CONVENTION APPLICATION FOR A PATENT

We, HOECHST AKTIENGESELLSCHAFT, of 45, Bruningstrasse, D-6230 Frankfurt/Main 80,
Federal Republic of Germany,

hereby apply for the grant of a Patent for an invention entitled:
DIARYLALKYL-SUBSTITUTED ALKYLAMINES, A PROCESS FOR THEIR PREPARATION, THEIR USE, AND MEDICAMENTS CONTAINING THEM,

which is described in the accompanying complete specification. This application is a Convention application and is based on the application numbered
P37.15.763.9,
for a patent or similar protection made in Federal Republic of Germany on 12th May 1987.

Our address for service is Messrs. Edwd. Waters & Sons, Patent Attorneys,
50 Queen Street, Melbourne, Victoria, Australia.

Dated this 10th day of May 1988,

Hoechst Aktiengesellschaft,

Melbourne

LODGED AT SUB-OFFICE 11 MAY 1988

D. B. Mischlewski

COMMONWEALTH OF AUSTRALIA
Patents Act 1952

DECLARATION IN SUPPORT OF A CONVENTION APPLICATION UNDER PART XVI.
FOR A PATENT.

In support of the Convention application made under Part XVI. of the Patents Act 1952 by HOECHST AKTIENGESELLSCHAFT of 45, Brüningstrasse, D-6230 Frankfurt/Main 80, Federal Republic of Germany for a patent for an invention entitled: DIARYLALKYL-SUBSTITUTED ALKYLAMINES, A PROCESS FOR THEIR PREPARATION, THEIR USE, AND MEDICAMENTS CONTAINING THEM

We, Bernhard Beck, 4 Drosselweg, D-6246 Glashütten/Taunus, Franz Lapice, 2 Sandweg, D-6233 Kelkheim (Taunus), Federal Republic of Germany do solemnly and sincerely declare as follows:

1. We are authorized by HOECHST AKTIENGESELLSCHAFT the applicant for the patent to make this declaration on its behalf.

2. The basic application as defined by Section 141 of the Act was made in the Federal Republic of Germany under No. P 37 15 763.9 on May 12, 1987 by HOECHST AKTIENGESELLSCHAFT

3a) Wolfgang Rüger, 10 Parkstraße, D-6233 Kelkheim (Taunus)
 b) Hansjörg Urbach, 41 Le Lavandoustraße, D-6242 Kronberg/Taunus
 c) Joachim Kaiser, 12 Fichtestraße, D-6000 Frankfurt am Main
 a) - c) Federal Republic of Germany

are the actual inventor(s) of the invention and the facts upon which HOECHST AKTIENGESELLSCHAFT is entitled to make the application are as follows:

The said HOECHST AKTIENGESELLSCHAFT is the assignee of the said

Wolfgang Rüger, Hansjörg Urbach, Joachim Kaiser

4. The basic application referred to in paragraph 2 of this Declaration was the first application made in a Convention country in respect of the invention the subject of the application. DECLARED at Frankfurt/Main, Federal Republic of Germany this 23rd day of March 1988

To the Commissioner of Patents

HOECHST AKTIENGESELLSCHAFT

Prokurist Authorized Signatory

ppa. Beck i.V. Lapice

PAT 510
Specification

Diarylalkyl-substituted alkylamines, a process for their preparation, their use, and medicaments containing them.

The invention relates to diarylalkyl-substituted alkyl-
1 OF 1
DIARYLALKYL-SUBSTITUTED ALKYLAMINES, A PROCESS FOR THEIR PREPARATION, THEIR USE, AND MEDICAMENTS CONTAINING THEM

Example 1.

1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-(4-chlorophenylthio)-ethyl]piperazine

Example 2.

1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-(4-methylphenylthio)-ethyl]piperazine dihydrochloride, melting point 235-238°C

Example 3.

1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-(4-fluorophenylthio)-ethyl]piperazine dihydrochloride, melting point 230-233°C

Example 4.

1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-(4-nitrophenylthio)-ethyl]piperazine dihydrochloride, melting point 223-233°C

Example 5.

1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-(3-chlorophenylthio)-ethyl]piperazine dihydrochloride, melting point 239-249°C
1. A compound of the formula I

\[R^1-S-(CH_2)_m-A-(CH_2)_n-CH_3 \]

in which

\(R^1 \) denotes (C\(_1\)-C\(_6\))-alkyl, straight-chain or branched, (C\(_3\)-C\(_8\))-cycloalkyl, (C\(_2\)-C\(_6\))-alkenyl, straight-chain or branched, (C\(_5\)-C\(_8\))-cycloalkenyl,

\[
\begin{array}{c}
R^4 \\
R^5 \\
R^6
\end{array}
\]

in which

\(R^4, R^5 \) and \(R^6 \) denote, identically or differently and independently of one another, hydrogen, (C\(_1\)-C\(_6\))-alkyl, (C\(_3\)-C\(_8\))-cycloalkyl, hydroxyl, (C\(_1\)-C\(_4\))-alkoxy, (C\(_1\)-C\(_4\))-alkylthio, F, Cl, Br, I, nitro, cyano, trifluoromethyl, formyl, carboxyl, (C\(_1\)-C\(_6\))-alkoxycarbonyl, (C\(_1\)-C\(_6\))-acyl, carbamoyl, N-mono- or N,N-di-(C\(_1\)-C\(_6\))-alkylcarbamoyl, sulfo, (C\(_1\)-C\(_6\))-alkoxysulfonfyl, sulfamoyl, N-mono- or N,N-di-(C\(_1\)-C\(_6\))-alkylsulfamoyl, (C\(_1\)-C\(_6\))-alkylsulfanyl, (C\(_1\)-C\(_6\))-alkylsulfonfyl, amino, unsubstituted or substituted with one or two identical or different (C\(_1\)-C\(_6\))-alkyl, (C\(_1\)-C\(_6\))-acyl or aryl, preferably phenyl, groups,

