BEECHAM GROUP p.l.c. of Beecham House, Great West Road, Brentford, Middlesex, England.

hereby apply for the grant of a Standard Patent for an invention entitled:

"PENICILLIN DERIVATIVES"

which is described in the accompanying specification.

Details of basic application(s):—

<table>
<thead>
<tr>
<th>Number</th>
<th>Convention Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>8201751</td>
<td>Great Britain</td>
<td>22 January, 1982</td>
</tr>
</tbody>
</table>

The address for service is care of DAVIES & COLLISON, Patent Attorneys, of 1 Little Collins Street, Melbourne, in the State of Victoria, Commonwealth of Australia.

Dated this 20th day of January 1983

[Signature]

To: THE COMMISSIONER OF PATENTS

(a member of the firm of DAVIES & COLLISON for and on behalf of the Applicant).

Davies & Collison, Melbourne and Canberra.
COMMONWEALTH OF AUSTRALIA
PATENTS ACT 1962
DECLARATION IN SUPPORT OF CONVENTION OR
NON-CONVENTION APPLICATION FOR A PATENT

In support of the Application made for a patent for an invention
entitled: Penicillin Derivatives

I, Ronald Smither
of Beecham House, Great West Road, Brentford, Middlesex, England
do solemnly and sincerely declare as follows:–

I am authorized by
Beecham Group p.l.c. (formerly Beecham Group Limited)
the applicant for the patent to make this declaration on its behalf.

or (b) George Burton of 14 Windborough Road, Carshalton, Surrey, England, and

are the actual inventor(s) of the invention and the facts upon which the applicant are entitled to make the application are as follows:–

by virtue of their employment by Beecham Group p.l.c., whereby the applicant would, if a patent were granted upon an application made by the said actual inventors be entitled to have the patent assigned to it.

The basic application as defined by Section 141 of the Act was made
in United Kingdom on the 22nd January, 1982
by Beecham Group p.l.c.

The basic application referred to in paragraph 3 of this Declaration were
the first application made in a Convention country in respect of the invention the subject of the application.
DOCUMENTS
LODGED WITH
THIS APPLICATION
ARE UNSUITABLE
FOR REPRODUCTION
AND MAY BE
INSPECTED AT THE
PATENT OFFICE A.C.T.
The compound of formula I is active against Gram-negative bacteria.

Claim

1. 6α-Methoxy-6β-[2-(2-methylphenoxy carbonyl)-2-(thien-3-yl)acetamido]penicillanic acid of formula (II):

\[
\text{II) }
\]

or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.
6. An intermediate of formula (X):

wherein \(R^x \) represents a carboxyl blocking group.
The following statement is a full description of this invention, including the best method of performing it known to us:

"PENICILLIN DERIVATIVES"
This invention relates to penicillin derivatives and more particularly to the o-tolyl ester of an α-carboxy 6-methoxy-penicillin.

The penicillin derivative and its salts are active against Gram-negative bacteria which makes them useful as therapeutic and prophylactic agents against bacterial infections in animals, including man and domestic animals, such as cattle and poultry.

U.K. Patent Number 1538051 claims a penicillin derivative of the formula (I):

\[
\text{R.\text{CH.\text{CO.NH}}_{\text{3}}}^{\text{OCH}_{\text{3}}}^{\text{S}}^{\text{N}}^{\text{CO}_{\text{2}}}^{\text{R}_{\text{2}}}\quad (\text{I})
\]

wherein \(R \) is phenyl or 2- or 3-thienyl and \(R^2 \) is
hydrogen, a pharmaceutically acceptable salting ion or a radical which forms an ester which is hydrolysable *in-vivo* in man and \(R^1 \) is a pharmaceutically acceptable ester-forming radical.

Such esters have the advantage that they are orally absorbed in animal species, including man, where they undergo *in-vivo* hydrolysis to produce a degree of blood level antibiotic activity due to the free \(\alpha \)-carboxy 6-methoxy-penicillin that is not attained when the \(\alpha \)-carboxy 6-methoxy-penicillin itself is orally administered to the animal species.

The present invention is based on the discovery that the \(\alpha \)-ortho-tolyl ester of \(\alpha \)-carboxy-3-thienyl-methyl 6-methoxy-penicillin exhibits higher bioavailability after oral administration in mammals, such as man than other esters such as, for example, the phenyl ester.

Accordingly, this invention provides 6\(\beta \)-[2-(2'-methylphenoxy carbonyl)-2-thien-3'-ylacetamido]-6\(\alpha \)-methoxy penicillanic acid of formula (II):
or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.

The compounds of the present invention include the pharmaceutically acceptable esters of the 3-carboxylic acid group which hydrolyse readily in the human body to produce the parent acid, for example acyloxyalkyl groups such as acetoxyethyl, pivaloyloxyethyl, α-acetoxyethyl, α-acetoxybenzyl and α-pivaloyloxyethyl groups; alkoxyacylonyloxyalkyl groups, such as ethoxycarbonyloxyethyl and α-ethoxycarbonyloxyethyl; dialkylaminoalkyl groups such as dimethylaminomethyl, dimethylaminoethyl, diethylaminomethyl or diethylaminoethyl; and lactone groups such as phthalidyl or dimethoxyphthalidyl.

