PATENT REQUEST AND NOTICE OF ENTITLEMENT

We DAEWOO ELECTRONICS CO., LTD.

of 541, 5-Ga, Namdaemoon-Ro, Jung-ku, Seoul, KOREA

being the Applicant and Nominated Person, request the grant of a patent for an invention entitled WATER-SUPPLY VALVE OF A WASHING MACHINE which is described in the accompanying standard complete specification.

Jinsoo Kim is the actual inventor of the invention.

The inventor made the invention for and on behalf of the nominated person in the course of his duties as an employee of the nominated person.

Convention priority is claimed from the following basic application:

<table>
<thead>
<tr>
<th>Basic Applicant</th>
<th>Application Number</th>
<th>Application Date</th>
<th>Country</th>
<th>Country Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daewoo Electronics Co., Ltd.</td>
<td>94-12204</td>
<td>31 May 1994</td>
<td>Korea</td>
<td>KR</td>
</tr>
</tbody>
</table>

The basic application was the first application made in a Convention country in respect of the invention the subject of this request.

Drawing number recommended to accompany the abstract: 1

Our address for service is: GRIFFITH HACK & CO
168 WALKER STREET
NORTH SYDNEY NSW 2060

Attorney Code: GH

DATED this 11th day of January 1995

DAEWOO ELECTRONICS CO., LTD.
By their Patent Attorney
Disclosed is a water-supply valve of a washing machine in which the consumption of electric power can be minimized in opening and closing the valve to supply water into and block off the water supply from a washing tub of the washing machine. In the water-supply valve, an actuator rod is elevated against downward biasing force of a spring by a magnetic force of the solenoid generated by applying a voltage thereto, and then is retained at its uppermost position by the engagement between protuberances protruded from the inner wall of the actuator chamber and circumferential strips formed on the actuator rod.
Invention Title: WATER-SUPPLY VALVE OF A WASHING MACHINE

The following statement is a full description of this invention, including the best method of performing it known to us:

GH&CO REF: P23481-B:DAAR:RK
WATER-SUPPLY VALVE OF A WASHING MACHINE

Background of the Invention

1. Field of the Invention

The present invention relates to a water-supply valve of a washing machine, and more particularly to a water-supply valve of a washing machine in which the consumption of electric power can be minimized in opening and closing the valve to supply water into and block off the water supply from a washing tub of the washing machine.

2. Description of the Prior Art

FIG. 5 shows a side sectional view of a general water-supply valve of a washing machine, which is opened or closed by operation of solenoids to cause water to be supplied into or blocked off from a washing tub of the washing machine therethrough.

Referring to FIG. 5, a water-introducing tube 11 for inducing water is connected to a valve body 10 of the water-supply valve, and a water-supply tube 12 for supplying water into the washing tub is vertically connected to valve body 10 near water-introducing tube 11.

A reservoir 13 for interconnecting water-introducing tube 11 and a water-supply tube 12 is defined directly above water-supply tube 12.

A bellows 20 is disposed on the bottom surface of reservoir 13 and is in close contact with water-introducing tube 11 and a water-supply tube 12 to separate reservoir 13 therefrom. Bellows 20 has a water-inflow pore.
21 formed at an outer portion thereof to interconnect water-introducing tube 11 and reservoir 13 in order for water to flow into reservoir 13 therethrough, and a water-exhaust pore 22 at the center thereof to interconnect reservoir 13 and water-supply tube 12 in order for water having been retained in reservoir 13 to be supplied into the washing tub therethrough.

An actuator chamber 31 interconnected to reservoir 13 is defined above reservoir 13 by a cylindrical wall 10a of valve body 10. A solenoid 40 for generating magnetic force when electric power is supplied is disposed in cylindrical wall 10a.

An actuator rod 60 for opening/closing exhaust pore is disposed in actuator chamber 31. Actuator rod 60 is elastically supported on the bottom of actuator chamber 31 by a spring 50.

In the above described conventional water-supply valve, when water is not supplied into the washing tub, water-exhaust pore 22 is closed so that water is not supplied but retained in reservoir 13, and accordingly the pressure in reservoir 13 is maintained to be the same as that in water-introducing tube 11.