\(R^2 \) and \(R^3 \) denote, identically or differently and independently of one another, phenyl, phenyl-(C\(_1\)-C\(_4\))-alkyl, the phenyl ring in each case being unsubstituted or substituted by one, two or three substituents from the group comprising (C\(_1\)-C\(_4\))-alkyl, (C\(_1\)-C\(_4\))-alkoxy, F, Cl, Br, I, cyano, nitro or trifluoromethyl,

A denotes an amine
in which
R\(^7\) denotes hydrogen, (C\(_1\)\(-\)C\(_6\))\(-\)alkyl, or aryl, preferably phenyl,
R\(^8\) denotes hydrogen, (C\(_1\)\(-\)C\(_6\))\(-\)alkyl, formyl, (C\(_1\)\(-\)C\(_6\))\(-\)acyl, carboxyl, (C\(_1\)\(-\)C\(_6\))\(-\)alkoxycarbonyl, carbamoyl, N\(-\)mono- or N,N-di-(C\(_1\)\(-\)C\(_6\))\(-\)alkylcarbamoyl,
o denotes 3, 4, 5, 6 or 7,
p denotes 2 or 3,
m denotes 2, 3 or 4, and
n denotes 1, 2, 3 or 4,

and the salts of the compounds of the formula I with physiologically tolerated acids.

6. A medicine for the treatment of cardiovascular and cerebrovascular disorders, which contains an effective amount of a compound I as claimed in claim 1.
COMPLETE SPECIFICATION

Class

Int. Class

Application Number:
Lodged:

Complete Specification Lodged:
Accepted:
Published:

Priority:

Related Art:

Name of Applicant: HOECHST AKTIENGESELLSCHAFT

Address of Applicant: 45 Bruningstrasse, D-6230 Frankfurt/Main 80, Federal Republic of Germany

Actual Inventor: WOLFGANG RUGER, HANSJORG URBACH and JOACHIM KAISER

Address for Service: EDWD. WATERS & SONS, 50 QUEEN STREET, MELBOURNE, AUSTRALIA, 3000.

Complete Specification for the invention entitled:

DIARYLALKYL-SUBSTITUTED ALKYLAMINES, A PROCESS FOR THEIR PREPARATION, THEIR USE, AND MEDICAMENTS CONTAINING THEM

The following statement is a full description of this invention, including the best method of performing it known to:
Specification

Diarylalkyl-substituted alkylamines, a process for their preparation, their use, and medicaments containing them.

The invention relates to diarylalkyl-substituted alkylamines, to a process for their preparation, to their use as medicines, and to medicaments containing them.

Many diarylbutylpiperidine and diarylbutylpiperazine derivatives are, by reason of their action as dopamine antagonists, used therapeutically as neuroleptics. Structurally related compounds from the series of benzhydrylpiperazine and diarylbutylpiperazine derivatives act as inhibitors of the influx of calcium ions into cells, such as, for example, cinnarizine, flunarizine and lidoflazine. They are used as therapeutics for the treatment of cardiovascular and cerebrovascular disorders.

N-Arylpiperazine alkanamides with diarylbutyl substituents of piperazine systems are described in European Patent Application 68,544: they improve the blood supply to the heart and protect it from the consequences of an episode of ischemia, anoxia or hypoxia.

Spanish Patent 504,202 describes benzhydrylpiperazine derivatives in which, however, the benzhydryl group is always directly bonded to one nitrogen of the piperazine, not via a \((\text{CH}_2)_n\) bridge. Moreover, these compounds show merely a vasodilator action, but no calcium-antagonistic action.

Hence, it was surprising that the compounds of the present invention impede to an unusually great extent the influx of calcium ions into cells. Hence they are suitable as therapeutics for the treatment of various diseases, especially of the cardiovascular system.
The present invention is directed at compounds of the formula I

\[\text{R}^1 - \text{S-} (\text{CH}_2)^m - \text{A} - (\text{CH}_2)^n - \text{CH}_i \text{R}^3 \]

which have excellent calcium-antagonistic actions and in which

\[\text{R}^1 \text{ denotes (C}_1-\text{C}_6\text{-alkyl, straight-chain or branched, (C}_3-\text{C}_8\text{-cycloalkyl, (C}_2-\text{C}_6\text{-alkenyl, straight-chain or branched, (C}_5-\text{C}_8\text{-cycloalkenyl,} \]

in which

\[\text{R}^4, \text{R}^5 \text{ and } \text{R}^6 \text{ denote, identically or differently and independently of one another, hydrogen, (C}_1-\text{C}_6\text{-alkyl, (C}_3-\text{C}_8\text{-cycloalkyl, hydroxyl, (C}_1-\text{C}_4\text{-alkoxy, (C}_1-\text{C}_4\text{-alkylthio, F, Cl, Br, I, nitro, cyano, trifluoromethyl, formyl, carboxyl, (C}_1-\text{C}_6\text{-alkoxycarbonyl, (C}_1-\text{C}_6\text{-acyl, carboxamoyl, N-mono- or N,N-di-(C}_1-\text{C}_6\text{-alkylcarboxamoyl, sulfo, (C}_1-\text{C}_6\text{-alkoxysulfonyl, sulfamoyl, N-mono- or N,N-di-(C}_1-\text{C}_6\text{-alkylsulfamoyl, (C}_1-\text{C}_6\text{-alkylsulfinyl, (C}_1-\text{C}_6\text{-alkylsulfonyl, amino, unsubstituted or substituted with one or two identical or different (C}_1-\text{C}_6\text{-alkyl, C}_1-\text{C}_6\text{-acyl or aryl, preferably phenyl, groups,}} \]

\[\text{R}^2 \text{ and } \text{R}^3 \text{ denote, identically or differently and independently of one another, phenyl, phenyl-(C}_1-\text{C}_4\text{-alkyl, the phenyl ring in each case being unsubstituted or substituted by one, two or three substituents from the group comprising (C}_1-\text{C}_4\text{-alkyl, (C}_1-\text{C}_4\text{-alkoxy, F, Cl, Br, I, cyano, nitro or trifluoromethyl,}} \]