Suitable salts of the 3-carboxylic acid group of the compound of formula (II) include metal salts, eg aluminium, alkali metal salts such as sodium or potassium, alkaline earth metal salts such as calcium or magnesium, and ammonium or substituted ammonium salts, for example those with lower alkylamino such as triethylamine, hydroxy-lower alkylamines such as 2-hydroxyethylamine, bis-(2-hydroxyethyl)-amine or tri-(2-hydroxyethyl)-amine, cycloalkylamines such as bicyclohexylamine, or with procaine, dibenzylamine, N,N-dibenzylethylenediamine, 1-ephenamine, N-ethyl-
piperidine, N-benzyl-β-phenethylamine, dehydroabeitylamine, N,N'-bisdehydroabietylethylene diamine, or bases of the pyridine type such as pyridine, collidine or quinoline, or other amines which have been used to form salts with known penicillins.

The carbon atom marked * in formula (II) is asymmetric. This invention includes both optically active isomers at that position as well as the D,L-mixture.

The compounds of formula (II) may be prepared by reacting a compound of formula (III):

wherein the amino group is optionally substituted with a removable group which permits acylation to take place and wherein R^X is a carboxyl blocking group; with an N-acylating derivative of an acid of formula (IV):

(III)

(IV)
and thereafter if necessary carrying out one or more of the following steps:

(i) removal of any substituent on the amide group;
(ii) removal of any carboxyl blocking group R^x;
(iii) converting the product to a salt or in vivo hydrolysable ester thereof.

Suitable groups which permit acylation to take place and which are optionally present on the amino group of the starting material of the formula (III) include N-silyl, N-stannyl and N-phosphorus groups, for example trialkysilyl groups such as trimethylsilyl, trialkyltin groups such as tri-n-butyltin, groups of formula $-P.R^aR^b$ wherein R^a is an alkyl, haloalkyl, aryl, aralkyl, alkoxy, haloalkoxy, aryloxy, aralkyloxy or dialkylamino group, R^b is the same as R^a or is halogen or R^a and R^b together form a ring; suitable such phosphorus groups being $-P(OC_2H_5)_2$, $-P(C_2H_5)_2$.

Suitable carboxyl-blocking derivatives for the group $-CO_2R^x$ in formula (III) include salts, ester, and amhydride derivatives of the carboxylic acid. The derivative is preferably one which may readily be cleaved at a later stage of the reaction. Suitable salts include inorganic salts, for example alkali metal salts such as the sodium salt, tertiary amine salts, such as those with tri-lower-alkylamines, N-ethylpiperidine, 2,6-lutidine, pyridine, N-methylpyrrolidine, dimethylpiperazone. A preferred salt is with triethylamine.
Suitable ester-forming carboxyl-blocking groups are those which may be removed under conventional conditions. Such groups for R^X include benzyl, p-methoxybenzyl, 2,4,6-trimethylbenzyl, 3,5-di-t-butyl-4-hydroxybenzyl, benzoylmethyl, p-nitrobenzyl, 4-pyridylmethyl, 2,2,2-trichloroethyl, 2,2,2-tribromoethyl, t-amy1, diphenylmethyl, tri-phenylmethyl, adamatyl, 2-benzylhexyphenyl, 4-methyl-thiophenyl, tetrahydrofur-2-yl, tetrahydropyran-2-yl, pentachlorophenyl, p-toluenesulphonylphenylethyl, methoxy-methyl, a silyl, stannyl or phosphorus-containing group, such as described above, an oxime radical of formula $-N=CHR^0$ where R^0 is aryl or heterocyclic, or an in vivo hydrolysable ester radical such as defined above.

The carboxyl group may be regenerated from any of the above esters by usual methods appropriate to the particular R^X group, for example, acid-catalysed hydrolysis, or by enzymically-catalysed hydrolysis, or by hydrogenation. The hydrolysis must of course be carried out under conditions to which the ortho-tolyl ester group in the side-chain is stable.

A reactive N-acylating derivative of the acid (IV) is employed in the above process. Suitable N-acylating derivatives include an acid halide, preferably the acid chloride or bromide. Acylation with an acid halide may be affected in the
presence of an acid binding agent for example tertiary amine (such as triethylamine or dimethylaniline), an inorganic base (such as calcium carbonate or sodium bicarbonate) or an oxirane, which binds hydrogen halide liberated in the acylation reaction. The oxirane is preferably a \((C_1-0)\)-1,2-alkylene oxide - such as ethylene oxide, or propylene oxide. The acylation reaction using an acid halide may be carried out at a temperature in the range -50°C to +50°C, preferably 0°C to +20°C, in aqueous or non-aqueous media such as aqueous acetone, ethyl acetate, dimethylacetamide, dimethylformamide, acetonitrile, dichloromethane, 1,2-dichloroethane, or mixtures thereof. Alternatively, the reaction may be carried out in an unstable emulsion of water-immiscible solvent, especially an aliphatic ester or ketone, such as methyl isobutyl ketone or butyl acetate.

The acid halide may be prepared by reacting the acid (IV) or a salt thereof with a halogenating (e.g. chlorinating or brominating) agent such as phosphorus pentachloride, thionyl chloride or oxalyl chloride.