In order to supply water into the washing tub, a voltage is applied to solenoid 40 so as to generate a magnetic force by solenoid 40. Then, actuator rod 60 is moved upward in actuator chamber 31 while compressing spring 50, and accordingly the water having been retained in reservoir 13 is supplied into the washing tub through
water-exhaust pore 22. Therefore, the pressure in reservoir 13 becomes lower than that in water-introducing tube 11, so bellows 13 is elevated by the pressure of the water flowing into reservoir 13 from water-introducing tube 11. Then, water-introducing tube 11 is directly interconnected to water-supply tube 12, so that water flows directly from water-introducing tube 11 into water-supply tube 12 without passing through water-inflow pore and water-exhaust pore.

When the voltage having been applied to solenoid 40 is interrupted, actuator rod 60 is restored to its initial position by spring 50, so water-exhaust pore 22 is closed again.

In the above described conventional water-supply valve, electric power supply to solenoid 40 must be continued while water is supplied into the washing tub, so the electric power consumption is too large. Further, fine wires of solenoid 40 can be broken or solenoid 40 can catch on fire due to heat generated by the continuous application of voltage to solenoid 40 during water supply.

SUMMARY OF THE INVENTION

It is an aim of the present invention to ameliorate at least one of the problems of the prior art.

It is an advantage that in an embodiment of the present invention there is provided a water-supply valve of a washing machine, in which electric power need not be continuously supplied to
the water-supply valve while water is supplied into a washing tub of the washing machine, so that the electric power consumption by the valve is greatly reduced, and a breaking of fine wires of solenoids and catching on fire of the solenoids due to heat generated by the continuous supply of power to the solenoids during water supply can be prevented.

In a first aspect of the present invention there is provided a water-supply valve of a washing machine comprising:

- a valve body including an actuator chamber defined in a middle part thereof, and a reservoir defined beneath the actuator chamber and interconnected to the actuator chamber;
- a water-introducing tube interconnected to the reservoir to introduce water thereinto;
- a water-supply tube having one end thereof interconnected to the reservoir, and an other end thereof interconnected to a washing tub of the washing machine;
- an actuator rod movable up and down in the actuator chamber and the reservoir, the actuator rod including circumferential strips attached on an outer periphery thereof, guide grooves extending vertically and defined between every two of the circumferential strips, and guide pieces respectively disposed below the circumferential strips and guide grooves;
- protuberances protruding from an inner wall of the actuator chamber and guided along the circumferential
strips, guide pieces, and the guide grooves;

a spring disposed on an upper bottom surface of the actuator chamber to force the actuator rod by the downward elastic biasing force thereof to apply a downward biasing force to the actuator rod;

a solenoid enclosing the actuator chamber in a cylindrical wall defining the actuator chamber, the solenoid generating a magnetic force by a voltage applied thereto to elevate the actuator rod against the downward biasing force of the second means; and

a bellows disposed movably up and down in the reservoir according to ascent/descent of the actuator, the bellows having a water-inflow pore, and a water-exhaust pore, the water-inflow pore interconnecting the water-introducing tube and the reservoir, and the water-exhaust pore interconnecting the water-supply tube and the reservoir, respectively when the bellows is in close contact with a lower bottom surface of the reservoir to separate the reservoir from the water-introducing tube and the water-supply tube, the exhaust-pore being blocked off by the actuator rod at its lowermost position,

wherein the protuberances are guided along the guide grooves, the serrated lower sides of the circumferential strips, and the upper sides of the guide pieces, and accordingly the water-supply tube is switched between opened and closed states, whenever the actuator rod is elevated to its uppermost position by only one time by the magnetic force generated by the solenoid.
Preferably, each of the circumferential strips has a horizontally extending upper side, a serrated lower side, and two vertically extending opposite lateral sides.

More preferably, each lower side of the circumferential strip has a first inclined section, a second inclined section, respectively inclined in same direction, a vertical connection section vertically extending between the first and the second inclined sections, and a round corner between the vertical connection section and the first inclined section, and each of the guide pieces has an upper side extending with an inclination inverse to those of the first and the second sections.

When a voltage is applied to the solenoid, magnetic force is generated by the solenoid, and the actuator rod moves upward by virtue of the magnetic force while pressing the spring, and accordingly the water-exhaust pore is opened and the protuberances slide downward along the guide grooves and then along the upper inclined sides of the guide pieces.