A denotes an amine
in which

\(R^7 \) denotes hydrogen, \((C_1-C_6)\)-alkyl, or aryl, preferably phenyl,

\(R^8 \) denotes hydrogen, \((C_1-C_6)\)-alkyl, formyl, \((C_1-C_6)\)
acyl, carboxyl, \((C_1-C_6)\)-alkoxycarbonyl, carbamoyl, N-mono- or N,N-di-(\(C_1-C_6\))-alkylcarbamoyl,

\(o \) denotes 3, 4, 5, 6 or 7,

\(p \) denotes 2 or 3,

\(m \) denotes 2, 3 or 4, and

\(n \) denotes 1, 2, 3 or 4,

and the salts of the compounds of the formula I with physiologically tolerated acids.

Preferred compounds of the formula I are those in which at least one of the radicals and indices has the following meaning:

\(R^1 \) \((C_3-C_8)\)-cycloalkyl,

\(R^4 \) \(R^5 \) \(R^6 \)

in which

\(R^4 \), \(R^5 \) and \(R^6 \) denote, identically or differently and independently of one another, hydrogen, \((C_1-C_6)\)-alkyl, \((C_1-C_4)\)-alkoxy, \((C_1-C_4)\)-alkylthio, F, Cl, Br, I, nitro, cyano, trifluoromethyl, formyl, carboxyl, \((C_1-C_6)\)-alkoxycarbonyl, \((C_1-C_6)\)-acyl, carbamoyl, N-mono- or N,N-di-(\(C_1-C_6\))-alkylcarbamoyl, sulfo, sulfamoyl, N-mono- or N,N-di-(\(C_1-C_6\))-alkylsulfamoyl, \((C_1-C_6)\)-alkylsulfinyl or \((C_1-C_6)\)-alkylsulfonyl.
R^2 and R^3 denote, identically or differently and independently of one another, phenyl, phenylmethyl, the phenyl ring in each case being unsubstituted or substituted by one, two or three substituents from the group comprising methyl, ethyl, methoxy, ethoxy, F, Cl, Br, I, cyano, nitro or trifluoromethyl,

A denotes an amine

in which

R^7 denotes hydrogen, methyl or ethyl,

R^8 denotes hydrogen, carboxyl or carbamoyl,

o denotes 4, 5 or 6,

p denotes 2 or 3,

m denotes 2, 3 or 4, and

n denotes 1, 2, 3 or 4,

and the salts of the compounds of the formula I with physiologically tolerated acids.

Particularly preferred compounds of the formula I are those in which at least one of the substituents and indices has the following meaning:

R^1 (C$_5$-C$_7$)-cycloalkyl,
in which

R^4, R^5 and R^6 denote, identically or differently and independently of one another, hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert. butyl, methoxy, ethoxy, methylthio, fluorine, chlorine, bromine iodine, nitro, cyano, trifluoromethyl, acetyl, methylsulfonyl or methylsulfinyl,

R^2 and R^3 denote, identically or differently and independently of one another, phenyl, phenylmethyl, in each case the phenyl ring being unsubstituted or substituted by one, two or three substituents from the group comprising methyl, fluorine, chlorine, bromine, cyano, nitro or trifluoromethyl,

A denotes an amine

in which

R^8 denotes hydrogen, carboxyl or carbamoyl,

σ denotes 4, 5 or 6,

ρ denotes 2 or 3,

μ denotes 2, 3 or 4, and

ν denotes 2, 3 or 4,

and the salts of the compounds of the formula I with physiologically tolerated acids.

Very particularly preferred compounds of the formula I are those in which at least one of the substituents or indices has the following meaning:
in which

\[R^4, R^5 \text{ and } R^6 \text{ denote, identically or differently and independently of one another, hydrogen, methyl, tert. butyl, methoxy, methylthio, fluorine, chlorine, bromine, nitro, cyano, trifluoromethyl, acetyl, methylsulfonyl or methylsulfinyl,} \]

\[R^2 \text{ and } R^3 \text{ denote, identically or differently and independently of one another, phenyl, phenylmethyl, in each case the phenyl ring being unsubstituted or substituted by fluorine or trifluoromethyl,} \]

\[A \text{ denotes an amine} \]

\[\text{in which} \]

\[R^8 \text{ denotes hydrogen,} \]
\[o \text{ denotes 5,} \]
\[p \text{ denotes 2,} \]
\[m \text{ denotes 2, and} \]
\[n \text{ denotes 3,} \]

and the salts of the compounds of the formula I with physiologically tolerated acids.

Examples of suitable acids of this type are inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid or nitric acid, or organic acids such as tartaric acid, citric acid, malic acid, lactic acid, maleic acid, fumaric acid, malonic acid, oxalic acid, acetic acid, propionic acid, methanesulfonic
acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalene-1,5-disulfonic acid or gluconic acid.

Some of the compounds of the formula I have asymmetric carbon atoms and may thus occur as enantiomers and diastereomers. The invention embraces both the pure enantiomers and the racemates. The racemates can be separated into the enantiomers by conventional methods, for example by salt-formation with optically active acids such as camphorsulfonic acid or dibenzoyl tartric acid, fractional crystallization, followed by liberation of the bases from their salts, or by derivatization with suitable optically active reagents, separation of the diastereomeric derivatives by fractional crystallization or chromatography on silica gel or alumina, and cleavage again. The diastereomers can be separated by conventional methods, such as fractional crystallization or column chromatography.