Alternatively, the N-acylating derivative of the acid (IV) may be symmetrical or mixed anhydride. Suitable mixed anhydrides are alkoxymalonic anhydrides, or anhydrides with, for example carbonic acid monoesters, trimethyl acetic acid, thioacetic acid, diphenylacetic acid, benzoic acid, phosphorus acids (such as phosphoric or phosphorous acids), sulphuric acid or aliphatic or aromatic sulphonie acids (such as p-toluene sulphonic acid). The mixed or symmetrical anhydrides may be generated using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. When a symmetrical anhydride is employed, the reaction may be carried out in the presence of 2,4-lutidine as catalyst. Alternative N-acylating derivatives of acid (IV)

After 2 hours the catalyst was replaced and hydrogenation continued for 16 hours. The catalyst was filtered off and the solution was evaporated in vacuum. The oil was dissolved in dichloro-ethane and treated with 2% sodium 2-ethylhexanocarbox in
are the acid azide, or activated esters such as esters with 2-mercaptopyridine, cyanomethanol, p-nitrophenol, 2,4-dinitrophthal, thiaalcohols such as thiophenol, methanethiol, ethanethiol and propanethiol, halophenols, including pentafluorophenol, monochloroethanol or 8-hydroxyquinoline, N-hydroxy succinimide or 1-hydroxybenztriazole; or amides such as N-acylsaccharins or N-acylphthalimides; or an alkylidine iminoester prepared by reaction of the acid (IV) with an oxime.

Other reactive N-acylating derivatives of the acid (IV) include the reactive intermediate formed by reaction in situ with a condensing agent such as an amidimide, for example N,N'-diethyl-N,N'-dipropyl- or N,N'-diisopropylcarbodiimide, N,N'-di-cyclohexylcarbodiimide; or N-ethyl-N'-Y- dimethylaminopropylcarbodiimide; a suitable carbonyl compound, for example N,N'-carbonyldimidazole or N,N'-carbonyldimethyltriazole; an isoxazoline salt, for example N-ethyl-5-phenylisoxazolidinium-3-sulphonate or N,N-di-butyl-5-methylisoxazolinum perchlorate; or an N-alkoxycarbonyl-2-alkoxy-1,2-dihydroquinoline, such as N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Other condensing agents include Lewis acids (for example BBr\(_3\) - C\(_6\)H\(_6\)); or a phosphoric acid condensing agent such as diethylphosphoryl cyanide. The condensation reaction is preferably carried out in an organic reaction medium, for example methylene chloride, dimethylformamide, acetonitrile, alcohol, benzene, dioxan or tetrahydrofuran.

Compounds of formula (II) may also be prepared by reacting a compound of formula (V):
wherein R^x is as defined above with respect to formula (III) above; with an acid of formula (IV) or a carbanion of formula (IVA):

![Formula (IVA)](image)

and thereafter, if necessary, carrying out one or more of the following steps:

(i) removal of any carboxyl blocking group R^x;
(ii) converting the product to a salt or in vivo hydrolysable ester thereof.

This reaction is preferably carried out at a temperature in the range -10° to $+50^\circ$C in an inert organic solvent, such as methylene dichloride, in the presence of a basic catalyst such as triethylamine, pyridine or a nitrogen-containing aromatic mono- or bi-cyclic compound such as 4-methoxy-(dimethylamino)pyridine, 1-methyl(benz)imidazole or imidazo-[1,2-a]pyridine.

A third method of preparation of the compounds of formula (II) comprises:

a) treating a compound of formula (VI):

![Formula (VI)](image)

Example 3

Example 3
wherein R^X is a carboxyl-blocking group, and R^3 is an acyl group, in particular an acyl group derived from the side-chain of a natural penicillin, such as benzyl penicillin or phenoxymethyl penicillin; with an agent forming an imino halide;
b) treating the imino halide with a compound to introduce a group $Q R_f$ on the imino carbon atom, wherein Q is oxygen, sulphur or nitrogen and R_f is an alkyl group of from 5 to 14 carbon atoms, to form

\[\text{iminothioether, iminothioether, or amidine (where } Q \text{ is } O, S, \text{ or } N \text{ respectively);} \]
c) reacting with an N-acylating derivative of an acid of formula (IV) above;
d) treating with water; and
e) optionally removing the carboxyl-blocking group R^X.

A suitable agent for preparing an imino halide is an acid halide in the presence of an acid binding agent such as a tertiary amine, eg pyridine, triethylamine, or N,N-dimethylaniline. Examples of suitable acid halides are phosphorus pentachloride, phosgene, phosphorus pentabromide, phosphorus oxychloride, oxalyl chloride and p-toluene sulphonic acid chloride. Phosphorus pentachloride and phosphorus oxychloride are preferred. The reaction may be conducted under cooling, preferably at temperatures from 0°C to -30°C when phosphorus pentachloride is employed. The amount of the tertiary amine is preferably 3 - 5 mols per mol of phosphorus pentachloride. It is also preferable to use the phosphorus halide in an amount slightly in excess of that of the starting material.

The resulting imino compounds are then treated to introduce a $-Q R_f$ group onto the imino carbon atom. This is preferably effected by reacting the imino halide with a corresponding alcohol. Examples of
suitable alcohols for reaction with the imino halide are aliphatic alcohols containing from 1 to 12 carbon atoms, preferably 1 to 5 carbon atoms, such as methanol, ethanol, propanol, isopropyl alcohol, amyl alcohol and butyl alcohol, and aralkyl alcohols such as benzy alcohol and 2-phenylethanol.

The reaction of the alcohol with the imino halide is preferably effected in the presence of an acid binding agent, such as a tertiary amine, preferably pyridine, and the reaction is usually carried out without isolating the imino halide from the reaction mixture.

Thereafter the imino compound is caused to react with an N-acylating derivative of an acid of formula (IV). The comments made above concerning such N-acylating derivatives, and the conditions for carrying out acylations also apply in this case. In particular, the presence of a tertiary amine such as pyridine or N,N-dimethylaniline in the reaction system is preferred.