Meanwhile, when electric power supply to the solenoid is ceased and thereby the magnetic force fades away, the actuator rod is returned downward again by the elastic biasing force of the spring. In this case, because the protuberances are located between the guide pieces, the protuberances move upward again while sliding along the first inclined sections, and then are engaged in the round corners so that the actuator rod is held at that position.
When water supply into the washing tub has been completed, electric power is supplied again to the solenoid, and the actuator rod moves upward again by the magnetic force of the solenoid.

According to the upward movement of the actuator rod, the protuberances slide along the inclined upper sides of the guide pieces. Then, electric power supply to the solenoid is ceased, and thereby the magnetic force fades away. Then, the actuator rod is returned downward again by the elastic biasing force of the spring. In this case, the protuberances move upward again and then slide upward along the second inclined sections of the circumferential strips and the guide grooves.

Brief Description of the Drawings

The advantages of the present invention will become more apparent by describing in detail a preferred embodiment thereof with reference to the attached drawings, in which:

FIG. 1 is a side sectional view of a water-supply valve of a washing machine according to one embodiment of the present invention;

FIG. 2 is an enlarged exploded perspective view of an actuator chamber and an actuator rod disposed therein in the water-supply valve of a washing machine shown in FIG. 1;

FIG. 3 is an enlarged perspective view of an actuator rod shown in FIG. 1;
FIGS. 4A through 4D are schematic constructional views showing the operation of an actuator rod in an actuator chamber of the water-supply valve of a washing machine shown in FIG. 1; and

FIG. 5 is a side sectional view of a conventional water-supply valve of a washing machine.

Detailed Description of the Preferred Embodiment

Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

Referring to FIG. 1 showing a side sectional view of a water-supply valve of a washing machine according to an embodiment of the present invention, a water-introducing tube 110 for inducing water is connected to a valve body 100 of the water-supply valve, and a water-supply tube 120 for supplying water into the washing tub is vertically connected to valve body 100 near water-introducing tube 110. A reservoir 130 for interconnecting water-introducing tube 110 and a water-supply tube 120 is defined directly above water-supply tube 120.

A bellows 200 is disposed on the bottom surface of reservoir 130, and is in close contact with water-introducing tube 110 and a water-supply tube 120 to separate reservoir 130 therefrom. Bellows 200 has a water-inflow pore 210 formed at an outer portion thereof to interconnect water-introducing tube 110 and reservoir 130 in order for water to flow into reservoir 130.
therethrough, and a water-exhaust pore 220 at the center thereof to interconnect reservoir 130 and water-supply tube 120 in order for water having been retained in reservoir 130 to be supplied into the washing tub therethrough.

An actuator chamber 310 interconnected to reservoir 130 is defined above reservoir 130 by a cylindrical wall 100a of valve body 100.

A solenoid 400 for generating magnetic force when electric power is supplied thereto is disposed in cylindrical wall 100a.

An actuator rod 600 for opening/closing water-exhaust pore 220 according to the operation of solenoid 400 is disposed in actuator chamber 310. Actuator rod 600 is elastically supported on the bottom of actuator chamber 310 by a spring 500.

Referring to FIGs. 2 and 3 showing actuator rod 600 more detailedly, actuator rod 600 has a plurality of circumferential strips 820 provided on the outer peripheral surface thereof.

Each circumferential strip 820 has a horizontally extending upper side 821, a serrated lower side 822, and two vertically extending opposite lateral sides 823. Lower side 822 has a first inclined section 801, a second inclined section 802, respectively inclined in same direction, and a vertical connection section 803 vertically extending between first and second inclined sections 801 and 802. Each vertical connection section 803
is connected to each first inclined section 801 through a round corner 804. Vertically extending guide grooves 810 are formed one by one between every two circumferential strips 820.

Meanwhile, under guide grooves 810 and round corners 804 are formed a plurality of guide pieces 840 respectively corresponding thereto. Each guide piece 840 has an upper side 841 extending with an inclination inverse to those of first and second sections 801 and 802. That is, upper sides 841 of guide pieces 840 extend rightward and upward when first and second inclined sections 801 and 802 extend diagonally leftward and upward as shown in FIGs. 1 through 4D, and vice versa.

Further, a plurality of protuberances 700 respectively protruding into each guide groove 810 are formed on the inner wall of actuator chamber 310.

Meanwhile, a reference numeral 300 not described above designates a case surrounding cylindrical wall 100a to protect valve body 100.

Hereinafter, the operation of the water-supply valve having the above construction according to the present embodiment of the present invention will be described with reference to FIGs. 4A through 4D.

