COMMONWEALTH OF AUSTRALIA
Patents Act 1952-1973
APPLICATION FOR A PATENT

McNEILAB, INC.

of Springhouse, Pennsylvania 19477, U.S.A.

We hereby apply for a grant of a Patent for an invention entitled:

4-DIPHENYMETHYL-1-[Oxoalky]IMINO]METHYL-
PIPERDINES AND THEIR DERIVATIVES

which is described in the accompanying complete specification.

This Application is a Convention Application and is based on the
Application(s) numbered: 345,128

for a Patent or similar protection made in U.S.A.

on 2 February 1982

Our address for service is care of GRIFFITH HASSEL & FRAZER,
Patent Attorneys of 71 York Street, Sydney 2000, in the
State of New South Wales, Commonwealth of Australia.

Dated this 28th day of January 1983

McNEILAB, INC.
By their Patent Attorneys
In support of an Application made by: McNEILAB, INC.

for a patent for an invention entitled: 4-DIPHENYLMETHYL-1-[(OXOALKYL) IMINO] METHYL-PYRERPINES AND THEIR DERIVATIVES

I, Herbert I. Sherman
of Springhouse, Pennsylvania, USA

do solemnly and sincerely declare as follows:

1. I am authorized by the above mentioned applicant for the patent to make this Declaration on its behalf.

2. The name and address of each actual inventor of the invention is as follows:

 Malcolm Keith Scott
 555 Paddock Road
 Ambler, Pennsylvania, USA

 and the fact(s) upon which the applicant is entitled to make this application are as follows:
 An assignment dated January 20, 1982 of said invention from said inventor to said applicant.

3. The basic application(s) as defined by Section 141 of the Act was(were) made as follows:

 Country United States of America on February 2, 1982
 in the name(s) Malcolm Keith Scott
 and in
 in the name(s) on
 and in
 in the name(s)

4. The basic application(s) referred to in the preceding paragraph of this Declaration was(were) the first application(s) made in a Convention country in respect of the invention the subject of this application.

Place and date of signing: Piscataway, New Jersey, USA
Declared at this 28th day of December 1982

Signed: Herbert I. Sherman
Position: Assistant Secretary
4-DIPHENYMETHYL-1-[(OXOALKYL)IMINO]METHYL-Piperidines

Claim

1. 4-Diphenylmethyl-1-[(oxoalkyl)imino]methyl-piperidines and their derivatives of the formula:

\[
\begin{align*}
\text{CH}_2 - &\text{C}(\text{CH}_2)_n \text{C}(\text{CH}_2)_m \text{CH}_3 \\
\text{NCH=N(\text{CH}_2)_n \text{C}(\text{CH}_2)_m \text{CH}_3}
\end{align*}
\]

wherein:

- \(n \) is an integer from 1-10, inclusive
- \(m \) is an integer from 0-9, inclusive
- \(n + m = \) ?
- \(Z \) is selected from the following:
 - \(\text{O} \)
 - \(\text{(CH}_2\text{x})\text{O} \) wherein \(x \) is 2 or 3;
 - \(\text{(CH}_2\text{x})\text{S} \) wherein \(x \) is 2 or 3;
 - \(\text{(OR}_1\text{)}_2 \) wherein \(R_1 \) is \text{C}_1-6 loweralkyl;
 - \(\text{NOH} \);
 - and \(\text{H}_2\text{OH} \);
 - and the pharmaceutically acceptable acid addition salts thereof.
PATENTS ACT 1952-1973

COMPLETE SPECIFICATION
(ORIGINAL)

FOR OFFICE USE

Class:
Int. Cl:

Application Number: 10862/83

Complete Specification—Lodged
Accepted:
Published:

Priority:

Related Art:

TO BE COMPLETED BY APPLICANT

Name of Applicant: MCNEILAB, INC.

Address of Applicant: Springhouse, Pennsylvania 19477, U.S.A.

Actual Inventor: Malcolm Keith Scott

Address for Service: Griffith, Hassel & Frater,
71 YORK STREET,
SYDNEY N.S.W., 2000 AUSTRALIA

Complete Specification for the invention entitled: 4-DIPHENYLMETHYL-1-[(OXOALKYL) IMINO] METHYL-PIPERIDINES AND THEIR DERIVATIVES

The following statement is a full description of this invention, including the best method of performing it known to me/us:

-14-
4-DIPHENYMETHYL-1-[(OXOALKYL)IMINO]METHYL-Piperidines
AND THEIR DERIVATIVES

Background of the Invention

This invention relates to 4-diphenylmethyl-1-[(oxoalkyl)-imino]methyl-piperidine derivatives and more particularly to those compounds of Formula II below and their pharmaceutically acceptable acid addition salts, which are inhibitors of gastric acid secretion.