Finally, the product is treated with water. The water treatment may be conducted together with the isolation of the desired material. That is the reaction mixture may be added to water or a saturated aqueous solution of sodium chloride and then the aqueous layer formed is separated from the organic solvent layer.

The compounds of formula (II) may also be prepared by esterification of a compound of formula (VII) or a salt thereof:

![Chemical Structure](VII)
wherein R^X is a carboxyl blocking group; with compound of formula (VIII):

$$\text{OH} \quad \text{CH}_3$$

(VIII)

and thereafter if necessary carrying out one or more of the following steps:

1. Removal of any carboxyl blocking groups R^X;
2. Converting the product to a salt or in vivo hydrolysable ester thereof.

Esterification may be performed by any conventional method, for example by reaction of the free acid with a compound of formula (VIII) in the presence of a catalyst.

Alternatively, a reactive esterifying derivative of the compound of formula (VII) may be reacted with the compound of formula (VIII) or an alkali metal or alkaline earth metal salt thereof. Suitable salts include the lithium, sodium or magnesium salts.

Reactive esterifying derivatives of the acid (VII) include the reactive intermediate formed by reaction in situ with a condensing agent such as a carbodiimide, for example N,N-diethyl-, dipropyl- or diisopropylcarbodiimide, N,N'-di-cyclohexylcarbodiimide, or N-ethyl-N'-γ-dimethylaminopropylcarbodiimide; a suitable carbonyl compound, for example N,N'-carbonyldiimidazole or N,N'-carbonyldiimidazole; an isoxazolinium salt, for example N-ethyl-5-phenylisoxazolinium-3-sulphonate or N-t-butyl-5-methylisoxazolinium perchlorate;
or an N-alkoxycarbonyl-2-alkoxy-1,2-dihydroquinoline, such as N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Other condensing agents include Lewis acids (for example BBr$_3$ - C$_6$H$_6$); or a phosphoric acid condensing agent such as diethylphosphorylcyanide. The condensation reaction is preferably carried out in an organic reaction medium, for example methylene chloride, dimethylformamide, acetonitrile, alcohol, benzene, dioxan or tetrahydrofuran.

A further method for the preparation of compounds of formula (II) comprises reacting a compound of formula (IX):

![Chemical Structure](attachment:ChemicalStructure.png)

wherein R^x is a carboxyl blocking group and R^4 is C$_{1-6}$ alkyl, benzyl or an aryl group; A) with chlorine or bromine at -25°C to -80°C and subsequently decomposing the resultant halosulphonium halide with methanol and a base; or B) with methanol in the presence of a metal ion, such as a tellurium (III), lead (IV), silver, copper (II), bismuth (V), mercury, lead, cadmium or thallium salt, and thereafter if necessary:

i) removing any carboxyl blocking group;

ii) converting the product to a salt or ester thereof.

Preferably this latter reaction is carried out at -50°C to +25°C in a solvent.
A further method for the preparation of compounds of formula (II) comprise hydrolysis of a compound of formula (X):

\[
\text{CH} = \text{C} = \text{N} \quad \text{SC} \quad \text{CH}_3 \quad \text{CO}_2 \text{Rx} \quad \text{(X)}
\]

wherein \(\text{Rx}\) represents a carboxyl blocking group and thereafter if necessary carrying out one or more of the following steps:

(i) removal of a carboxyl blocking group \(\text{Rx}\);

(ii) converting the product to a salt or \textit{in vivo} hydrolysable ester thereof.

Preferably the hydrolysis is carried out at a pH in the range 1 to 5 preferably 2 to 4, at ambient temperature. Suitable solvents include tetrahydrofuran or acetone.

The intermediate of formula (X) may be prepared by

a) treating a compound of formula (XI):

\[
\begin{align*}
\text{OCH}_3 \\
\text{CO}_2 \text{Rx} \\
\text{CH}_3
\end{align*}
\]
wherein R^X is a carboxyl blocking group with an acid halide;

b) treating the thus formed compound of formula (XII):

\[
\begin{align*}
\text{[Diagram]} \\
\text{(XII)}
\end{align*}
\]

with a double bond addition reagent;

c) reacting the resulting product with a compound of formula CH_3OM wherein M is an alkali metal or thallium.
Examples of suitable acid halides are phosphorus pentachloride, phosgene, phosphorous pentabromide, phosphorus oxychloride, oxalyl chloride and p-toluene sulphonic acid chloride. Phosphorus pentachloride and phosphorus oxychloride are preferred. The reaction may be conducted under cooling, preferably at temperatures from +5°C to -30°C (preferably about 0°C) when phosphorus pentachloride is employed. The amount of the tertiary amine is preferably 3-5 mols per mol of phosphorus pentachloride. It is also preferable to use the phosphorus halide in an amount in excess of that of the starting material.

Suitable double bond addition reagents for step (b) of the above process include diatomic halogen molecules or a compound of formula Br.N3. Preferably the double bond addition reagent is chlorine.

The reaction is suitably carried out in an inert solvent, such as tetrahydrofuran or a halogenated hydrocarbon e.g. chloroform, at low temperatures such as +20°C to -100°C preferably -50°C to -80°C, e.g. at about -70°C.

The resulting product is then reacted with an alkali metal or thallium methoxide of formula CH3OM. Suitably M may be sodium or potassium, but is preferably lithium.