The present invention also relates to a process for the preparation of compounds of the formula I, which comprises

a) reacting a compound of the formula II

\[\text{R}^1 - \text{S} - (\text{CH}_2)_m - \text{Y} \quad \text{(II)} \]

in which \(\text{R}^1 \) and \(m \) have the same meaning as in formula I, and which \(\text{Y} \) denotes a leaving group which can be displaced nucleophilically, in particular a \(\text{Br} \) or \(\text{I} \) atom or a sulfonic acid radical, preferably a methanesulfonyl, benzenesulfonyl, p-toluenesulfonyl or trifluoromethanesulfonyl radical, with a compound of the formula III

\[\text{Z} - (\text{CH}_2)_n - \text{CH} \quad \text{(III)} \]

in which \(\text{R}^2 \), \(\text{R}^3 \) and \(n \) have the same meaning as in formula I, and in which \(\text{Z} \) denotes
in which
\[\text{R}^7, \text{R}^8, \alpha \text{ and } p \text{ have the same meaning as in formula I,} \]

under the conditions of a nucleophilic substitution,
preferably in a polar organic solvent such as an alcohol,
preferably methanol, ethanol, propanol or isopropanol,
or a lower ketone, preferably acetone, methyl ethyl ketone or methyl isobutyl ketone, or in acetonitrile,
dimethylformamide, dimethyl sulfoxide or sulfolane, or
a hydrocarbon, preferably toluene, with or without the presence of an auxiliary base to capture the acid which is formed, preferably in the presence of potassium carbonate, sodium carbonate, triethylamine, pyridine,
1,5-diazabicyclo[5.4.0]undec-5-ene or 1,5-diazabicyclo-
[4.3.0]non-5-ene, with or without the presence of an alkali metal halide, preferably sodium iodide or potassium iodide, at a temperature between 0 and 160°C, preferably between 20 and 120°C, or

b) reacting a compound of the formula IV

\[\text{R}^1 - S - (\text{CH}_2)_m - Z \]

(IV)

in which \(\text{R}^1 \) and \(m \) have the same meaning as in formula I,
and \(Z \) has the same meaning as in formula III, with a compound of the formula V

\[Y - (\text{CH}_2)_n - \text{CH} \]

(V)

in which \(\text{R}^2, \text{R}^3 \) and \(n \) have the same meaning as in formula I and \(Y \) has the same meaning as in formula II,

under the conditions of a nucleophilic substitution, as described under a),
c) reacting a compound of the formula VI

\[R^1 - SH \]

(VI)

in which \(R^1 \) has the same meaning as in formula I, with a compound of the formula VII

\[Y - (\text{CH}_2)_m - A - (\text{CH}_2)_n - \text{CH}_3 \]

(VII)

in which \(R^2, R^3, A, m \) and \(n \) have the same meaning as in formula I, and \(Y \) has the same meaning as in formula II, either in a polar aprotic solvent such as acetonitrile, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, sulfolane or N-methylpyrrolidone, in the presence of a strong base, such as sodium hydride, potassium hydride, sodamide, lithium diisopropylamide, butyllithium or lithium hexamethyldisilazide, preferably in dimethylformamide or dimethyl sulfoxide in the presence of sodium hydride or sodamide, at a temperature between \(-40^0\) and \(+100^0\)C, preferably between \(-20^0\) and \(+50^0\)C, or in a protic or aprotic polar organic solvent such as a lower alcohol, for example methanol, ethanol or isopropanol, or a lower ketone, preferably acetone, methyl ethyl ketone or methyl isobutyl ketone, or in dimethylformamide, in the presence of a weak to moderately strong base, such as an alkali metal or alkaline earth metal hydroxide or carbonate, preferably sodium carbonate or potassium carbonate, or an amine such as, for example, triethylamine, pyridine, N-ethyl-N-isopropylamine, 1,5-diazabicyclo[5.4.0]undec-5-ene or 1,5-diazabicyclo[4.3.0]non-5-ene, at a temperature between \(0^0\) and \(160^0\)C, preferably between \(20^0\) and \(120^0\)C,
d) reacting a compound of the formula VIII

\[
\text{R}^1 - \text{W} \quad \text{(VIII)}
\]

5

in which \(\text{R}^1 \) has the same meaning as in formula I, and
in which \(\text{W} \) denotes a leaving group which can be dis-
placed nucleophilically, in particular a fluorine,
chlorine, bromine or iodine atom, a nitro, hydroxyl,
alkoxy or trialkylammonium group, or a sulfonic acid
radical, preferably a fluorine or chlorine atom, a
nitro group or a methanesulfonyl, benzenesulfonyl, p-
toluenesulfonyl or trifluoromethanesulfonyl radical,
with a compound of the formula IX

\[
\text{HS-} (\text{CH}_2)_m \cdot \text{A} \cdot (\text{CH}_2)_n \cdot \text{CH} \quad \text{(IX)}
\]

15

in which \(\text{R}^2, \text{R}^3, \text{A}, m \) and \(n \) have the same meaning as in
formula I, under the conditions of a nucleophilic sub-
stitution, for example without solvent or in an aqueous
solvent, preferably in a polar organic solvent, such
as an alcohol, preferably methanol, ethanol, propanol
or isopropanol, or a ketone, preferably acetone, methyl
ethyl ketone or methyl isobutyl ketone, or an ether,
preferably diethyl ether, tert. butyl methyl ether,
dimethoxyethane, tetrahydrofuran or dioxane, or a hal-
ogenated hydrocarbon, preferably dichloromethane,
chloroform or 1,2-dichloroethane, or in acetonitrile,
dimethylformamide, dimethyl sulfoxide or sulfolane,
or in a hydrocarbon, preferably benzene or toluene, or in
a mixed aqueous-organic solvent system with the addi-
tion of a phase-transfer catalyst, with or without
the presence of an auxiliary base to capture the acid which
is formed, preferably in the presence of potassium
carbonate, sodium carbonate, triethylamine, pyridine,
lithium diisopropylamide, n-butyllithium, sodium hy-
dride, potassium hydride, sodamide, 1,5-diazabicyclo-
[5.4.0]undec-5-ene or 1,5-diazabicyclo[4.3.0]non-5-ene,
with or without the presence of copper powder, at a
temperature between -80° and +200°C, preferably between -30° and +120°C.

