</tr>
<tr>
<td>Tohama (wild)</td>
<td>6.3×10^2</td>
<td>10</td>
<td>1, 2, 4, 7</td>
</tr>
</tbody>
</table>

Note: \(\text{LD}_{50} \) was calculated from the mortality of ddy-mouse aged 6 weeks, 2 weeks after an inoculation of 0.005 ml of the serial-diluted medium in which the variants were cultured for 20 hours.

Example 3

It was determined whether each variant secreted the biological activities derived from pertussis toxin, i.e., leukocytosis-promoting activity (LP), islet-acti-
vating activity (IA), and CHO cell-clustering activity in the cultured supernatant, by shake-culturing the variants in CLM medium for 2 days, concentrating the centrifuged supernatants with 2/3-saturated ammonium sulfate, according to the conventional method activities of each sample. The results are shown in Table 2. It was recognized that the variant 79G did not have a leukocytosis-promoting activity and islet-activating activity, as indicators of the biological activities of pertussis toxin, but caused a reaction of the polyclonal antibodies against pertussis toxin.

Example 4

The following experiments were conducted to demonstrate the properties of the variant protein produced by the variant 79G. The supernatant, which was obtained from the shake-cultured medium of the variant 79G, was concentrated with 2/3-saturated ammonium sulfate, and then the concentrated culture supernatant was dialized against PBS 1M NaCl having added thereto, the extract subjected to the anti-PT antibody-coupled Sepharose 4B, and the protein reacted with the anti-PT antibody using 3M KSCN was eluted to obtain a partially purified variant protein (PTMP). Figure 2 illustrates the SDS-PAGE pattern of PTMP: wherein the control and, pertussis toxin (PT) is shown on the left, and the PTMP is shown on the right. This data demonstrates that the variant of the present invention is devoid of the protein band corresponding to S1. Figure 3, which illustrates the patterns of reactivities between the protein and the anti-PT polyclonal antibody, clarifies the defect of the protein corresponding to subunit S1.
Table 2: Biological activities derived from supernatants of liquid medium cultured with the variants

<table>
<thead>
<tr>
<th>Strain</th>
<th>PT activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHO 1)</td>
</tr>
<tr>
<td>19C</td>
<td>< 0.01</td>
</tr>
<tr>
<td>102B</td>
<td>< 0.01</td>
</tr>
<tr>
<td>35C</td>
<td>0.6</td>
</tr>
<tr>
<td>79G</td>
<td>< 0.01</td>
</tr>
<tr>
<td>74E</td>
<td>< 0.01</td>
</tr>
<tr>
<td>19H</td>
<td>100</td>
</tr>
<tr>
<td>Tohama (wild)</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: 1) CHO cell-clustering activity, 2) leukocytosis-promoting activity, 3) islet-activating activity

Example 5

It was determined whether the antibody against the variant protein was able to induce the neutralizing antibody against the native pertussis toxin by immunizing the mice with the partially purified variant protein following the treatment of alum-adjuvant, and obtaining the anti-PTMP anti-serum from the mice. Then, it was determined whether the serum could neutralize the biological activities, particularly the LP, HS, IA, CHO cell-clustering activity, etc. According to the previously mentioned method, the serum (anti-79G-PTMP) and the test PT appropriately diluted were mixed as a control of the anti-native PT antibody at the ratio of 1:1, reacted at room temperature for 30 min. or more and then administered to the mice (10/group) to determine the neutralizing activities. The results are shown in Table 3.
Table 3: PT activity-neutralizing capacity of anti-79G-PTMP antibody on mice

<table>
<thead>
<tr>
<th>Dilution</th>
<th>Serum LP act.</th>
<th>HS act. % Death</th>
<th>IA act.</th>
<th>Anti-CC act.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-79G-PTMP x 2</td>
<td>3,600</td>
<td>0</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Test toxin x 10</td>
<td>1,600</td>
<td>50</td>
<td>460</td>
<td>1,050</td>
</tr>
<tr>
<td>x 50</td>
<td>23,200</td>
<td>100</td>
<td>1,625</td>
<td></td>
</tr>
<tr>
<td>x 250</td>
<td>34,200</td>
<td>100</td>
<td>2,200</td>
<td></td>
</tr>
<tr>
<td>Anti-PT x 10</td>
<td>2,000</td>
<td>50</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Test toxin x 50</td>
<td>14,600</td>
<td>100</td>
<td>1,275</td>
<td>1,050</td>
</tr>
<tr>
<td>x 250</td>
<td>30,000</td>
<td>100</td>
<td>2,400</td>
<td></td>
</tr>
<tr>
<td>Test toxin</td>
<td>-</td>
<td>28,600</td>
<td>100</td>
<td>1,875</td>
</tr>
<tr>
<td>PBS</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>

The anti-79G-PTMP antibody neutralized LP, HS, IA, and CHO cell-clustering activity in the same way as the anti-PT antibody against native PT, and the degrees of neutralization were almost at the same level. This means that the anti-79G-PTMP antibody without the anti-Sl antibody is able to neutralize these biological activities in the same way as the anti-native PT antibody with the anti-Sl antibody.