The reaction is generally carried out in a polar aprotic solvent, preferably methanol, preferably in the presence of another inert solvent, such as tetrahydrofuran as long as it does not freeze at the temperature of the reaction. The reaction is suitably carried out at low temperature, preferably in the range -40°C to 80°C, preferably about -75°C. The reagent CH3OM may be formed in situ by the use of methanol together with a base such as butyl lithium, lithium diisopropylamide, lithium or...
sodium hydride or preferably butyl lithium.

The antibiotic compounds according to the invention may be formulated for administration in any convenient way for use in human or veterinary medicine, by analogy with other antibiotics, and the invention therefore includes within its scope a pharmaceutical composition comprising a compound of formula (II) above together with a pharmaceutical carrier or excipient.

The compositions may be formulated for administration by any route, although an oral administration is preferred. The compositions may be in the form of tablets, capsules, powders, granules, lozenges, or liquid preparations, such as oral or sterile parenteral solutions or suspensions.

Tablets and capsules for oral administration may be in unit dose presentation form, and may contain conventional excipients such as binding agents for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinyl-pyrollidone; fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricants, for example magnesium stearate, talc, polyethylene glycol or silica; disintegrants, for example potato starch; or acceptable wetting agents such as sodium lauryl sulphate. The tablets may be coated according to methods well known in normal pharmaceutical practice. Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, glucose syrup, gelatin, hydroxyethylcellulose, carboxymethyl cellulose, aluminium
sterate gel or hydrogenated edible fats, emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil, fractionated coconut oil, oily esters such as glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid, and if desired convention flavouring or colouring agents.

Suppositories will contain conventional suppository bases, eg cocoa-butter or other glyceride.

For parenteral administration, fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle, water being preferred. The compound, depending on the vehicle and concentration used, can be either suspended or dissolved in the vehicle.

In preparing solutions the compound can be dissolved in water for injection and filter sterilized before filling into a suitable vial or ampoule and sealing. Advantageously, adjuvants such as local anaesthetic, preservative and buffering agents can be dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum. The dry lyophilized powder is then sealed in the vial and an accompanying vial of water for injection is supplied to reconstitute the liquid prior to use. Parenteral suspensions are prepared in substantially the same manner except that the compound is suspended in the vehicle instead of being dissolved and sterilization cannot be accomplished by filtration. The compound can be sterilized by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.
The compositions may contain from 0.1% to 50% by weight, preferably from 10% to 60% by weight, of the active material, depending on the method of administration. Where the compositions comprise dosage units, each unit will preferably contain from 50 to 500 mg, of the active ingredient. The dosage as employed for adult human treatment will preferably range from 100 to 2,000 mg, per day, for instance 1,500 mg, per day, depending on the route and frequency of administration.

The compound of formula (II) may be the sole therapeutic agent in the compositions of the invention or a combination with other antibiotics may be employed. Advantageously the compositions also comprise a compound of formula (XIII) or a pharmaceutically acceptable salt or ester thereof:

![Chemical structure](XIII)

wherein A is hydroxyl, substituted hydroxyl, thiol, substituted thiol, amino, mono- or di-hydroxyethyl substituted amino, or mono- or di-acylamino.

Preferably, A is hydroxyl, i.e. the compound of formula (X) is clavulanic acid or a pharmaceutically acceptable salt thereof, in particular an alkali metal salt.

The following Examples illustrate the preparation of some of the compounds of this invention. (Temperatures are expressed in °C).
Example 1

Sodium 6,α-methoxy-6,β-[2-(2-methylphenoxycarbonyl)-2-(thien-3-yl)-acetamido] penicillanate.

i) Benzyl 6,α-methoxy-6,β-[2-(2-methylphenoxycarbonyl)-2-(thien-3-yl)-acetamido] penicillanate.

A solution of 2-methylphenyl hydrogen thien-3-ylmalonate (13.8g) in diethylether (200ml) was treated with DMP (6 drops) and oxalyl chloride (5 ml). After 1 hour at room temperature the reaction was evaporated to dryness in vacuo. The acid chloride was redissolved in dichloromethane (75ml) and added dropwise to an ice-cold solution of benzyl 6,α-methoxy-6,β-aminopenicillanate (14.72g) and pyridine (6.8ml) in dichloromethane (150ml). After 2 hours the solution was washed successively with 0.5N hydrochloric acid (100ml), water (100ml), 1N sodium bicarbonate solution (100ml) and water (3 x 100ml). After drying over magnesium sulphate and filtering the solution was evaporated to dryness in vacuo. The product was isolated by chromatography on silica eluting with ethyl acetate in light petroleum b.p.60-80°, 12.5% grading to 50%, yield 12.0g, νmax (CHC\textsubscript{3}) 1770, 1740, 1690 1485, 1315, 1170 and 1110 cm-1, 1H\textsubscript{13}C\textsubscript{13} 1.32 (6H, s, 2 x 2CH\textsubscript{3}), 2.07 (3H, s, ArCH\textsubscript{3}), 3.40, 3.42 (3H, s, 2 x 2H), 4.42 (1H, s, 3H), 5.02 (1H, s, CHCONH), 5.16 (2H, s, OCH\textsubscript{3}Ph), 5.58 (1H, s, 5H), 6.90-7.80 (13H, m, thien-3-yl, Ph, Ar, CONH).

ii) Sodium 6,α-methoxy-6,β-[2-(2-methylphenoxycarbonyl)-2-(thien-3-yl)-acetamido] penicillanate.