When actuator rod 600 is pushed downward by spring 500 so as to block off water-exhaust pore 220, protuberances 700 are located in guide grooves 810 between circumferential strips 820 as shown in FIG. 4A, and water having been introduced into reservoir 130 through water-
introducing tube 110 and water-inflow pore 210 is not supplied into water-supply tube 120 through water-exhaust pore 220 but retained in reservoir 130. In this case, the pressure in reservoir 130 is maintained to be the same as that in water-introducing tube 110.

When a voltage is applied to solenoid 400 automatically by a microcomputer or manually by handling a switch, magnetic force is generated by solenoid 400, and actuator rod 600 having been retained at its lowermost position by spring 500 moves upward by virtue of the magnetic force while pressing spring 500, and accordingly water-exhaust pore 220 is opened, and protuberances 700 slide downward to come into contact with guide pieces 840 directly below guide grooves 840.

Actuator rod 600 continues moving upward while compressing spring 500, and thereby protuberances 700 slide along inclined upper sides 841 of guide pieces 840. In this case, actuator rod 600 rotates due to the sliding contact between protuberances 700 and guide pieces 840.

When protuberances 700 are located between guide pieces 840 as shown in FIG. 4B, spring 500 is completely compressed so that actuator rod 600 no longer moves upward.

Meanwhile, when electric power supply to solenoid 400 is ceased and thereby the magnetic force fades away, actuator rod 600 having moved upward while compressing spring 500 is returned downward again by the elastic biasing force of spring 500. In this case, because
protuberances 700 are located between guide pieces 840, protuberances 700 move upward again and then come into contact with first inclined sections 801 of circumferential strips 820.

Actuator rod 600 continues moving downward by the elastic force of spring 500, and thereby protuberances 700 slide along first inclined sections 801 so as to rotate actuator rod 600. When protuberances 700 are engaged in round corners 804 as shown in FIG. 4C, actuator rod 600 stops its rotation and downward movement but is held at that position. Accordingly, water-exhaust pore 220 is maintained open, and water having been retained in reservoir 130 is supplied into water-supply tube 120 through water-exhaust pore 220. In this case, the pressure in reservoir 130 decreases below that in water-introducing tube 110, so that water introduced into water-introducing tube 110 pushes up bellows 200, and thereby water-introducing tube 110 and water-supply tube 120 are directly interconnected with each other, and water is directly supplied from water-introducing tube 110 to water-supply tube 120 without passing through water-inflow pore 210 and water-exhaust pore 220.

When water supply into the washing tub has been completed, electric power is supplied again to solenoid 400, and then a magnetic force is generated again by solenoid 400. Actuator rod 600 moves upward again by the magnetic force of solenoid 400 while pressing spring 500.

According to the upward movement of actuator rod 600,
protuberances 700 move downward again to come into contact with the upper ends of inclined upper sides 841 of guide pieces 840 directly below round corners 804. Actuator rod 600 continues moving upward while compressing spring 500 again, and thereby protuberances 700 slide along inclined upper sides 841 of guide pieces 840 directly below round corners 804. In this case, actuator rod 600 rotates due to the sliding contact between protuberances 700 and guide pieces 840. When protuberances 700 are located between guide pieces 840 as shown in FIG. 4D, spring 500 is completely compressed so that actuator rod 600 no longer moves upward.

When the upward movement of actuator rod 600 is stopped as described above, electric power supply to solenoid 400 is ceased, and thereby the magnetic force fades away. Then, actuator rod 600 having moved upward while compressing spring 500 is returned downward again by the elastic biasing force of spring 500. In this case, protuberances 700 move upward again and then come into contact with second inclined sections 802 of circumferential strips 820.

Actuator rod 600 continues moving downward by the elastic force of spring 500, and protuberances 700 slide upward along second inclined sections 802 of circumferential strips 820, and then along guide groove 810. Actuator rod 600 blocks off water-exhaust pore 220 and pushes bellows 200 downward while moving downward.

When bellows 200 is in close contact with the bottom
of reservoir 130 and water-exhaust pore 220 is completely blocked off by actuator rod 220 as shown in FIG. 1, protuberances 700 are located in guide grooves 810 as shown in FIG. 4A, and accordingly water supply into water-supply tube is interrupted.