Prior Art

The compounds of the present invention are the oxo or related derivatives of certain compounds disclosed in U.S. Patent No. 4,251,655, such as 4-diphenylmethyl-1-[octylimino]methyl piperidine which has the formula:

$$\text{HO}_2\text{C}\text{CH}_2\text{N}\text{CH=N(CH}_2\text{)}_\text{17}$$ \hspace{1cm} (I)

The present invention is concerned with 4-diphenylmethyl-1-[(oxoalkyl)-imino]methylpiperidines and their derivatives of the following Formula II, and pharmaceutically acceptable acid addition salts thereof:

$$\text{HO}_2\text{C}\text{CH}_2\text{N}\text{CH=N}\left(\text{CH}_2\right)_\text{n}\text{C(CH}_2\text{)}_\text{mCH}_3$$ \hspace{1cm} (II)
wherein:
n is an integer from 1-10, inclusive
m is an integer from 0-9, inclusive
\(n + m = 1-10 \)
\(z \) is selected from the following:

- O;

- \(\text{O} / (\text{CH}_2)^x \text{O} \) wherein \(x \) is 2 or 3;

- \(/ (\text{CH}_2)^x \text{S} \text{S} \) wherein \(x \) is 2 or 3;

- \(\text{OR}_1 \text{O} \) wherein \(R_1 \) is \(C_1-6 \) loweralkyl;

and \(\text{H,OH} \).

The compounds of the present invention all have an oxo or ketone function, or a function related thereto such as an -OH (which may be considered as a reduced ketone), or an oxime \(=\text{N-OH} \), or a ketal \(\text{O} \text{O} \), or thioketal \(\text{S} \text{S} \), or acetal \(\text{OR}_1 \text{O} \).

As used herein, the term "loweralkyl" refers to both straight chain and branched chain alkyls, e.g., methyl, ethyl, propyl, isopropyl, \(t \)-butyl, hexyl, and the like.

Methods of Preparation

The compounds of the present invention may be prepared by the following reaction scheme:
An appropriately activated derivative (IV) of N-formyl-4-(diphenylmethyl)piperidine (III), prepared from III and an activating agent chosen from, for example, phosgene (preferred), Me$_3$O$^+$BF$_4^-$, Et$_3$O$^+$BF$_4^-$, (MeO)$_2$SO$_2$, MeOSO$_2$F, POCl$_3$, PCl$_5$ and the like may be treated with an appropriate primary amine of general structure V to give an amidine of general structure VI. Amidine VI is treated with aqueous acid to obtain a keto amidine of general structure VII. Reduction of VII to the alcohol of general structure VIII may be accomplished with sodium borohydride as the reducing agent. Oximes of general structure IX are prepared by treating VII with hydroxylamine hydrochloride.
Because the subject compounds (II) possess a basic amidine group, they may be converted into the corresponding acid addition salts.

The acid addition salts may be prepared by reaction with an appropriate acid, as for example an inorganic acid such as a hydrohalic acid, i.e., hydrochloric, hydrobromic or hydriodic acid; sulfuric or nitric acid; phosphoric acid; an organic acid such as acetic, propionic, glycolic, pamoic, pyruvic, oxalic, malonic, succinic, maleic, picric, fumaric, malic, tartaric, citric, benzoic, cinna-

mamic, mandelic, methanesulfonic, ethanesulfonic, benzenesulfonic, p-toluenesulfonic, salicylic, 2-naphthalenesulfonic or p-aminosalicylic acid. The therapeutically active, nontoxic acid addition salts of subject compounds (II) and their hydrates or solvates are included within the scope of the present invention.

The starting materials may be prepared by known methods or as illustrated in detail in the Preparations section.

Method of Testing

The compounds of the invention are useful for inhibition of gastric acid secretion as measured by the following test. Female Sprague-Dawley rats are fasted twenty-four hours before testing and are given water ad libidum while being kept in individual cages. On the day of testing, the rats are weighed and are selected so that the rats in each test weigh within a range ± 20 grams.