The compounds of the formula II are known from the literature or can be prepared under analogous conditions from compounds of the formula VI by reaction with α,ω-dihalogenoalkanes or ω-halogenoalkyl sulfonates.

The preparation of the compounds of the formula III has been proposed in German Patent Application P 36 00 390.5, as follows:

The compounds of the formula III with Z equal to

\[
\begin{align*}
\text{RB} & \quad \text{(CH}_2\text{)}_0 \\
\text{HN} & \quad \text{N-} \quad \text{(CH}_2\text{)}_p \\
\text{or} \quad \text{R}^7 & \quad \text{(CH}_2\text{)}_0 \\
\text{HN} & \quad \text{N-}
\end{align*}
\]

in which R⁷, R⁸, ρ and p have the same meaning as in formula I, can be prepared in a manner known per se from compounds of the formula X

\[
\text{SG} \quad \text{A} \quad \text{(CH}_2\text{)}_n \quad \text{R}^2 \quad \text{R}^3
\]

in which R², R³, A and n have the same meaning as in formula I, and in which SG denotes a suitable protective group such as, for example, a carbamate, amide, alkyl or benzyl group, preferably a formyl, ethoxycarbonyl, benzyl or trityl group, by elimination of the protective group under conditions known from the literature, for example acid or alkaline cleavage or hydrogenolysis.

The compounds of the formula III, with Z equal to

\[
\begin{align*}
\text{RB} & \quad \text{N-} \quad \text{(CH}_2\text{)}_p \\
\text{or} \quad \text{R}^7 & \quad \text{(CH}_2\text{)}_0 \\
\text{HN} & \quad \text{N-}
\end{align*}
\]
in which R7, R8, o and p have the same meaning as in formula I, can also be prepared by reaction of compounds of the formula V with amines of the formula Z - H, Z being one of the abovementioned groups, under the conditions of a nucleophilic substitution as described under process variant a),
or by reaction of compounds of the formula V with protected amines

\[
\begin{align*}
\text{SG-N} & \quad \text{R}^8 \\
\text{NH} & \quad \text{R}^7 \\
\text{(CH}_2\text{)}_p & \\
\end{align*}
\]

or

\[
\begin{align*}
\text{SG-N} & \quad \text{R}^7 \\
\text{(CH}_2\text{)}_0 & \\
\text{NH} & \\
\end{align*}
\]

in which R7, R8, o and p have the same meaning as in formula I and SG has the same meaning as in formula X, under the conditions of a nucleophilic substitution as described under process variant a), with subsequent elimination of the protective group under customary conditions, for example by acid or alkaline cleavage or by hydrogenolysis.

The compounds of the formula III, in which Z is

\[
\text{R}^7
\]

in which o has the same meaning as in formula I, and R7 is methyl, can preferably be prepared by reduction with suitable reducing agents, preferably lithium aluminum hydride, from compounds of the same formula but in which R7 denotes an alkoxy carbonyl radical.

The compounds of the formula IV can be prepared from compounds of the formula II by processes analogous to those already described for the preparation of compounds of the formula III from the compounds of the formula V,
from compounds of the formula XI

\[R^1 - S - (CH_2)_m - A - SG \]

(XI)

in which \(R^1, A \) and \(m \) have the same meaning as in formula I, and \(SG \) has the same meaning as in formula X, by elimination of the protective group under the customary conditions, for example by acid or alkaline cleavage or by hydrogenolysis,

or

from compounds of the formula VI by reaction with compounds of the formula XII

\[Y - (CH_2)_m - A - SG \]

(XII)

in which \(A \) and \(m \) have the same meaning as in formula I, \(Y \) has the same meaning as in formula II, and \(SG \) has the same meaning as in formula X, under the conditions of an alklylation reaction as described under process variant c), followed by an elimination of the protective group under the customary conditions.

Most of the compounds of the formula V and VI are known from the literature or can be prepared in analogous manner.

The preparation of compounds of the formula VII has been proposed in German Patent Application P 36 00 390.5, as follows:

The compounds of the formula VII can be prepared from the compounds of the formula III by reaction with \(\alpha,\omega \)-dihalogenoalkanes or \(\omega \)-halogenoalkyl sulfonates under the conditions of a nucleophilic substitution as described under process variant a), or

from the compounds of the formula V by reaction with a compound of the formula XIII.
in which \(m \) has the same meaning as in formula I, \(Y \) has the same meaning as in formula II, and \(Z \) has the same meaning as in formula III, under the conditions of a nucleophilic substitution as described under process variant a),
or
from compounds of the formula V by reaction with a compound of the formula XIV

\[
\text{HO} - (\text{CH}_2)_m - Z
\]

(XIV)

in which \(m \) has the same meaning as in formula I, and \(Z \) has the same meaning as in formula III, under the conditions of a nucleophilic substitution as described under process variant a), to give compounds of the formula XV, followed by conversion of the hydroxyl group into the leaving group \(Y \) by customary methods

\[
\text{HO-} (\text{CH}_2)_m - A - (\text{CH}_2)_n - \text{CH}
\]

(XV).

The compounds of the formula VIII are known or can be obtained by straightforward processes from starting materials which can be bought.