Example 6

Then, the activity of 79G-PTMP vaccine by the conventional intracerebral inoculation to mice (the ic challenge), using native PT as the control, was determined. Both antibodies were treated with alum-adjuvant, and mice aged 4 weeks (10 mice per group) were conducted the ic challenge of pertussis virulent strain (18-323) 3 weeks after immunization of the mice. The survival rates after the challenge are shown in Table 4. The
experimental mouse infectious method demonstrated that the antigen 79G-PTMP provided a sufficient protective effect on the mice.

Table 4: Protection test of mice by the ic challenge of 79G-PTMP

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Immun, dose µg/mouse</th>
<th>Survival %</th>
</tr>
</thead>
<tbody>
<tr>
<td>79G-PTMP</td>
<td>2.5</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>PT</td>
<td>7.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>60</td>
</tr>
<tr>
<td>P't,S</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 7
To examine the activity of 79G-PTMP vaccine, a passive protection test was carried out by lethal aerosol challenge to new-born mouse aged 3 days using the anti-79G-PT antibody. The results are shown in Table 5. The aerosol challenge to mice demonstrated that anti-79G-PTMP provide a similar protective effect to that of anti-PT.
Table 5: Passive protection test of the anti-79G-PT antibody against lethal aerosol challenge

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Dose per mouse</th>
<th>Survival rate</th>
<th>PD$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>79G-PT</td>
<td>100</td>
<td>15/15</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>13/15</td>
<td>(5.0-18.0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1/15</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>50</td>
<td>14/15</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9/15</td>
<td>(5.3-18.9)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0/15</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>-</td>
<td>0/15</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1) Doses are expressed as PT-ELISA units.
2) Number of surviving/total mice 21 days after aerosol challenge.
3) The 50% protective doses (PD$_{50}$) are expressed as PT-ELISA units. The 95% confidence intervals are indicated in parentheses.

The claims form part of the disclosure of this specification.
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A Bordetella pertussis variant which produces a pertussis toxin mutant protein partially devoid of toxic activity.

2. The Bordetella pertussis variant according to claim 1, which produces a pertussis toxin mutant protein devoid of at least subunit S1.

3. The Bordetella pertussis variant according to claim 1 or claim 2, which is deposited in the Fermentation Research Institute with International Deposition No. FERM BP-1902.

4. A method for preparing a pertussis toxin mutant protein, characterized by culturing a Bordetella pertussis variant and harvesting a pertussis toxin mutant protein partially devoid of subunits from the culture.

5. The method for preparing a pertussis toxin mutant protein according to claim 4, characterized by adding cyclodextrin or a derivative thereof to a medium at the time of culturing the variant.

6. A pertussis toxin mutant protein partially devoid of subunits, and produced by a Bordetella pertussis variant.

7. A pertussis vaccine prepared by using a pertussis toxin mutant protein partially devoid of subunits.

8. A Bordetella pertussis variant as defined in any one of claims 1-3 as hereinbefore described.

9. A method for preparing a pertussis toxin mutant protein according to any of claims 4 or 5 as hereinbefore described.

10. A pertussis toxin mutant protein according to claim 6 as hereinbefore described.
11. A pertussis vaccine according to claim 7 as hereinbefore described.

February 13, 1991
SMITH SHELSTON BEADLE
Fellows Institute of Patent Attorneys of Australia
Patent Attorneys for the Applicant:

TEIJIN LIMITED, NATIONAL INSTITUTE OF HEALTH
and
THE RESEARCH FOUNDATION FOR MICROBIAL DISEASES OF OSAKA UNIVERSITY
Fig. 1(a)
Fig. 1(b)

- Tohama
- 19H
- 35C
- 74E
- 79G
- 19C
- 102B
Fig. 1(c)

- Tohama
- 19H
- 35C
- 74E
- 79G
- 19C
- 102B

μg/ml vs. Hr
Fig. 2

1: PT (Tohama)
2: 79G-PTMP

Fig. 3

1: PT (Tohama)
2: 79G-PTMP