Surgery is carried out under light ether anesthesia. As soon as the rat is anesthetized its teeth are removed and a mid-line incision is made on the abdomen about 1 1/2 inches in length and the stomach and duodenum are exposed. If at this point the stomach is filled with food
or fecal material, the rat is discarded. If the condition of the stomach is acceptable, a purse string stitch is placed on the fundic portion of the stomach with a suture, taking care not to pierce any blood vessels in the area.

A small nick is then made into the stomach in the center of the purse string, and a cannula, consisting of a small vinyl tube with a flange on one end, is put into the stomach, and the purse string stitch is closed tightly around the flange. The test compound is administered either intraduodenally (i.d.) immediately after surgery or orally (p.o.) one hour prior to surgery at doses generally ranging from about 0.25 to about 160 mg/kg in a volume of 0.5 ml/100 grams rat. Control rats receive the test vehicle, 0.5% aqueous methyl cellulose.

After the surgery and (in the case of i.d. administration) after administration of the test compound, the abdominal wall and skin are closed simultaneously with three or four 18 mm wound clips and a collecting tube is placed on the cannula. Each rat is then placed in a box in which a longitudinal slit has been made to allow the cannula to hang freely and to allow the rat to move about unencumbered. After the rat has been allowed to stabilize for thirty minutes, the collection tube on the cannula is discarded and replaced with a clean tube to receive the gastric juice. Collections are made at one hour. At the end of the study, the cannula is removed and the rat is sacrificed.

The sample of gastric contents collected is drained into a centrifuge tube and centrifuged to pack down the sediment. The volume is read and a 1 ml aliquot of the supernatant is put into a beaker containing 10 ml distilled water and is titrated to pH7 using 0.01 N sodium hydroxide. Results are determined for Volume, Titratable Acid and Total Acid Output, where Volume equals total ml of gastric juice.
minus sediment; Titratable Acid (meq/l) equals amount of
0.01 N sodium hydroxide needed to titrate the acid to pH7;
and Total Acid Output equals Titratable Acid times Volume.
Results are reported as the ED$_{50}$ dose (mg/kg required to
produce an average of 50% inhibition in Total Acid Output
versus controls in all the animals tested for a particular
compound) and as percent inhibition. The compounds of the
invention all demonstrate a significant inhibition both
i.d. and p.o. at less than 80 mg/kg, with preferred com-
ounds having an ED$_{50}$ p.o. less than 20 mg/kg.

It is well-known that excessive secretion of gastric
hydrochloric acid leads to unneeded peptic activity and
endangers the mucous lining of the stomach. The use of
gastric antisecretory agents is thus desirable as an aid
in the prevention and amelioration of distress occasioned
by high concentrations of stomach acid.

The results obtained for representative compounds of the
invention by the above test for inhibition of gastric
secretion are shown in Table I:

TABLE I

<table>
<thead>
<tr>
<th>Compound of</th>
<th>Example No.</th>
<th>n</th>
<th>X</th>
<th>ED$_{50}$ Acute Gastric Fistula, Rat (mg/kg p.o.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4980-46-98</td>
<td>6</td>
<td>O(CH$_2$)$_2$O</td>
<td>3.14</td>
</tr>
<tr>
<td>2</td>
<td>4955-46-98</td>
<td>6</td>
<td>O</td>
<td>14.74</td>
</tr>
<tr>
<td>3</td>
<td>4978-71-98</td>
<td>6</td>
<td>H$_2$OH</td>
<td>7.08</td>
</tr>
<tr>
<td>4</td>
<td>5085-71-98</td>
<td>6</td>
<td>NOH</td>
<td>12.31</td>
</tr>
<tr>
<td>5</td>
<td>5066-46-98</td>
<td>8</td>
<td>O</td>
<td>4.76</td>
</tr>
<tr>
<td>6</td>
<td>5020-11-98</td>
<td>1</td>
<td>O</td>
<td>6.07</td>
</tr>
</tbody>
</table>
Description of the Preferred Embodiments

The compounds within the scope of the invention are those of Formula II wherein:

- n is 1-10
- m is 0-9; $n+m$ is 1-10
- Z is selected from the following:
 - 0;
 - $\frac{N(CH_2)_x}{O}$ wherein x is 2 or 3;
 - $\frac{S(CH_2)_x}{S}$ wherein x is 2 or 3;
 - $(OR_1)_2$ wherein R_1 is C_{1-6} loweralkyl;
 - NOH;

and H,OH.