The compounds of the formula IX

\[
\text{HS} - (\text{CH}_2)_m - A - (\text{CH}_2)_n - \text{CH}
\]

(IX)

in which \(R^2, R^3, A, m \) and \(n \) have the same meaning as in formula I, can be prepared from compounds of the formula III by reaction with compounds of the formula XVI

\[
\text{HS} - (\text{CH}_2)_m - Y
\]

(XVI)

in which \(m \) has the same meaning as in formula I, and \(Y \) has the same meaning as in formula II, under the conditions of a nucleophilic substitution as described under process variant a),
or from the compounds of the formula V by reaction with a compound of the formula XVII

\[\text{HS - (CH}_2\text{)}^m \text{ - Z} \quad \text{(XVII)} \]

in which \(m \) has the same meaning as in formula I, and \(Z \) has the same meaning as in formula III, under the conditions of a nucleophilic substitution as described under process variant a),

or from the compounds of the formula VII by substitution of the leaving group \(Y \) by a mercapto group by one of the customary methods.

The compounds of the formula X are prepared using the general processes of protective group chemistry from the compounds of the formula III, or from the compounds of the formula V by reaction with protected amines, as has already been described for the preparation of compounds of the formula III from those of the formula V.

The compounds of the formula XI are prepared using the general processes of protective group chemistry from the compounds of the formula IV, or from the compounds of the formula VI by reaction with compounds of the formula XII, as has already been described for the preparation of compounds of the formula IV from those of the formula VI.

The compounds of the formula XII are prepared using the general processes of protective group chemistry from the compounds of the formula XIII, or by reaction of \(\alpha,\omega \)-dihalogenoalkanes or \(\omega \)-halogenoalkyl sulfonates with protected amines, as has already been described for the preparation of compounds of the formula III from those of the formula V.

The compounds of the formula XV can be prepared from
compounds of the formula III by reaction with compounds of the formula XVIII

\[
\text{HO - (CH}_2\text{)}_m \text{- Y} \quad \text{(XVIII)}
\]

in which \(m\) has the same meaning as in formula I, and \(Y\) has the same meaning as in formula II, under the conditions of a nucleophilic substitution as described under process variant a),

or

from the compounds of the formula V by reaction with a compound of the formula XIV, as has been described for the preparation of compounds of the formula VII from those of the formula V.

The compounds of the formulae XIII, XIV, XVI, XVII and XVIII are known or can be obtained by straightforward processes from starting materials which can be bought.

The compounds of the formula I, according to the invention, exhibit biological actions, in particular calcium-antagonistic actions, and thus have valuable properties for the treatment of all disease states which derive from a disturbance of the calcium balance: in particular they are suitable as agents to lower blood pressure, agents having antianginal effects, agents having antiarhythmic effects, and for improving cerebrovascular blood flow.

Their calcium-antagonistic activity can be shown in the biochemical test model of displacement of tritium-labeled nitrendipine. We carried out this test in a membrane preparation obtained from the cortex of the rat brain and washed several times, the method which we used being essentially that of R. J. Gould et al. (Proc. Natl. Acad. Sci. USA 79, 3656 [1982]). The membrane suspension which had been diluted 1:1500 with TRIS buffer pH 7.4 (50 mM TRIS-HCl, 150 mM NaCl, 1.0 mM CaCl\(_2\) and 0.001% by weight, based on TRIS-HCl, NaCl and CaCl\(_2\) solution, of a neutral surface-active substance such as, for example, Genapol\(^{\text{R}}\) was incubated in 5 ml portions with \(^3\text{H}\)-nitrendipine (0.1 nM
in the test, specific activity 81.3 Ci/mMol) and with the test substances in various concentrations in a shaking water bath at 25°C for 60 min. The membrane fractions were removed by vacuum filtration through Whatman GF/F fiber glass filters, and the radioactivity was measured in a liquid scintillation counter. We determined the unspecific ³H-nitrendipine binding in the presence of 1 µM nifedipine. The IC₅₀ is determined as characteristic quantity, i.e. the concentration of test substance which is able to displace 50% of the radiolabeled nitrendipine.

The IC₅₀ values of the compounds of the formula I, according to the invention, in this model are from about 10⁻⁶ molar to about 10⁻⁹ molar. Thus, they have distinctly greater activity than known comparison compounds such as flunarizine and lidoflazine.

The table which follows contains some of the measured IC₅₀ values:

<table>
<thead>
<tr>
<th>Example No.</th>
<th>IC₅₀ (10⁻⁹ M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Flunarizine 1000
Lidoflazine 430

The compounds of the formula I likewise have high activity in other test models with which it is possible to detect a calcium-antagonistic action, for example in the relaxant action on the previously contracted guinea pig ileum, in the action potential of the isolated guinea pig papillary muscle, or in the action on the coronary flow in the isolated guinea pig heart.

The compounds of the formula I, according to the invention, and their pharmacologically tolerated salts are active
within a wide dose range. The level of the dose administered depends on the nature of the desired treatment, on the mode of administration, on the condition, on the type and on the size of the treated patient. On oral dosage, satisfactory results are achieved with doses of 0.01 mg upwards, preferably from 0.1 mg up to 100 mg, preferably up to 20 mg, of a compound of the formula I per kg of body weight. In humans the daily dose varies between 1 and 800 mg, preferably from 2 to 500 mg, it being possible to give single doses of from 0.5 to 200 mg, preferably once to three times a day. The dose for intravenous and intramuscular administration is 0.1 to 300 mg, preferably 0.5 to 150 mg, each day.

The pharmacologically utilizable compounds of the present invention, and their salts, can be used for the preparation of pharmaceutical products which contain an effective amount of the active substance together with vehicles, and which are suitable for enteral and parenteral administration. It is preferable to use tablets or gelatin capsules which contain the active substance together with diluents, for example lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine, and lubricants such as diatomaceous earth, talc, stearic acid or its salts, such as magnesium or calcium stearate, and/or polyethylene glycol. Tablets additionally contain binders such as magnesium aluminum silicate, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidone and, if necessary, colorants, flavorings and sweeteners. Injectable solutions are preferably isotonic aqueous solutions or suspensions which can be sterilized and can contain auxiliaries such as preservatives, stabilizers, wetting agents and/or emulsifiers, solubilizers, salts to control the osmotic pressure and/or buffer substances. The pharmaceutical products according to the invention which, if desired, can contain additional pharmacologically valuable substances, are prepared, for example, by conventional mixing, granulating and coating processes and contain 0.1% to about 75%, preferably about
1% to about 50%, of the active substance.