A solution of benzyl 6,α-methoxy-6,β-[2-(2-methylphenoxycarbonyl)-2-(thien-3-yl)-acetamido] penicillanate (9g) in ethanol (135ml) and water (10ml) was hydrogenated in the presence of 10% Pd/C (9g).
After 2 hours the catalyst was replaced and hydrogenation continued for 16 hours. The catalyst was filtered off and the solution was evaporated in vacuo. The oil was dissolved in diethyl ether and treated with 2N sodium 2-ethylhexanoate in 4-methylpentan-2-one (7.5ml). The precipitated sodium salt was filtered off, washed thoroughly with ether and dried, yield 6.0g. ν_max (KBr)3400(br), 1760, 1690, 1610, 1410 and 750 cm\(^{-1}\); δ(D\(_2\)O) 1.43(6H, s, 2 × CH\(_3\)), 1.92(3H, s, ArCH\(_3\)), 3.38, 3.50 (3H, 2x, OCH\(_3\)), 4.30(1H, s, 3H), 5.63(1H, s, 5H), 6.8-7.7 (7H, m, thien-3-yl, Ar).

Note: DMSO= N, N- dimethylformamide.
Example 2

Sodium 6,α-methoxy-6,β-[2-(2-methylphenoxy carbonyl)-2-(thien-3-yl) acetamido] penicillanate.

6,β-[2-Carboxy-2-(thien-3-yl) acetamido]-6,α-methoxy penicillanic acid (5.38g, 13mmole) in ethyl acetate (10ml) was cooled in an ice bath and treated with o-cresol (1.54g, 14.3mmole) followed by N,N'-dicyclohexylcarbodiimide (3.24g, 15.7mmole). The mixture was stirred for 45 minutes then the precipitated dicyclohexylurea filtered off and washed with ethyl acetate (20ml). The filtrate was extracted successively with 0.14N sodium bicarbonate (25ml), 0.2N sodium bicarbonate (50ml, 25ml) then water (25ml). The combined aqueous extracts were washed with ether then acidified to pH4.0 with 40% phosphoric acid and extracted with ether (3 x 50ml). The ether solution was washed with water (2 x 50ml) and saturated brine (25ml) dried over magnesium sulphate and evaporated to a foam in vacuo, 3.81g. This in ether (100ml) was treated with 2N sodium 2-ethylhexanoate in 1-methylpentan-2-one (3.78ml) and the precipitated sodium salt collected, washed with ether and dried in vacuo, yield 3.45g, identical with the material described in example 111).
Example 3

Crystallisation of 6,α-methoxy-6,β-[2-(2-methylphenoxy-carbonyl)-2-(thien-3-yl) acetamido] penicillanic acid.

6,α-Methoxy-6,β-[2-(2-methylphenoxy-carbonyl)-2-(thien-3-yl) acetamido] penicillanic acid (3.18g, prepared as in example 2. 66% pure by h.p.l.c. assay) was dissolved in warm 1-methylpentan-2-one (8ml) and set aside to crystallise overnight. The crystals were collected, washed with ether and dried in vacuo. Yield 2.02g, 86% pure by h.p.l.c. assay. IR max (KBr) 3340, 1755 (br), 1697, 1692, 1333, 1155 and 1105 cm⁻¹.

δ [CD₂CO] 1.32, 1.43 (6H, 2xs, 2xCH₃), 2.19 (3H, s, ArCH₃), 3.58 (3H, s, OCH₃), 4.33 (1H, s, OCH₃), 5.51 (2H, s, 2xCH₂ONH), 6.9-7.8 (7H, m, thien-3-yl, Ar), 9.71 (1H, s, CONH), this nmr, run immediately after the solution was made up, showed the crystalline material to be a single diastereoisomer at the side chain methine. After 1 hour the spectrum had changed to show a mixture of R and S diastereoisomers, 1.32, 1.43, 1.49, 1.52 (6H, 4xs), 2.19, 2.21 (3H, 2xs), 3.12, 3.56 (3H, 2xs), 4.33, 4.38 (1H, 2xs), 5.15 (1H, bs), 5.56, 5.58 (1H, 2xs), 6.9-7.8 (7H, m), 9.21, 9.29 (1H, 2xs).

Diethyl ether and ethanol have been used as alternative crystallisation solvents.

A sample crystallised from diethyl ether had 0.54, 5.8, 5.15, 18H, 4.76, 3.78, 5.1, 5.15; 8, 12, 36, 12, 49%. C₃₈H₄₇N₄O₇ requires C, 54.75, H, 4.79; N, 5.55; S, 12.70%.
Example 4

Acetoxyethyl 6,α-methoxy-6β-[2-(2-methylphenoxyacarbonyl)-2-(thien-3-yl)-acetamido] penicillanate.