The preferred compounds are those of Formula II wherein:

- n is 1-10
- m is 0-9; $n+m$ is 1-10
- Z is selected from the following:
 - 0; $\frac{N(CH_2)_x}{O}$; NOH; H,OH

and the most preferred compounds are those in Table I.

Description of the Method of Treatment and Pharmaceutical Compositions

In view of the antisecretory activity of the subject compounds, there is further provided herein a method of
inhibiting gastric acid secretion which comprises inter-
nally administering to a gastric hyperacidic subject (man
or animal) an effective gastric acid secretion inhibiting
amount of a substituted N-iminomethylpiperidine of Formula
(II), in base or acid addition salt form, preferably in
admixture with a pharmaceutically acceptable carrier. If
an acid addition salt form is used, said salt must of
course be pharmaceutically-acceptable and non-toxic.
Pharmaceutical compositions comprising a subject compound
(II) are also considered a further aspect of the present
invention.

To prepare the pharmaceutical compositions of the present
invention, a substituted N-iminomethylpiperidine of
Formula (II) or an acid addition salt thereof is combined
as the active ingredient in intimate admixture with a
pharmaceutical carrier according to conventional
pharmaceutical compounding techniques, which carrier may
take a wide variety of forms depending on the form of
preparation desired for administration, e.g., oral or
parenteral. In preparing the compositions in oral dosage
form, any of the usual pharmaceutical media may be employ-
ed, such as for example, water, glycols, oils, alcohols,
flavoring agents, preservatives, coloring agents, and the
like in the case of oral liquid preparations such as for
example, suspensions, elixirs, and solutions; or carriers
such as starches, sugars, diluents, granulating agents,
lubricants, binders, disintegrating agents, and the like
in a case of oral solid preparations, such as for example,
powders, capsules, and tablets. Because of their ease in
administration, tablets and capsules represent the most
advantageous oral dosage unit form, in which case solid
pharmaceutical carriers are obviously employed. If
desired, tablets may be sugar coated or enteric coated by
standard techniques. For parenterals, the carrier will
usually comprise sterile water, although other ingredi-
ents, for example, to aid solubility or for preservative
purposes, may be included. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents, and the like may be employed. The pharmaceutical compositions herein will contain, per dosage unit, e.g., tablet, capsule, powder, injection, teaspoonful, and the like, from about ten to about 500 milligrams of the active ingredient, and preferably from about fifteen to about 250 milligrams.

The following preparations, showing how to prepare various starting materials and examples are intended to illustrate but not to limit the scope of the present invention.

Preparation of Starting Materials

Preparation 1

A solution of sodium ethoxide in ethanol, prepared by dissolving 23.69 g (1.03 moles) of sodium in 800 ml of absolute alcohol, was treated slowly with ethyl acetoacetate. To this solution was added, in one portion, 308 g (1.04 moles) of N-(5-bromopentyl)phthalimide and the resulting mixture was refluxed for two hours and stirred overnight at 25°. The ethanol was stripped, 1500 ml of water was added to the residue, and the resulting mixture was extracted with 3 x 400 ml of ether. The ether layers were combined, dried over anhydrous sodium sulfate, filtered and stripped to give 350 g of light brown oil. This material was used in the next step without purification.

MN-381
Preparation 2

N-(7-Oxooctyl)phthalimide

A mixture of 350 g of crude N-[7-oxo(6-carboethoxy)octyl] phthalimide and 1000 ml of acetic acid, concentrated hydrochloric acid, and water was refluxed for three hours. The reaction mixture was stripped, the residue dissolved in methylene chloride and basified with 2N NaOH solution. The organic layer was separated, dried over anhydrous sodium sulfate, filtered and stripped to an orange oil, 73% pure by gc (SE-30, 90-280°@ 16°/min). This material was used without further purification in Preparation 3.