The examples which follow are intended to illustrate the invention without confining it to these examples.

Example 1.

1-E4,4-bis(4-fluorophenyl)butyl]-4-E2-(4-chlorophenylthio)-ethyl]piperazine

A solution of 1.15 g (8 mmol) of 4-chlorothiophenol in 20 ml of absolute dimethylformamide was slowly added drop-wise to a suspension of 0.35 g of sodium hydride (55% dispersion in oil) in 8 ml of absolute dimethylformamide, and the mixture was heated at 40°C for one hour. After the evolution of gas had finished, the mixture was heated at 60°C for a short time, then cooled to room temperature and a solution of 3.05 g (7.7 mmol) of 1-E4,4-bis(4-fluorophenyl)butyl]-4-(2-chloroethyl)piperazine in 25 ml of absolute dimethylformamide was added, and the mixture was stirred at room temperature for 24 hours. The solution was added to 110 ml of 0.2 N sodium hydroxide solution, the mixture was extracted with methylene chloride, the extract was dried over magnesium sulfate and concentrated, and the product was purified by column chromatography on silica gel (toluene/ethanol 9:1). Yield: 2.6 g (67%) of oily product. The crystalline dihydrochloride was obtained by dissolving this oil in ethyl acetate and treatment with ethereal HCl, melting point 244°C (decomposition).

The following products were obtained by an analogous preparation route.

Example 2.

1-E4,4-bis(4-fluorophenyl)butyl]-4-E2-(4-methylphenylthio)-ethyl]piperazine dihydrochloride, melting point 235-238°C
Example 3.

1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-(4-fluorophenylthio)ethyl]piperazine dihydrochloride, melting point 230-233°C

Example 4.

1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-(4-nitrophenylthio)ethyl]piperazine dihydrochloride, melting point 223-233°C

Example 5.

1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-(3-chlorophenylthio)ethyl]piperazine dihydrochloride, melting point 239-249°C
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A compound of the form: a I

\[
R^1-S-(CH_2)_m-A-(CH_2)_n-CH R^3
\]

(1)

in which

\(R^1\) denotes (C\(_1\)-C\(_6\))-alkyl, straight-chain or branched, (C\(_3\)-C\(_8\))-cycloalkyl, (C\(_2\)-C\(_6\))-alkenyl, straight-chain or branched, (C\(_5\)-C\(_8\))-cycloalkenyl,

\(R^4, R^5\) and \(R^6\) denote, identically or differently and independently of one another, hydrogen, (C\(_1\)-C\(_6\))-alkyl, (C\(_3\)-C\(_8\))-cycloalkyl, hydroxyl, (C\(_1\)-C\(_4\))-alkoxy, (C\(_1\)-C\(_4\))-alkylthio, F, Cl, Br, I, nitro, cyano, trifluoromethyl, formyl, carboxyl, (C\(_1\)-C\(_6\))-alkoxycarbonyl, (C\(_1\)-C\(_6\))-acyl, carboxamoyl, N-mono- or N,N-di-(C\(_1\)-C\(_6\))-alkylcarboxamoyl, sulfo, (C\(_1\)-C\(_6\))-alkoxysulfonyl, sulfamoyl, N-mono- or N,N-di-(C\(_1\)-C\(_6\))-alkylsulfamoyl, (C\(_1\)-C\(_6\))-alkylsulfinyl, (C\(_1\)-C\(_6\))-alkylsulfonfyl, amino, unsubstituted or substituted with one or two identical or different (C\(_1\)-C\(_6\))-alkyl, (C\(_1\)-C\(_6\))-acyl or aryl, preferably phenyl, groups,

\(R^2\) and \(R^3\) denote, identically or differently and independently of one another, phenyl, phenyl-(C\(_1\)-C\(_4\))-alkyl, the phenyl ring in each case being unsubstituted or substituted by one, two or three substituents from the group comprising (C\(_1\)-C\(_4\))-alkyl, (C\(_1\)-C\(_4\))-alkoxy, F, Cl, Br, I, cyano, nitro or trifluoromethyl,

\(A\) denotes an amine
2. A compound of the formula I as claimed in claim 1, in which at least one of the radicals and indices has the following meaning:

\[R^1 \left(C_3-C_8 \right) -\text{cycloalkyl}, \]

in which

\[R^4 \text{, } R^5 \text{, and } R^6 \text{ denote, identically or differently and independently of one another, hydrogen, } (C_1-C_6)-\text{alkyl, } (C_1-C_4)-\text{alkoxy, } (C_1-C_4)-\text{alkylthio, } F, Cl, Br, I, \]

\[\text{nitro, cyano, trifluoromethyl, formyl, carboxyl, } (C_1-C_6)-\text{alkoxycarbonyl, } (C_1-C_6)-\text{acyl, carbamoyl, } \]

\[N\text{-mono- or } N,N\text{-di-}(C_1-C_6)-\text{alkylcarbamoyl, sulfo, sulfamoyl, } N\text{-mono- or } N,N\text{-di-}(C_1-C_6)-\text{alkylsulfamoyl, } \]

\[(C_1-C_6)-\text{alkylsulfinyl or } (C_1-C_6)-\text{alkylsulfonyl,} \]

\[R^2 \text{ and } R^3 \text{ denote, identically or differently and independently of one another, phenyl, phenylmethyl, the phenyl} \]
ring in each case being unsubstituted or substituted by one, two or three substituents from the group comprising methyl, ethyl, methoxy, ethoxy, F, Cl, Br, I, cyano, nitro or trifluoromethyl,

A denotes an amine

\[
\begin{align*}
\text{N} \quad \text{(CH}_2\text{O)}_p & \quad \text{N} \quad \text{N} - \quad \text{N} \quad \text{N} - \\
\text{R}^7 & \quad \text{R}^8 & \quad \text{R}^7 \quad \text{(CH}_2\text{O)}_p
\end{align*}
\]

in which

R\(^7\) denotes hydrogen, methyl or ethyl,

R\(^8\) denotes hydrogen, carboxyl or carbamoyl,

o denotes 4, 5 or 6,

p denotes 2 or 3,

m denotes 2, 3 or 4, and

n denotes 1, 2, 3 or 4,

and the salts of the compounds of the formula I with physiologically tolerated acids.