A solution of sodium 6,α-methoxy-6β-[2-(2-methylphenoxyacarbonyl)-2-(thien-3-yl) acetamido] penicillanate (1.03g) and bromomethyl acetate (0.28ml) in DMF (5ml) was stirred at room temperature for 3 days, diluted with ethyl acetate (60ml), washed with water (3x30ml) and saturated brine (30ml), dried over magnesium sulphate, filtered and evaporated to dryness in vacuo. The product was isolated by chromatography on silica eluting with ethyl acetate in cyclohexane, 20% grading to 40%, yield 0.35g, ηmax (CHCl3) 1770, 1695, 1190, 1320, 1165, and 960 cm⁻¹, δ(DCl3) 1.41(6H,2x2CH₃), 2.13, 2.17(3H,2×,ArCH₃) 3.48, 3.53(3H,2×,OCH₃), 4.02(1H,s,3H), 5.24(1H,CHCON), 5.72(1H,ArH), 5.90(2H,ArCH₂), 6.90-7.70 (7H,m,thien-3-yl,Ar), 8.10, 8.20 (1H,2×,CON) (1H,2×,CON).
Example 5

Pivaloyloxymethyl 6,α-methoxy-6,β-[2-(2-methylphenoxy carbonyl)-2-(thien-3-yl)-acetamido] penicillanate.

A solution of sodium 6,α-methoxy-6,β-[2-(2-methylphenoxy carbonyl)-2-(thien-3-yl) acetamido] penicillanate (1.03g) and bromomethyl pivalate (0.58g) in DMSO (5ml) was stirred at room temperature for 3 days, diluted with ethyl acetate (60ml), washed with water (3x30ml) and saturated brine (30ml), dried over magnesium sulphate, filtered and evaporated to dryness \textit{in vacuo}. The product was isolated by chromatography on silica eluting with ethyl acetate in cyclohexane, 20% grading to 40%, yield 0.63g, \textit{\nu}max (CHCl₃) 1765(br, 1690, 1190, 1110 (br) and 980 cm⁻¹, 5 (CDCl₃) 1.23[9H, s, C(CH₃)₃], 1.40, 1.43 (6H, 2x s, 2x CH₃), 3.18, 3.52 (3H, 2x s, OCH₃), 4.51 (1H, s, CHCON), 5.19 (1H, s, CH), 5.91 (2H, s, OOH2O), 700-780 (7H, m, thien-3-yl, Ar) 7.98, 8.10 (1H, 2x s, CONH)
Example 6

Benzyl 6\(\alpha\)-methoxy-6,\(\beta\)-[2-(2-methylphenoxy carbonyl)] -
2-(thien-3-yl)acetamido]penicillanate

Benzyl 6\(\alpha\)-methoxy-6,\(\beta\)-[2-carboxy-2-(thien-3-yl)]-
acetamido]penicillanate (5.04 g) in dichloromethane (20
ml) was cooled in an ice bath then treated with 2-
 methylphenol (1.08 g) followed by N,N'-dicyclohexyl-
carbodiimide (2.06 g). The mixture was stirred over-
night, filtered and the filtrate evaporated to
dryness. The residue was dissolved in ether (200 ml)
then washed successively with water, N hydrochloric
acid, water, 0.5N sodium bicarbonate solution, water
and brine, dried over anhydrous magnesium sulphate and
evaporated to a foam (6.0 g), the spectral
characteristics of which were identical to those of the
material prepared in example 1(i).
Example 7

Sodium 6α-methoxy-6,β-[2-(2-methylphenoxy carbonyl)-2-(thien-3-yl)acetamido] penicillanate

i) 4-Nitrobenzyl 6α-methoxy-6,β-[2-(2-methylphenoxy carbonyl)-2-thien-3-yl)acetamido] penicillanate

2-(2-Methylphenoxy carbonyl)-2-(thien-3-yl)acetyl chloride (prepared from 2-methylphenyl hydrogen thien-3-ylmalonate (11.86 g) as in example 1 (i)) in isopropyl acetate (15 ml) was added dropwise to 4-nitrobenzyl 6β-amino-6α-methoxypenicillanate (13.1 g) and pyridine (6.2 ml) in isopropyl acetate (85 ml) cooled to -120°. The mixture was diluted with dichloromethane (50 ml), stirred for 30 minutes then washed with water, N hydrochloric acid, water, saturated sodium bicarbonate solution, water and brine, then dried and evaporated to a yellow foam (20.9 g)

δ(CDCl$_3$) 1.32 (6H, s, 2x2CH$_3$), 2.07 (3H, s, ArCH$_3$), 3.41 (3H, s, OCH$_3$), 4.44, 4.45 (1H, 2xs, 3H), 5.02 (1H, s, CHCONH), 5.19 and 5.28 (2H, ABq, J 13Hz, OCH$_2$Ph(pNO$_2$)), 5.55 (1H, s, 5H), 6.8-7.5 (7H, m, thienyl and -C$_6$H$_4$CH$_3$), 7.50 and 8.18 (4H, ABq, J 8Hz, OCH$_2$Ph(pNO$_2$)), 7.60, 7.72 (1H, 2xs, CONH).

ii) Sodium 6α-methoxy-6,β-[2-(2-methylphenoxy carbonyl)-2-(thien-3-yl)acetamido]penicillanate

Hydrogenation of 4-nitrobenzyl 6α-methoxy-6,β-[2-(2-methylphenoxy carbonyl)-2-(thien-3-yl)acetamido] penicillanate in ethyl acetate as described in example 1 (ii) gave material identical with that in example 1 (ii).
Biological Data

Comparison with 6β-[2-phenoxy carbonyl-2-thien-3'-ylacetamido]-6α-methoxy penicillanic acid in human bioavailability studies.