Preparation 3

N-[6-(2-Methyl-1,3-dioxolan-2-yl)hexyl]phthalimide

A mixture of 142.0 g (0.52 mole) of N-(7-oxooctyl)- phthalimide, 60 ml of ethylene glycol, 5.80 g of p-toluenesulfonic acid and 290 ml of benzene was refluxed overnight using a Dean-Stark trap to collect the azeotrope. The reaction was cooled, treated with 2N NaOH solution, the organic layer separated, dried over anhydrous potassium carbonate, filtered and stripped to give 125.25 g of orange oil, 76% pure by gc (SE-30, 90-280°@ 16°/min).
Preparation 4

\[
\begin{align*}
& \text{N-}[6-(2-Methyl-1,3-dioxolan-2-yl)hexyl]amine} \\
& \text{A mixture of 125.25 g (0.395 mole) of N-}[6-(2-methyl-1,3-dioxolan-2-yl)hexyl]phthalimide, 23 ml of 85\% hydrazine hydrate, and 370 ml of 95\% ethanol was refluxed for four hours, cooled, filtered and stripped. The residue was mixed with 500 ml of water, basified with 2N NaOH solution and extracted with methylene chloride. The organic layer was separated, dried over anhydrous potassium carbonate, filtered, and stripped to an orange oil. This material was distilled to give 35.70 g (64\%) of clear oil bp 80-83\° (0.100 mm).}
\end{align*}
\]

Preparation 5

Following the procedure described in Preparation 1 and using the appropriate N-bromoalkylphthalimides and \(\beta \)-ketoesters, the following can be prepared:

\[
\begin{align*}
& 5 \\
& 10 \\
& 15 \\
& 20 \\
& 25 \\
& 30 \\
& 35 \\
& \text{Example 9}
\end{align*}
\]

MN-381
Preparation 6
Following the procedure described in Preparation 2 the following can be prepared:

\[
\text{N}(\text{CH}_2)_n\text{C}(\text{CH}_2)_m\text{CH}_3
\]

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Preparation 7
Following the procedure described in Preparation 3 the following can be prepared:

\[
\text{N}(\text{CH}_2)_n\text{C}(\text{CH}_2)_m\text{CH}_3
\]

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 10
Preparation 8

Using the procedure described in Preparation 7, but substituting various carbinols for ethylene glycol, the following acetals may be prepared:

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>R₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>CH₃⁻</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>CH₃CH₂⁻</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>CH₃CH₂⁻</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>CH₃CH₂⁻</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>CH₃CH₂⁻</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>CH₃CH₂⁻</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>CH₃CH₂⁻</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>CH₃CH₂⁻</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>CH₃CH₂⁻</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>CH₃CH₂⁻</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>CH₃CH₂⁻</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>CH₃CH₂⁻</td>
</tr>
</tbody>
</table>

MN-381
Preparation 9

Following the procedure described in Preparation 4, the following can be prepared:

\[
\begin{array}{ccc}
5 & \circ & 0 \\
H_2N(CH_2)_nC(CH_2)_mCH_3 \\
\end{array}
\]

\[
\begin{array}{ccc}
10 & n & m \\
6 & 4 & \\
5 & 3 & \\
4 & 2 & \\
3 & 1 & \\
10 & 0 & \\
9 & 0 & \\
7 & 0 & \\
5 & 0 & \\
4 & 0 & \\
3 & 0 & \\
1 & 6 & \\
1 & 5 & \\
1 & 3 & \\
\end{array}
\]

Preparation 10

Using the procedure described in Preparation 4, the following amino ketals can be prepared:

\[
\begin{array}{ccc}
30 & R_1O & OR_1 \\
R_2N(CH_2)_nC(CH_2)_mCH_3 \\
\end{array}
\]
<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>R_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>CH_3^-</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>25</td>
<td>7</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>CH_3CH_2^-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>CH_3CH_2^-</td>
</tr>
</tbody>
</table>
Preparation 11

Following the method of Fieser, J. Am. Chem. Soc., 76, 1945 (1954) and using the compounds of Preparations 2 and 6 and ethanedithiol the following may be prepared:

```
       n  m
  6   4
  5   3
  4   2
  3   1
  1   0
 10   0
  9   0
  8   0
  7   0
  6   0
  5   0
  4   0
  3   0
  1   6
  1   5
  1   4
  1   3
```
Preparation 12

Using the method of Preparation 9, the following can be prepared:

\[\text{H}_2\text{N}([\text{CH}_2]_n\text{C}(\text{CH}_2)_m\text{CH}_3) \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>n</td>
<td>m</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Example 1

\[
\begin{align*}
\text{4-[(Diphenylmethyl)-1-[[6-(2-methyl-1,3-dioxolan-2-yl)hexyl]iminomethyl]piperidine (E)-2-Butenedioae (1:1) Hydrate (10:7) -McN-4980-46-98}
\end{align*}
\]