3. A compound of the formula I as claimed in claim 1, in which at least one of the substituents and indices has the following meaning:

R\(^1\) \((C_5-C_7)\)-cycloalkyl,

\[
\begin{align*}
\text{R}^4 & \quad \text{R}^5 & \quad \text{R}^6 \\
\end{align*}
\]

in which
R\(^4\), R\(^5\) and R\(^6\) denote, identically or differently and independently of one another, hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert. butyl, methoxy, ethoxy, methylthio, fluorine, chlorine, bromine iodine, nitro, cyano, trifluoromethyl, acetyl, methylsulfonyl or methylsulfinyl.

R\(^2\) and R\(^3\) denote, identically or differently and independently of one another, phenyl, phenylmethyl, in each case the phenyl ring being unsubstituted or substituted by one, two or three substituents from the group comprising methyl, fluorine, chlorine, bromine, cyano, nitro or trifluoromethyl.

A denotes an amine

\[
\begin{aligned}
&\text{in which} \\
&\text{R}\(^8\) denotes hydrogen, carboxyl or carbamoyl, \\
o &\text{denotes 4, 5 or 6,} \\
p &\text{denotes 2 or 3,} \\
m &\text{denotes 2, 3 or 4, and} \\
n &\text{denotes 2, 3 or 4,} \\
&\text{and the salts of the compounds of the formula I with} \\
&\text{physiologically tolerated acids.}
\end{aligned}
\]

4. A compound of the formula I as claimed in claim 1, in which at least one of the substituents or indices have the following meaning:

\[
\begin{aligned}
&\text{R}\(^1\)
\end{aligned}
\]
in which

\[R^4, R^5 \text{ and } R^6 \text{ denote, identically or differently and independently of one another, hydrogen, methyl, tert. butyl, methoxy, methylthio, fluorine, chlorine, bromine, nitro, cyano, trifluoromethyl, acetyl, methylsulfonyl or methylsulfinyl,} \]

\[R^2 \text{ and } R^3 \text{ denote, identically or differently and independently of one another, phenyl, rhenylmethyl, in each case the phenyl ring being unsubstituted or substituted by fluorine or trifluoromethyl,} \]

\[A \text{ denotes an amine} \]

\[\text{in which} \]

\[R^8 \text{ denotes hydrogen,} \]

\[o \text{ denotes 5,} \]

\[p \text{ denotes 2,} \]

\[m \text{ denotes 2, and} \]

\[n \text{ denotes 3,} \]

and the salts of the compounds of the formula I with physiologically tolerated acids.

5. A process for the preparation of compounds of the formula I as claimed in claim 1, which comprises

a) reacting a compound of the formula II

\[R^1 - S - \text{(CH}_2\text{)}_m - Y \quad \text{(II)} \]

in which \(R^1 \) and \(m \) have the same meaning as in formula I, and in which \(Y \) denotes a leaving group which can be displaced nucleophilically, with a compound of the formula III
in which R^2, R^3 and n have the same meaning as in formula I, and in which Z denotes

\[
\begin{align*}
H-N & \quad \text{or} \quad H-N \\
\text{(CH}_2\text{)}_p & \\
\end{align*}
\]

in which

R^7, R^8, o and p have the same meaning as in formula I, under the conditions of a nucleophilic substitution, or

b) reacting a compound of the formula IV

\[R^1 - S - (\text{CH}_2)_m - Z \]

(IV)

in which R^1 and m have the same meaning as in formula I, and Z has the same meaning as in formula III, with a compound of the formula V

\[Y - (\text{CH}_2)_n - \text{CH} \]

(V)

in which R^2, R^3 and n have the same meaning as in formula I, and Y has the same meaning as in formula II, under the conditions of a nucleophilic substitution, or

c) reacting a compound of the formula VI,

\[R^1 - \text{SH} \]

(VI)
in which R^1 has the same meaning as in formula I, with a compound of the formula VII

\[Y - (CH_2)_m - A - (CH_2)_n - CH - R^2 \]

(VII)

in which R^2, R^3, A, m and n have the same meaning as in formula I, and Y has the same meaning as in formula II, in the presence of a weak to moderately strong base,

or

d) reacting a compound of the formula VIII

\[R^1 - W \]

(VIII)

in which R^1 has the same meaning as in formula I, and in which W denotes a leaving group which can be displaced nucleophilically, with a compound of the formula IX

\[HS-(CH_2)_m-A-(CH_2)_n-CH - R^2 \]

IX

in which R^2, R^3, A, m and n have the same meaning as in formula I, under the conditions of a nucleophilic substitution.

6. A medicine for the treatment of cardiovascular and cerebrovascular disorders, which contains an effective amount of a compound I as claimed in claim 1.

7. The use of a compound I as claimed in claim 1 for the preparation of a medicament for the treatment of cardiovascular and cerebrovascular disorders.

DATED this 10th day of May 1988.

HOECHST AKTIENGESELLSCHAFT

EDWD. WATERS & SONS

MELBOURNE. VIC. 3000.