At a dose equivalent to 100 mg of 6β-[2-carboxy-2-thien-3'-ylacetamido]-6α-methoxy penicillanic acid the urine recoveries of 6β-[2-carboxy-2-thien-3'-ylacetamido]-6α-methoxy penicillanic acid were:

- 6β-[2-phenoxy carbonyl-2-thien-3'-ylacetamido]-6α-methoxy penicillanic acid gave 11% urine recovery.
- 6β-[2-(2'-methylphenoxy carbonyl)-2-thien-3'-ylacetamido]-6α-methoxy penicillanic acid gave 33% urine recovery.
CLAIMS
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. 6α-Methoxy-6,β-[2-(2-methylphenoxy carbonyl)-2-(thien-3-yl)acetamido]penicillanic acid of formula (II):

![Chemical Structure](image)

or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.

2. Sodium 6α-methoxy-6,β-[2-(2-methylphenoxy carbonyl)-2-(thien-3-yl)acetamido]penicillinate.

3. 6α-Methoxy-6,β-[R-2-(2-methylphenoxy carbonyl)-2-(thien-3-yl)acetamido]penicillanic acid.

4. Crystalline 6α-methoxy-6,β-[R-2-(2-methylphenoxy carbonyl)-2-(thien-3-yl)acetamido]penicillanic acid.

5. A process for the preparation of a penicillin as claimed in claim 1 which process comprises:
A) reacting a compound of formula (III):

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{OCH}_3 \\
\text{S} & \quad \text{CH}_3 \\
\text{S} & \quad \text{CH}_3 \\
\text{O} & \quad \text{CO}_2\text{R}^x
\end{align*}
\]

(III)

wherein the amino group is optionally substituted with a removable group which permits acylation to take place and wherein R\(^x\) is a carboxyl blocking group; with an N-acylating derivative of an acid of formula (IV):

\[
\begin{align*}
\text{CH}_3 & \quad \text{CO}_2\text{H} \\
\text{O} & \quad \text{CO} \\
\text{CH}_3 & \quad \text{CH}_3
\end{align*}
\]

(IV)

or

B) reacting a compound of formula (V):

\[
\begin{align*}
\text{O}\text{=C}\text{N} & \quad \text{S} \\
\text{OCH}_3 & \quad \text{CH}_3 \\
\text{O} & \quad \text{CO}_2\text{R}^x
\end{align*}
\]

(V)

wherein R\(^x\) is as defined above with respect to formula (III) above; with an acid of formula (IV) or a carbanion of formula (IVA):
or C) treating a compound of formula (VI):

wherein \(R^x \) is a carboxyl-blocking group, and \(R^3 \) is an acyl group, with an agent forming an imino halide; treating the imino halide with a compound to introduce a group \(QR_f \) on the imino carbon atom, wherein \(Q \) is oxygen, sulphur or nitrogen and \(R_f \) is an alkyl group of from 5 to 14 carbon atoms, to form an iminoether, iminothioether, or amidine (when \(Q \) is \(O, S \), or \(N \) respectively); reacting with an \(N \)-acylating derivative of an acid of formula (IV) above; and treating with water;

or D) esterifying a compound of formula (VII) or a salt thereof:
wherein R^x is a carboxyl blocking group; with compound of formula (VIII):

or E) reacting a compound of formula (IX):

wherein R^x is a carboxyl blocking group and R^4 is C$_1$-6 alkyl, benzyl or an aryl group; a) with chlorine or bromine at -25$^\circ$ to 80$^\circ$C and subsequently decomposing the resultant halosulphonium halide with methanol and a base; or b) with methanol in the presence of a metal ion, such as a tellurium (III), lead (IV), silver, copper (II), bismuth (V), mercury, lead, cadmium or thallium salt;
or F) hydrolysing a compound of formula (X):

\[\text{OCH}_3 \]
\[\text{CO}_2 \text{R}^X \]

wherein \(R^X \) represents a carboxyl blocking group; and after steps (A), (B), (C), (D), (E) or (F), optionally carrying out one or more of the following steps:

(i) removal of any substituent on the amide group;
(ii) removal of a carboxyl blocking group \(R^X \);
(iii) converting the product to a salt or in vivo hydrolysable ester thereof.

6. An intermediate of formula (X):

\[\text{OCH}_3 \]
\[\text{CO}_2 \text{R}^X \]

wherein \(R^X \) represents a carboxyl blocking group.
7. A pharmaceutical composition comprising a penicillin as claimed in claim 1 together with a pharmaceutically acceptable carrier.

8. A pharmaceutical composition comprising a penicillin as claimed in claim 1 and a compound of formula (XIII) or a pharmaceutically acceptable salt or ester thereof:

![Chemical Structure](image)

wherein A is hydroxyl, substituted hydroxyl, thiol, substituted thiol, amino, mono- or di-hydrocarbyl-substituted amino, or mono- or di-acylamino.

9. A composition as claimed in claim 8 which comprises a compound as claimed in claim 1 and clavulanic acid or an alkali metal salt thereof.

10. A composition as claimed in claim 9 which comprises sodium 6α-methoxy-6β-[2-(2-methylphenoxy-carbonyl)-2-(thien-3-yl)acetamido] penicillanate and potassium clavulanate.

11. A composition as claimed in any of claims 7 to 10 adapted for oral administration.
12. Compounds of formula (II) methods for their manufacture and pharmaceutical compositions and methods of treatment involving them, substantially as hereinbefore described with reference to the Examples.

13. The steps, features, compositions and compounds referred to or indicated in the specification and/or claims of this application, individually or collectively, and any and all combinations of any two or more of said steps or features.

Dated this 20 day of January 1983.

DAVIES & COLLISON
PATENT ATTORNEYS FOR
BEECHAM GROUP p.l.c.