A solution of 37.0 g (0.133 mole) of 1-formyl-4-(diphenylmethyl)piperidine in 165 ml of methylene chloride was treated with phosgene until evolution of gas ceased. The resulting solution was stripped, redissolved in methylene chloride, and stripped. The residue was dissolved in 165 ml methylene chloride, cooled to 0°C and treated with a solution of 25.0 g (0.134 mole) of (2-methyl-1,3-dioxolan-2-yl)hexylamine followed by 52.50 g of anhydrous potassium carbonate. The mixture was stirred 4 hours at 25°C, filtered, made basic with 3N NaOH solution and the organic layer separated, dried over potassium carbonate, filtered, and stripped to give an orange oil. This material was passed through neutral alumina using ether as the eluant to give a yellow oil which was rechromatographed under the same conditions affording 27.65 g of clear oil, 99% pure by gc (SE-30, 90-280°C @ 16°C/min). The fumarate salt was prepared from 3.78 g of this material to give 1.15 g (24%) of white solid (recrystallized from i-propanol), m.p. (sinter 143°C) 145.5-148.5°C (Hoover).

Anal. Calc'd for C_{29}H_{40}N_{2}O_{2}.C_{6}H_{4}O_{4}.0.7 H_{2}O:
C, 68.65; H, 7.92; N, 4.85; H_{2}O, 2.18
Found: C, 68.75; H, 7.87; N, 4.96; H_{2}O, 2.16
Example 2

A solution of the free base of 4-(diphenylmethyl)-1-[[6-(2-methyl-1,3-dioxolan-2-yl)hexyl]imino]methyl]piperidine, prepared from 14.20 g (0.032m) of its fumarate salt, 24 ml of 70-72% perchloric acid, 24 ml of water and 100 ml of THF was allowed to stand at 25° for three hours. The THF was stripped and the residue was slurried with 3N NaOH and CH₂Cl₂ until basic. The organic layer was separated, dried over anhydrous K₂CO₃, filtered, and stripped. The resulting oil was passed through neutral alumina using CHCl₃ as an eluant. There was isolated 4.42 g of clear oil, 98% pure by gc. This material was converted to the fumarate salt in isopropanol and recrystallized from isopropanol/acetone to give 2.85 g (17%) white solid m.p. 125.5-128° (Hoover) after drying at 25° in vacuo overnight and equilibrating with atmosphere.

Anal. Calc'ed for C₂₇H₃₆N₂O₄·C₆H₄O₄·0.7 H₂O:

C, 69.82; H, 7.88; N, 5.25; H₂O, 2.36.

Found: C, 70.17; H, 7.86; N, 5.28; H₂O, 2.53.
Example 3

4-(Diphenylmethyl)-1-[(7-hydroxyoctyl)imino]methyl\]
\[4\]methyl\] piperidine 2-Naphthalenesulfonate (1:1) Hydrate (4:1).

To a slurry of 0.25 g (0.0055 mole) of sodium borohydride in 25 ml isopropanol at 0° was slowly added 5.00 g (0.012 mole) of 4-(diphenylmethyl)-1-[(7-oxooctyl)imino]methyl\] piperidine in 5 ml of isopropanol. The reaction was stirred 1.5 hours and treated with 40 ml of water. The resulting mixture was extracted with methylene chloride and the organic layer was separated, dried over anhydrous potassium carbonate, filtered and stripped to give 4.75 g of clear oil, 55% by qc. This material was dissolved in acetone and treated with 1.70 g of 2-naphthalenesulfonic acid followed by a small amount of ether to give a white solid. Subsequent recrystallizations from acetone-ethyl acetate and methyl ethyl ketone afforded 1.50 g (20%) of white solid, which after drying in vacuo at 70°, melted 129.5-132.5 (Hcover).

Anal. Calc'd for C\(_27\)H\(_{38}\)N\(_2\)0\(_7\)C\(_12\)H\(_{18}\)SO\(_3\)0.25 H\(_2\)O;
C, 71.75; H, 7.56; N, 4.52; H\(_2\)O, 0.72.