As described above in detail, in a water-supply valve of a washing machine according to the present invention, electric power need not be continuously supplied to the water-supply valve while water is supplied into a washing tub of the washing machine, but opened or closed state of the valve is maintained only by an instantaneous power supply to the valve at a moment of supplying water or interrupting the water supply. Therefore, the electric power consumption by the valve is greatly reduced, and the breaking of fine wires of solenoid 40 and catching on fire of solenoid 40 due to heat generated by the continuous supply of power to solenoid 40 during water supply can be prevented. Further, reliable water supply into the washing tub is guaranteed.

While the present invention has been particularly shown and described with reference to a particular embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be effected therein without departing from the spirit and scope of the invention as defined by the appended claims.
What is claimed is:

1. A water-supply valve of a washing machine comprising:
 a valve body including an actuator chamber defined in a middle part thereof, and a reservoir defined beneath the actuator chamber and interconnected to the actuator chamber;
 a water-introducing tube interconnected to the reservoir to introduce water thereinto;
 a water-supply tube having one end thereof interconnected to the reservoir, and an other end thereof interconnected to a washing tub of the washing machine;
 an actuator rod movable up and down in the actuator chamber and the reservoir, the actuator rod including circumferential strips attached on an outer periphery thereof, guide grooves extending vertically and defined between every two of the circumferential strips, and guide pieces respectively disposed below the circumferential strips and guide grooves;
 protuberances protruding from an inner wall of the actuator chamber and guided along the circumferential strips, guide pieces, and the guide grooves;
 a first means for applying a downward biasing force to the actuator rod;
 a second means for elevating the actuator rod against the downward biasing force; and
 a bellows disposed movably up and down in the reservoir according to ascent/descent of the actuator, the
bellows having a water-inflow pore, and a water-exhaust pore, the water-inflow pore interconnecting the water-introducing tube and the reservoir, and the water-exhaust pore interconnecting the water-supply tube and the reservoir, respectively when the bellows is in close contact with a lower bottom surface of the reservoir to separate the reservoir from the water-introducing tube and the water-supply tube, the exhaust-pore being blocked off by the actuator rod at its lowermost position,

wherein the protuberances are guided along the guide grooves, circumferential strips, and guide pieces, and accordingly the water-supply tube is switched between opened and closed states, whenever the actuator rod is elevated to its uppermost position by only one time by the second means.

2. A water-supply valve of a washing machine as claimed in claim 1, wherein each of the circumferential strips includes a horizontally extending upper side, a serrated lower side, and two vertically extending opposite lateral sides.

3. A water-supply valve of a washing machine as claimed in claim 2, wherein each said lower side of the circumferential strip includes a first inclined section, a second inclined section, respectively inclined in same direction, and a vertical connection section vertically extending between the first and the second inclined
sections.

4. A water-supply valve of a washing machine as claimed in claim 3, wherein each said lower side of the circumferential strip includes a round corner between the vertical connection section and the first inclined section.

5. A water-supply valve of a washing machine as claimed in claim 1, wherein each of the guide pieces includes an upper side extending with an inclination inverse to those of the first and the second sections.

6. A water-supply valve of a washing machine as claimed in any of the preceding claims, wherein the first means includes a spring disposed on an upper bottom surface of the actuator chamber to force the actuator rod by the downward elastic biasing force thereof.

7. A water-supply valve of a washing machine as claimed in any of the preceding claims, wherein the second means includes a solenoid enclosing the actuator chamber in a cylindrical wall defining the actuator chamber, the solenoid generating a magnetic force by a voltage applied thereto to elevate the actuator rod against the downward biasing force of the first means.
8. A water-supply valve substantially as herein described with reference to any one of Figures 1 to 4 of the accompanying drawings.

Dated this 11th day of January 1995

DAEWOO ELECTRONICS CO., LTD.
By their Patent Attorney
GRIFFITH HACK & CO.
Abstract of the Invention

Disclosed is a water-supply valve of a washing machine in which the consumption of electric power can be minimized in opening and closing the valve to supply water into and block off the water supply from a washing tub of the washing machine. In the water-supply valve, an actuator rod is elevated against downward biasing force of a spring by a magnetic force of the solenoid generated by applying a voltage thereto, and then is retained at its uppermost position by the engagement between protuberances protruded from the inner wall of the actuator chamber and circumferential strips formed on the actuator rod.
FIG. 5
(PRIOR ART)