Found: C, 71.86; H, 7.72; N, 4.62; H\(_2\)O, 0.83.
Example 4

\[
\begin{align*}
\text{4-(Diphenylmethyl)-1-[(7- (hydroxyimino)octyl)imino]-methyl| piperidine 2-Naphthalenesulfonate (1:1) Hydrate (5:1), McN-5085-71-98}
\end{align*}
\]

A solution of 3.00 g (0.0058 mole) of 4-(diphenylmethyl)-1-[[7-oxooctyl]imino)methyl]piperidine sulfate (1:1) Hydrate (10:7), 0.48 g (0.0069 mole) of hydroxylamine hydrochloride and 15 ml of 95% ethanol was stirred two hours at 25°, stripped, and the residue basified in CH₂Cl₂ with 3N NaOH solution. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered, and stripped to an oil. This material was dissolved in acetone and treated with 2-naphthalenesulfonic acid. A solid was filtered off and recrystallized from acetone to give 1.41 g (39%) of white solid, m.p. (sinter 123°) 125-128° (Hoover).

Anal. Calc'd for C₂₇H₃₇N₃O.H₂SO₃·0.2 H₂O:
C, 70.38; H, 7.24; N, 6.65; H₂O, 0.57.
Found: C, 70.30; H, 7.27; N, 6.56; H₂O, 0.75.

Example 5
-22-

4-(Diphenylmethyl)-1-[(9-oxodecyl)imino]methyl]piperidine
(E)-2-Butenedioate (1:1) Hydrate (2:1), MCN-5066-46-98

A solution of 2.76 g (0.006 mole) of 4-(diphenylmethyl)-1-
5-[(8-(2-methyl-1,3-dioxol-2-yl)octyl)imino]methyl]-
piperidine, 4.35 ml of 70-72% perchloric acid, 4.35 ml of
water, and 20 ml of THF was allowed to stand at 25° for 3
hours. The solution was stripped, the residue dissolved
in CH₂Cl₂ and made basic with 3N NaOH solution. The
organic layer was separated, dried over anhydrous K₂CO₃,
filtered and stripped. The fumarate salt of this residue
was prepared and recrystallized from ethanol-acetone,
acetonitrile, and i-propanol-ether to give a solid, m.p.
108-118°. This material was slurried in CH₂Cl₂, treated
with 3N NaOH solution until basic, the organic layer
separated, dried over anhydrous K₂CO₃, filtered and
stripped. Chromatography of the residue through neutral
alumina (CHCl₃ eluant) gave 0.71 g of oil. The fumarate
salt of this material was prepared and recrystallized
twice from i-propanol-ether to give 0.34 g (10%) of white
solid m.p. (sinter 100°) 118.5-122° (Hoover).

Anal. Calc'd for C₈H₂₄N₂O₅·C₄H₈O₄·0.5 H₂O:
C, 71.07; H, 8.13; N, 5.02; H₂O, 1.61
Found: C, 70.60; H, 7.99; N, 5.07; H₂O, 1.41

Example 6

![Chemical Structure](image)
4-Diphenylmethyl-1-[(2-oxopropyl)imino]methyl piperidine
Hydrochloride (1:1) Hydrate (10:1) - McN-5020-11-98

A mixture of 17.40 g (0.046 mole) of 4-(diphenylmethyl)-1-
[(2-methyl-1,3-dioxolan-2-yl)methyl] imino)methyl piperidine, 38 ml of 70-72% perchloric acid, 38 ml of water and 165 ml of THF was allowed to stand at 25°C for three hours. The THF was stripped and the aqueous residue made basic with 300 ml of 3N NaOH solution at 0°C. The resulting mixture was extracted with methylene chloride, the organic layer separated, dried over anhydrous potassium carbonate, filtered and stripped to a yellow-orange oil. This material was dissolved in ether, filtered through diatomaceous earth and treated with ethereal HCl until acidic. The resulting precipitate was filtered and recrystallized twice from ethanol-acetone to give 6.30 g (37%) of white solid, m.p. (darken at 215°C) 221-223.5°C (Hoover).

Anal. Calc'd for C_{22}H_{26}N_{2}O-HCl·0.1 H_{2}O:
C, 70.89; H, 7.36; N, 7.52; H_{2}O, 0.48
Found: C, 70.86; H, 7.42; N, 7.56; H_{2}O, 0.36

Example 7

Using the procedure described in Example 1, the following amidines may be prepared:

```
\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {NCH=N(CH_{2})_{n}C(CH_{2})_{m}CH_{3}};
\end{tikzpicture}
\end{center}
```
Example 8

Using the procedure described in Example 2, the following keto amidines can be prepared:

![Keto Amidine Structure]

\[
N\text{H=N(CH}_2\text{)_n\text{-C(CH}_2\text{)_mCH}_3}
\]

\[
\begin{array}{c|c|c}
 n & m \\
 5 & 4 \\
 4 & 3 \\
 3 & 2 \\
 2 & 1 \\
 1 & 0 \\
 7 & 0 \\
 5 & 0 \\
 4 & 0 \\
 3 & 0 \\
 1 & 6 \\
 1 & 5 \\
 1 & 3 \\
\end{array}
\]
Example 9

Using the procedure described in Example 3, the following alcohols can be prepared:

\[
\begin{align*}
\text{NCH=N(CH}_2\text{)}_n\text{-C(CH}_2\text{)}_m\text{CH}_3
\end{align*}
\]

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example 10

Using the procedure described in Example 4, the following oximes can be prepared:

\[
\begin{align*}
\text{NH} = \text{N} \left(\text{CH}_2 \right)_6 \text{C} \left(\text{CH}_2 \right)_n \text{CH}_3
\end{align*}
\]

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 11

Using the procedure described in Example 1, but substituting the aminoketals described in Preparation 10 for \((2\text{-methyl-1,3-dioxolan-2-yl})\text{hexylamine} \), the following may be synthesized:
Following the procedure of Example 1, but replacing the (2-methyl-1,3-dioxolan-2-yl)hexylamine used therein with the compounds from Preparation 12, the following amidines may be prepared:
<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
CLAIMS
The claims defining the invention are as follows:

1. 4-Diphenylmethyl-1-[(oxoalkyl)imino]methyl-piperidines and their derivatives of the formula:

\[
\begin{array}{c}
\text{CH} \quad \text{HCH=N} \quad \text{R}_1 \quad \text{CH}_2 \quad \text{(II)}
\end{array}
\]

\[
\begin{array}{c}
\text{CH} \quad \text{HCH=N} \quad \text{R}_1 \quad \text{CH}_2 \quad \text{CH}_3
\end{array}
\]

wherein:

- \(n \) is an integer from 1-10, inclusive
- \(m \) is an integer from 0-9, inclusive
- \(n + m = 1-10 \)

2. \(z \) is selected from the following:

- \(0 \)

- \(\text{(CH}_2\text{x}) \)

- \(\text{(CH}_2\text{x}) \text{R}_1 \)

- \(\text{(CH}_2\text{x}) \text{NOH} \)

- \(\text{(CH}_2\text{x}) \text{H}_2\text{OH} \)

- and the pharmaceutically acceptable acid addition salts thereof.
2. A compound according to Claim 1 wherein in said formula
 \[n \text{ is } 1-10 \]
 \[m \text{ is } 0-9 \]
 \[n + m = 1-10 \]
 \[Z \text{ is } O; O; NOH; H,OH \]

and the pharmaceutically acceptable acid addition salts thereof.

3. A compound of Claim 2 which is the free base or acid addition salt form of 4-(diphenylmethyl)-1-[[7-oxooctyl]-imino]methyl]piperidine.

4. A compound of Claim 2 which is the free base or acid addition salt form of 4-(diphenylmethyl)-1-[[7-hydroxyoctyl]imino]methyl]piperidine.

5. A compound of Claim 2 which is the free base or acid addition salt form of 4-(diphenylmethyl)-1-[[7-(hydroxyimino)octyl]imino]methyl]piperidine.

6. A compound of Claim 2 which is the free base or acid addition salt form of 4-(diphenylmethyl)-1-[[9-oxodecyl]-imino]methyl]piperidine.

7. A compound of Claim 2 which is the free base or acid addition salt form of 4-(diphenylmethyl)-1-[[2-oxopropyl]-imino]methyl]piperidine.
8. A compound of Claim 2 which is the free base or acid addition salt form of 4-(diphenylmethyl)-1-\{[(6-(2-methyl-1,3-dioxolan-2-yl)hexyl]imino}methyl)piperidine.

9. A pharmaceutical composition comprising an effective gastric acid secretion inhibiting amount of 4-diphenylmethyl-1-[(oxoalkyl)imino]methyl-piperidines and their derivatives compound of Claim 1, in free base or acid addition salt form together with a pharmaceutically acceptable carrier.

10. A process of inhibiting gastric acid secretion in a mammal in need thereof by internally administering a pharmaceutical composition of Claim 9.

11. A 4-Diphenylmethyl-1-[(oxoalkyl)imino]methyl-piperidine as defined in claim 1 and substantially as herein described with reference to the Examples.

Dated this 28th day of January 1983

McNEILAB, INC.
By their Patent Attorney
GRIFFITH, HASSEL & FRAZER